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Abstract—Carrier tracking loops used in satellite navigation
receiver are discrete-time closed loop systems that are mostly
designed from their continuous time counterparts. In this
paper, we analyze the stability of second order carrier tracking
loop, assisted and unassisted versions, when designed from
continuous time domain. It is well-known that increasing the
product of loop noise bandwidth and integration time, this
design approach fails and our resulting discrete time loop
becomes unstable. Using Bode analysis technique, we show the
effect of variation of loop filter coefficients on stability margin
of the loop. Based on the discussion, some improvements
have been proposed to increase the stability margin of both
unassisted and assisted loops. While considering assisted loop, it
is a common misconception that assisted loop is more robust to
changes in loop noise bandwidth and integration time product
as compared to its unassisted counterpart. We show that this
is true only for small values of loop noise bandwidth and
integration time product. Monte Carlo simulations verify all
the presented results in the paper.

I. INTRODUCTION

In global navigation satellite system (GNSS), relative mo-
tion between user and satellite causes time varying Doppler
shifts in the received signal. Accurate determination of this
Doppler is essential for perfect carrier wipe-off from the
incoming signal which is required by delay locked loop
(DLL) to make code phase measurements. For this purpose,
traditional approach to estimate and then keep track of
these time varying Doppler shifts is to deploy phase-locked
loops (PLL), frequency locked loops (FLL) or an FLL-
assisted-PLL where FLL assists PLL in a strongly coupled
manner [1]. Traditional approach to design these tracking
loops is to approximate these loops by their continuous
time counterparts. The reason to adopt this design method
is the simplicity of the method. Another reason is that in
continuous time domain, design of these loops has been
extensively studied and there exist a lot of design methods
for different loop order and types which can conveniently be
converted into discrete time domain using continuous time
to discrete time transformations like Bilinear transform etc.

These transformations actually approximate the behavior
of continuous time loop in discrete time domain. This
approximation remains valid only for smaller values of the
product of sampling time and loop bandwidth i.e. BT , where
B is loop bandwidth and T is the integration time for
correlation which is also the update interval of the loop.
Actually, the value of this product is directly related to the
positions of the closed loop poles in z-plane. When this
product starts increasing, the poles start moving towards
outside the unit circle. Eventually, the loop becomes unstable

for larger BT values and we say that the approximation from
continuous time domain to discrete time domain has failed.

On the other hand, GNSS receivers working in harsh
environments require larger BT values for tracking loops.
This may be the result of either of the following two
requirements:

1) Received signal power is very low. In this case, we
are interested in increasing the value of T which will
enable us to recover even very weak signal.

2) User has very high dynamics. In this case, relative
velocity between user and satellite will be very high
resulting in larger values of Doppler shift and Doppler
rate. In order to track these larger values of Doppler
quantities, we need to increase the loop noise band-
width of the tracking loop.

A lot of work has already been done and is in progress
to cope with the design of the loop for larger BT product
values. One option is to rely on other techniques of de-
signing digital loops instead of relying on continuous time
design choices. For this purpose, some techniques have been
proposed in the literature as discussed in [2]. All of these
architectures aim either at re-designing or replacing the loop
filter with a more robust block. Unfortunately, the design
method involved in most of these approaches becomes more
intricate and very specific for certain type of user dynamics.

Other alternative is to work around classical approach of
designing tracking loops from their continuous time coun-
terparts and try to improve its robustness against larger BT
products. So, it becomes essential to completely comprehend
the phenomenon which results in loop instability. For this
purpose, Bode analysis technique is very useful is analyzing
the stability of closed loop system. Recently this technique
has been used by GNSS community to address the stability
issues of GNSS tracking loops [3], [4]. Performance of
the loop and its stability properties strongly depend on
the transformation functions used for converting continuous
time system to discrete time systems. Two most common
transformations used among GNSS community are Bilinear
rule and Forward or Boxcar rule. Usual approach is to use
Bilinear rule for loop filter and Boxcar rule for numerically
controlled oscillator (NCO) which is digital counterpart of
voltage controlled oscillator (VCO) [3]. In this paper, we
clearly outline the rationale behind this choice and also
explore other alternatives. Specifically, we use Bode analysis
technique to completely analyze the stability of a second
order PLL and its assisted counterpart i.e. second order PLL
assisted by first order FLL when designed from continuous
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time loops. We show the following:
• In case of unassisted loop, phase margin can be ob-

tained by considering the open loop transfer function
of the closed loop system. For this purpose, a similar
approach is adopted as presented in [3].

• In case of assisted loop, open loop transfer function
can be obtained by using only one phase discriminator
for generation of both phase and frequency errors. In
order to generate frequency error, phase discriminator
is followed by a differentiator.

• In case of assisted loop, it is better to use Bilinear for
differentiator instead of conventional Boxcar model.

• In both assisted and unassisted PLL, the stability
margin can be increased significantly by redesigning
the loop filter coefficients using Bilinear transform
for complete loop and not just for the loop filter by
adopting an approach similar to the one presented in
[5].

• It is a common misconception that assisted loop is more
robust as compared to its unassisted counterpart, we
actually show that this is true only for small values
of BT product. As this product increases, unassisted
loop is more robust in terms of stability margin for a
significant range of BT product before loop becomes
unstable.

• While considering only assisted loop, PLL is weaker
loop as it breaks first thus making whole loop unstable.

All the results obtained from Bode analysis are further ver-
ified by developing a Monte Carlo simulation environment.

Rest of the paper is organized as follows. Section II
presents some relevant background theory necessary to de-
velop the open loop models which will be used to obtain
phase margin for stability analysis. Section III presents
analysis and simulation results that support the developed
models in previous sections. Based on the discussion in this
section, some conclusions are drawn in section IV.

II. SECOND ORDER TRACKING LOOP THEORY

A. s-domain:

General block diagram of a GNSS tracking loop in
Laplace domain is shown in Fig. 1. NCO N(s) is respon-
sible for generating a local replica of the incoming phase.
Assuming unity gain, NCO is modeled as an integrator in
s-domain such that

N(s) =
1

s
(1)

The locally generated phase is then compared with incom-

Fig. 1: GNSS tracking loop in s-domain

ing phase by loop discriminator LD(s) to detect the phase

error between them. Zero-order model for loop discriminator
is simply a gain kd which can be assumed unity without loss
of generality such that

LD(s) = kd = 1 (2)

Order and type of the closed loop system is determined
by the choice of loop filter F (s) which is more a controller
than simply a filter. Its role as controller has already been
outlined in literature [2]. We consider following choices for
F (s) in this paper:

• First order loop: For first order loop, F (s) is simply
a proportional constant i.e.

F1(s) = f1 (3)

where f1 = ωo = Natural frequency of the loop which
is also related to loop noise bandwidth B of first order
loop as B = 0.25ωo

• Second order loop: For second order loop, F (s) is
proportional-integrator (PI) controller i.e.

F2(s) = c1 +
c2
s

(4)

where c1 and c2 are related to 2nd order loop param-
eters ωo and ζ as c1 = 2ζωo and c2 = ω2

o . Here, ωo
is again natural frequency of the loop which is related
to loop noise bandwidth B of second order loop as
B = 0.53ωo and ζ is the damping ratio.

• 2nd order assisted loop: Most common structure of
2nd order assisted loop used in GNSS is 2nd order
PLL assisted with 1st order FLL which can be modeled
as shown in Fig. 3. Notice that, FLL architecture is
different from PLL as in this case phase discriminator
is preceded by a differentiator, D(s) which gener-
ates frequency error from phase error, which is then
followed by an integrator, 1

s in the remaining loop.
Also the use of single discriminator for both phase
and frequency error detection may cause phase outlier
to affect the frequency estimation but this can be
avoided by redesigning phase discriminator as given
in [6]. In our approach, we will consider an alternate
structure for assisted loop as shown in Fig. 3 which is
mathematically equivalent to Fig. 2. Using this model,
we can include D(s) and integrator in FLL chain in
the loop filter such that

Fa(s) = D(s)
f1
s

+
(
c1 +

c2
s

)
(5)

Fig. 2: Loop filter for assisted loop

Assuming proper values for different gains, we can write
closed loop transfer function for first and second order loops
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Fig. 3: Equivalent structure for assisted loop filter

as:

H1(s) =
F1(s)N(s)

1 + F1(s)N(s)
=

f1
s+ f1

(6)

H2(s) =
c1s+ c2

s2 + c1s+ c2
(7)

Equations (6) and (7) will be used to find values of f1, c1
and c2 for all three filters.

B. Moving from s-Domain to z-domain:

Following two transformations are mostly used to convert
continuous time transfer function to an equivalent discrete
time transfer function:

• Bilinear:

s→ 2

T

1− z−1

1 + z−1
(8)

• Boxcar:

s→ 1− z−1

Tz−1
(9)

where T corresponds to sampling interval i.e. update in-
terval in the loop. It is widely known that Bilinear rule is
much better as compared to other transformations. So, one
might aim to use Bilinear for each individual block while
transforming a continuous time loop to discrete time loop.
However, as discussed below, we can not use Bilinear for
all the blocks inside closed loop system.

z-domain model of a discrete time tracking loop used
in GNSS receivers is shown in Fig. 4. Here, we have
an additional block as compared to its analog counterpart,
integrate and dump ID(z) which accumulates number of
samples over each integration period T and outputs a
complex quantity. Phase of this quantity is the average
phase difference between incoming and local carriers over
integration interval T . We can model these blocks in z-
domain as discussed below. NCO is traditionally modeled

Fig. 4: GNSS tracking loop in z-domain

using Boxcar rule which results in

N(z) =
Tz−1

1− z−1
=

T

z − 1
(10)

Notice that, we need to incorporate an inherent delay in any
of the block inside the loop due to its discrete time nature.
It can be shown easily that only Boxcar rule allows us to
have such a delay element in the obtained discrete time loop
transfer function. NCO is usually chosen for this purpose.
However, we will show that we can emulate Bilinear rule
for NCO by properly modifying filter coefficients to include
this effect. This is an indirect modeling of NCO by Bilinear
transform which results in sufficient advantage in terms of
stability margin.

Integrate and dump block is modeled directly in z-domain
as [3]

ID(z) =
1 + z−1

2
(11)

Loop discriminator LD(z) is again modeled as a constant in
z-domain. Loop filter F (z) is always modeled using Bilinear
transform which results in

F1(z) = f1 (12)

F2(z) =
a1 + a2z

−1

1− z−1
(13)

with a1 = c1 + 0.5Tc2 and a2 = 0.5Tc2 − c1. In case of
assisted loop, Fa(z) depends on how we model differentiator
i.e. D(s) in z-domain. For a general expression for D(z),
we get

Fa(z) = f1D(z)

(
T

2

1 + z−1

1− z−1

)
+
a1 + a2z

−1

1− z−1
(14)

Now, if we replace D(s) in z-domain by Bilinear, we get

Fa(z) = f1 +
a1 + a2z

−1

1− z−1
(15)

and if we chose Boxcar model for D(s), which is the usual
approach to find frequency error from phase error, we get

Fa(z) = f1

(
1

2

1 + z−1

z−1

)
+
a1 + a2z

−1

1− z−1
(16)

C. Bilinear model for NCO:

As already stated, direct mapping of NCO using Bilinear
transform is not possible because in that case, in order to
compute current replica of the phase at NCO output, we will
be needing that frequency value from loop filter which is still
to be computed using current NCO phase in the next update
interval. This is an inherent problem of any digital feedback
loop. But still we can indirectly model it by modifying the
loop filter coefficients to include this effect.

1) Calculating f1: Starting from closed loop transfer
function of first order loop given in (6), we can use Bilinear
on H1(s) to get corresponding closed loop transfer function
in z-domain H1(z) as shown below.

H1(z) = H1(s)
∣∣
s= 2

T
1−z−1

1+z−1

(17)

=

(
ωo

s+ ωo

) ∣∣∣
s= 2

T
1−z−1

1+z−1

(18)

=
2ωo(z − 1)

(2 + Tωo)z − (2− Tωo)
(19)
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We can also form closed loop transfer function of first order
loop directly in z-domain referring to Fig. 4 and using (10)
and (12),

H1z (z) =
F1(z)N(z)

1 + F1(z)N(z)
(20)

where LD(z) has been assumed unity and ID(z) has not
been considered as this block is not present in analog
counterpart. Now, substituting the expressions, we get

H1z (z) =
f1

T
z−1

1 + f1
T
z−1

(21)

Notice that here, we will treat f1 as unknown whose value
will be determined by matching the poles of (21) with those
of (19). Comparing (21) with (19), we get

f1 =
2ωo

2 + Tωo
(22)

This is the modified value of first order loop filter coefficient.
This value, when used with Boxcar NCO, will give us
overall loop which will behave as every block has been
transformed to z-domain using Bilinear.

Note that, when T is very small, we have 2 >> (Tωo).
We can say that 2 + Tωo ≈ 2 such that the value of f1 in
(22) reduces to its traditional value i.e. ωo.

2) Calculating c1 and c2: A similar procedure can be
adopted for 2nd order loop to calculate its modified coeffi-
cients. The results are outlined below,

H2(z) = H2(s)
∣∣
s= 2

T
1−z−1

1+z−1

(23)

=

(
2ζωos+ ω2

o

s2 + 2ζωos+ ω2
o

) ∣∣∣
s= 2

T
1−z−1

1+z−1

(24)

which can be simplified to

H2(z) =
[4ζωoT+(ωoT )2]+2(ωoT )2z−1+[(ωoT )2−4ζωoT ]z−2

[4+4ζωoT+(ωoT )2]+[2(ωoT )2−8]z−1+[4−4ζωoT+(ωoT )2]z−2

(25)
Similarly, using (13) and (10), we can obtain H2z (z) as

H2z (z) =
F2(z)N(z)

1 + F2(z)N(z)
(26)

H2z (z) =
T (c1+0.5c2T )z−1+T (0.5c2T−c1)z−2

1+[T (c1+0.5c2T )−2]z−1+[1+T (0.5c2T−c1)]z−2

(27)
Here, we again treat c1 and c2 as unknowns. Now, comparing
(25) and (27), we get,

c1 =
8ζωo + 2ω2

oT

4 + 4ζωoT + (ωoT )2
(28)

c2 =
4ω2

o

4 + 4ζωoT + (ωoT )2
(29)

Again, it is interesting to note that both c1 and c2 reduce to
their traditional values of 2ζωo and ω2

o respectively, when
T is very small.

D. Open loop transfer function:

Fig. 5 presents open loop model of GNSS carrier tracking
loop adopted for the purpose of phase margin analysis using
Bode analysis technique. The loop has been opened after
integrate and dump block as shown in Fig. 5, by assuming
all signals external to the loop equal to zero as required
by this technique. Now, we can find open loop transfer

Fig. 5: GNSS tracking loop under Bode test condition

function G(z) for the loop and corresponding phase margin
for stability analysis.

G(z) = LD(z)F (z)N(z)ID(z) =
T

2
z−1

(
1 + z−1

1− z−1

)
F (z)

(30)
where F (z) can take any of the following forms, depending
on order and type of the loop,

• First order loop: F (z) = F1(z) given in (12) with
possible choices for f1 outlined in Table I.

TABLE I: Coefficients for F1(z)

f1

Traditional ωo

Modified 2ωo
2+Tωo

• Second order loop: F (z) = F2(z) given in (13) with
possible choices for c1 and c2 outlined in Table II.

TABLE II: Coefficients for F2(z)

c1 c2

Traditional 2ζωo ω2
o

Modified 8ζωo+2ω2
oT

4+4ζωoT+(ωoT )2
4ω2

o
4+4ζωoT+(ωoT )2

• Second order assisted loop: F (z) = Fa(z) given in
(15) or (16) depending on the model for D(z) with
possible choices for f1, c1 and c2 outlined in Table III.

TABLE III: Coefficients for Fa(z)

f1 c1 c2

Traditional ωo 2ζωo ω2
o

Modified 2ωo
2+Tωo

8ζωo+2ω2
oT

4+4ζωoT+(ωoT )2
4ω2

o
4+4ζωoT+(ωoT )2

At this point, we can analyze the stability of the loop
in terms of phase margin using (30) considering different
choices for F (z).

III. RESULTS AND DISCUSSION

In this section, we present the results obtained analyzing
the models discussed in section II. We consider only 2nd
order PLL - unassisted and assisted by first order FLL. A
mechanism has also been developed to verify the presented
results using Monte Carlo simulations. In all the presented
results, unstable region corresponds to the region where
phase margin becomes negative. Before unstable region, the
response of the loop is highly distorted in some proximate
region rendering the loop unfit for practical use. This region
has been termed as distorted region in the results.
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A. Traditional vs. modified coefficients:

Considering unassisted 2nd order PLL, phase margin is
obtained using (30) with F (z) given in (13). Two cases are
considered: traditional and modified coefficient as outlined
in Table II. The results are shown in Fig. 6 for a fixed
value of loop noise bandwidth B while varying integration
time T . It is clear that modified coefficients provide us
significant improvement in terms of stability margin as
compared to traditional coefficient case. This is intuitive as
we have already discussed that modified coefficients model
digital loop more accurately specially when we are working
with larger update intervals T . For smaller values of T ,
performance in both cases is almost same.

For assisted loop, we can obtain phase margin using
(30) with F (z) given in (16) which models differentiator
in digital domain using Bilinear approximation. Again, we
consider both cases. The results are again presented in Fig.
6. Again, we observe significant improvement in terms of
stability margin.

Fig. 6: Phase margin of 2nd order loops

B. Assisted vs. unassisted loop:

Fig. 6 provides comparison between assisted and unas-
sisted loops under same parameter settings. It is clear that
assisted loop is more robust as compared to its unassisted
counterpart for smaller BT products. As T increases, stabil-
ity margin of assisted loop decreases faster as compared to
unassisted loop, thus making it more vulnerable. This aspect
clearly indicates that assisted loop is not always robust as
compared to unassisted loop, rather only for smaller BT
product values.

C. Assisted loop: Boxcar vs. Bilinear differentiator

In case of assisted loop, another useful comparison can be
made between (15) and (16) where in former case, Bilinear
is used to replace D(s) in z-domain and in later case Boxcar
is used. The results are shown in Fig. 7. These results
have been obtained by considering traditional coefficients for
both PLL and FLL in assisted loop. Loop noise bandwidths
of both PLL and FLL is set to 1 Hz while integration
time is varied. Similar results can also be obtained using
modified coefficients. It is clear that choice of Bilinear for
differentiator offers significant stability margin improvement
as compared to Boxcar case.

Fig. 7: Phase margin of assisted loop with different models
for D(s) and traditional coefficients for loop filter

D. Assisted loop: PLL vs. FLL

In case of assisted loop, we can identify the more vulner-
able loop between PLL and FLL to changes in BT product.
For this purpose, we keep integration time constant and vary
loop noise bandwidth of both PLL and FLL alternatively.
The results are presented in Fig. 8 for traditional loop
coefficients and Bilinear model for differentiator in all cases.
In any of these curves, BT product for one loop is constant
and for other loop is varying. Under this setting, if assisted
loop breaks it is clear that it is only due to that loop for
which BT product was varying. From results, it is observed
that PLL is weaker loop as it breaks first making whole loop
unstable while FLL is more robust.

Fig. 8: Phase margin of assisted loop by varying loop
noise bandwidth of FLL or PLL

E. Verifying the results: Monte Carlo simulations

In order to verify the presented results, we can develop a
Monte Carlo simulation to measure some parameter in time
domain response of the loop that is directly related to phase
margin and hence in a sense can be used to quantify loop
stability margin. For this purpose, we have considered to
measure the percentage overshoot of the step response of the
closed loop system which is related to damping ratio of the
loop which in turn is related to phase margin [7]. Following
procedure has been developed to measure the percentage
overshoot using simulations:
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• Step 1: GNSS like signal of certain duration is gen-
erated considering a sufficient higher value for carrier
to noise ratio, C/No assuming code has been perfectly
wiped-off. The value of Doppler is chosen to be a step.

• Step 2: This signal is fed to the carrier tracking loop
which is under consideration for some parameter set-
tings. Doppler estimates at the output of the loop filter
are considered for percentage overshoot measurement.

• Step 3: Percentage overshoot is measured and this
process is repeated for a number of iterations. At each
value of iteration, Doppler step is kept same but signal
is generated a new.

• Step 4: At the end of all iterations, an average value of
percentage overshoot is recorded and stored for current
settings of the loop.

• Step 5: This process is repeated for each value of the
loop parameter and results are plotted at the end.

Fig. 9: Percentage overshoot corresponding to different
loops

Fig. 9 presents simulation results plotting percentage over-
shoot for all the cases presented in Fig. 6. These results
are presented starting from sufficiently higher value of
integration time T because the presence of noise makes it
difficult to measure the percentage overshoot for relatively
smaller T values. Larger percentage overshoot indicates the
loop has less stability margin and hence it is more close
to becoming unstable. The trends in Fig. 9 are very much
in agreement with those in Fig. 6, and hence verify all the
analysis results. Similarly, all other analysis results have also
been verified following the same procedure as described for
this case.

IV. CONCLUSION

Stability of 2nd order carrier tracking loop has been
analyzed using Bode analysis technique. It has been shown
that the choice of different continuous-time to discrete-
time approximations directly impacts the stability of the
loop. We have shown that redesigning loop filter coeffi-
cients by considering Bilinear model for all the blocks in
continuous time loop results in significant stability margin
improvement. Assisted loop is more robust only for smaller
values of BT products as compared to unassisted loop.
Some improvements have been suggested in assisted loop
by carefully choosing the model for differentiator in FLL

chain. Presented results have been verified using Monte
Carlo simulations.
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