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Abstract—Improving the accuracy of position and velocity esti-
mates from single frequency Global Navigation Satellite System
(GNSS) receivers is of paramount importance due to their wide
spread role in new and emerging real time applications requir-
ing higher levels of accuracy. Single frequency receiver has only
two independent measurements: code delay and carrier phase
measurements. Pseudorange estimates from code delay mea-
surements are unambiguous but noisy while those from carrier
phase measurements are precise but suffer from integer ambigu-
ity problem. In order to obtain high accuracy without explicitly
solving for integer ambiguities, Carrier-Smoothed-Code (CSC)
methods are very effective. These methods rely on combining the
precise but ambiguous carrier phase measurements with noisy
but unambiguous code phase measurements to get a smoothed
and unambiguous estimate of the pseudorange for each satellite.
Several CSC methods have appeared in the last few decades,
almost all of them are based on Hatch filter which linearly
combines code delay and carrier phase measurements. The
main drawback of standard Hatch filter and its variants is the
assumption that receiver is either static or is slowly moving and
there are no cycle-slips. Beyond linear filtering solution, a non-
linear filtering framework can also be devised for CSC process.
A general framework to analyze and compare the performance
of linear and non-linear filtering approaches towards CSC pro-
cess especially in the presence of cycle-slips is missing. The
main goal of this paper is to provide a significant contribution
in this domain. It is shown that Hatch filter problem can be
formulated in terms of Kalman filtering problem whose perfor-
mance can be significantly improved after adequate tuning of
process noise statistics. Effect of inaccuracies in estimating the
measurement noise statistics on the final pseudorange estimates
is also presented. A Gaussian sum non-linear filter is devised
whose performance is compared with CSC methods based on
linear filtering including Kalman filter. Simulation results,
supported by real GNSS data, are provided showing the trade-
off between better noise rejection, robustness against cycle-slips,
convergence speed and computational complexity.
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1. INTRODUCTION
Global Navigation Satellite System (GNSS) transmits Direct
Sequence Spread Spectrum (DSSS) signals by a constellation
of satellites. Using these signals, the receiver makes the
distance measurements, called pseudoranges, from at least
four satellites enabling itself to compute Position, Velocity
and Time (PVT) estimates. The distance measurements can
be made either on incoming signal code or on incoming
carrier phase. Both of these measurements are affected by
satellite noise and errors, receiver noise and atmospheric bi-
ases such as those introduced by ionosphere, troposphere and
multipath [1]. The receiver noise and multipath errors in the
carrier phase observables are very small as compared to code
delay observables. However, carrier phase observables are
ambiguous being affected by integer number of carrier cycles,
called integer ambiguity. So, pseudorange observables from
code measurement are noisy and unbiased, while those from
carrier measurements are precise but biased due to unresolved
integer ambiguity problem [2]. Integer ambiguity resolution
is not a trivial task especially for a single frequency receiver
operating in stand-alone mode. The best possible position
estimate accuracy is obtainable from dual frequency receivers
using carrier phase observables. However dual frequency
receivers are very expensive and take about 20-40 minutes
to reach higher level of accuracies [3]. This aspect makes
their scope limited to very special positioning applications
like geodetic surveys etc. On the other hand, novel emerging
applications of GNSS are requiring higher levels of accura-
cies in real time operations. For instance, many emerging
roadway applications require in-lane level vehicle’s position
estimates [4]. So, it becomes highly desirable to improve
the accuracy of single frequency GNSS receiver which are
natural and cost effective solutions for such applications.

In order to get the best possible accuracy from single fre-
quency receivers using both code and carrier observables
without explicitly solving for integer ambiguities, Carrier-
Smoothed-Code (CSC) techniques have been proposed in the
literature [2]. These techniques benefit from precise carrier
phase measurements by combining them with unambiguous
code phase measurements to get a smoothed unambiguous
pseudorange estimate for each satellite. There are few factors
which determine the performance of any CSC method. These
factors include steady-state pseudorange error, robustness to
cycle slips, convergence speed and robustness against iono-
sphere divergence error. CSC methods can be devised either
in range domain or in position domain [5]. While, position
domain methods apply carrier smoothing to code observables
within navigation solution computation, range domain tech-
niques combine code and carrier phase observables to form
smoothed pseudoranges for each satellite before computing
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navigation solutions. Position domain methods are suitable
only for receivers working in differential modes [6]. They
also involve an intricate design of filter structures, such
as Kalman filters incorporating double-differenced carrier
phase measurements, for navigation solution computation.
These structures also require quite good estimates of noise
covariance of pseudorange and carrier phase measurements
[7]. While some advantages of using position domain CSC
methods over range domain CSC methods have been reported
in the literature [8], a complete performance comparison
of both in terms of all the factors reported above is still
missing. In this paper, our focus is on comparison of two
sub-domains for range domain CSC techniques namely linear
vs nonlinear techniques. Linear techniques rely on linearly
combining code and carrier phase measurements while non-
linear techniques employ some nonlinear filter structure to get
smoothed pseudorange. Comparison is performed in terms of
steady-state pseudorange error, robustness to cycle slips and
convergence speed. Ionosphere divergence error has not been
chosen for comparison in this work. If smoothing intervals
are small, this error is not significant in normal conditions i.e.
in the absence of any ionosphere storm. There are also some
techniques which can estimate this error with quite good
accuracy which can be used to remove it before proceeding
to smoothing algorithm e.g. the technique reported in [9].

State-of-the-art

Hatch posed the first ever proposal to combine code and
carrier measurements using their linear combination in range
domain [10]. The technique is usually termed as Hatch
Filter. Basic idea behind this recursive method is to use the
time differenced carrier phase measurements and raw code
pseudoranges as current measurements. Use these measure-
ments and previous estimate of smoothed pseudorange with
proper weights to get current estimate of smoothed pseu-
dorange. Selection of proper weights is very important for
better performance therefore a number of variants of Hatch
filter are proposed in the literature which try to optimize
the weights. Hatch himself proposed an improvement in
original algorithm by proposing epoch independent weights
[11]. Lachapelle proposed a variant by reducing the weights
by a constant from epoch to epoch [12]. Meyerhoff and
Evans also proposed similar variants [13]. Apart from these,
a number of other variants have also been proposed such as
[14] and the techniques reported in [15]. Hatch filter and its
variants use a very crude way of combining both observables
which does not take into account any noise statistics on either
code or carrier measurements. They are actually designed
for static or low dynamic receivers in an environment which
does not suffer from cycle-slip problem. If there are frequent
cycle-slips, they will be converted to an equivalent error on
smoothed pseudorange because in steady state Hatch Filter
almost relies entirely on carrier phase measurements. So, in
dynamic urban environments where carrier phase measure-
ments are affected by blockages, foliage and cycle slips the
performance of these methods deteriorates rapidly.

Alternatively, one can use a linear Kalman Filter, in range
domain, for combining code and carrier measurements. We
show that this type of Kalman filter actually reformulates
Hatch filter equation into Kalman prediction and update equa-
tions by assuming linear model and Gaussian noise statistics
for process and measurement models. A direct comparison
of this structure with Hatch filter and its variants is missing.
We actually show that using Kalman based smoothing we get
significant performance advantage in terms of error reduction
and convergence speed.

Another approach is to use nonlinear stochastic filter for
smoothing which can take into account not only the nonlin-
earities in the models, if any, but also non-Gaussian noise
statistics [16]. This situation arrives, for example, when a
temporary signal blockage occurs and phase measurements
are corrupted temporarily due to cycle slips. In this case, the
integer ambiguity is changed from previous value. So, the
probability density function (PDF) of carrier phase measure-
ments becomes multimodal. Non-linear filter estimates are
obtained by propagating posterior probability density func-
tions in two steps: prediction and filtering. Then adopting
some criterion for final smoothed pseudorange estimate e.g.
maximum a posterior (MAP) or minimum mean square error
(MMSE) etc.

Contribution

In this paper, we address the problem of smoothing GNSS
pseudorange from code and carrier phase measurements in
both linear and non-linear paradigms. We choose some
representative algorithms from both paradigms to compare
their performance in terms of smoothed pseudorange Mean
Square Error (MSE), cycle slip performance and convergence
speed. We start by comparing the performance of Kalman
filter and Hatch filter and its variants in terms of convergence
speed and MSE in the presence of cycle slips. It is shown
that using Kalman filter formulation, one can actually get
more control on the smoothing behavior of algorithm. A
discussion is carried out for proper tuning of Kalman filter
parameters by analyzing their affect on filter’s performance.
Process noise covariance is shown to be the critical parameter
whose value determines the trade-off between noise rejection
and convergence speed. The affect of measurement noise
inaccuracies is also discussed and a scheme is developed
to online estimate the measurement noise covariance from
Kalman residuals. Finally, we devise a Gaussian Sum non-
linear filter for comparison with other linear filters. More
specifically, we consider the following five algorithms for
comparison:

1. Traditional Hatch Filter with time varying weights.
2. A variant of Hatch filter which provides an estimate based on

subsequent measurements.
3. Traditional Kalman Filter implementing Hatch Algorithms.
4. Traditional Kalman Filter where measurement noise statistics

are estimated online.
5. A stochastic nonlinear filter.

A simulation environment is set-up to simulate code and car-
rier phase measurements along with possibility of introducing
a number of cycle slips at any desired position within the data.
All algorithms are tested and their performance is evaluated
based on the smoothed pseudorange mean square error as a
function of variance on code phase measurements. Results
indicate that nonlinear filter is more robust to perturbations
due to signal outage and cycle slip problem but suffer from
problem of very high computational complexity. All the al-
gorithms are also tested with real Global Positioning System
(GPS) data.

Another important contribution is to develop a framework for
testing the nonlinear filter with real data which involves many
implementation issues. For instance, we need to provide
the filter with a rough estimate of integer ambiguity. We
have shown that actually a very crude estimate of integer
ambiguity using the average of difference of code and carrier
measurements along with sufficient large number of modes
of measurement likelihood function is sufficient for filter
operation.
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2. SIGNAL MODEL
GNSS signal received by the user terminal is a radio-
frequency signal which for a single satellite can be written
as

s(t) =
√

2CX(t− τ(t)) cos(2π(fo(t− τ(t)) + φo) (1)

where C is the received signal power, X(t) is the modulating
signal of the satellite which is usually equal to the product
of spreading code c(t), sub-carrier sc(t) and navigation data
d(t), τ(t) is the propagation delay, fo is the nominal carrier
frequency and φo is a random unknown phase. User terminal
can make the range measurements from the satellite by τ̂(t)
which is the estimate of τ(t). This estimate can be obtained
by synchronization the incoming code with local code in code
tracking loop. From this estimate, range measurements, code
delay observable or code pseudorange, can be obtained as

ρc(t) = cτ̂c(t) = r(t) + c∆tsr(t) + I(t) +T (t) + ε̂c(t) (2)

where ρc(t) is the measured code pseudorange, τ̂c(t) is the
propagation delay estimate from code tracking loop, r(t) is
the true geometric range between user terminal and satellite,
c is the speed of light, ∆tsr(t) is the clock misalignment
error between user and satellite clocks, I(t) is the delay in
electromagnetic wave propagation due to ionosphere, T (t) is
the propagation delay due to troposphere and ε̂c(t) contains
error contributions due to other error sources such as receiver
noise and multipath etc on code delay measurements.

Alternatively, user terminal can also find τ̂(t) after synchro-
nizing the incoming carrier with local carrier. This estimate
will lead to new type of range measurements, called carrier
phase observables or carrier phase measurements, which
can be written as

ρφ(t) = cτ̂φ(t) = r(t)+c∆tsr(t)−I(t)+T (t)−λN+ ε̂φ(t)
(3)

where ρφ(t) is the carrier phase measurement at time t,
τ̂φ(t) is the propagation delay estimate from carrier tracking
loop, λ is the wavelength of incoming radio-frequency carrier
wave which is equal to 0.19 m for GPS C/A signal, N is
the integer ambiguity associated with the incoming carrier
and ε̂φ(t) contains error contributions due to other error
sources such as receiver noise and multipath etc on carrier
phase measurements. There are three important differences
between (2) and (3):

1. Multipath and receiver noise affect code and carrier mea-
surements differently depending on the precision of the pro-
cess inside code and carrier tracking loops. Considering
that carrier wavelength is much smaller than ranging code
chip duration, the precision obtainable using carrier phase
measurements is much higher as compared to code delay
measurements. So, generally, the ratio ε̂c(t)/ε̂φ(t) is very
large indicating that carrier phase measurements are much
more precise than their code counterparts.

2. τφ(t) is estimated inside carrier tracking loop by integrated
carrier phase which is found not only from the current
measured fractional part of the phase but also an integer
part which comes from a counter which is counting integer
number of carrier wave cycles since satellite lock-on. So, the
total number of integer carrier wave cycles between user and
satellite at the time of lock-on must also be known. This
quantity is called integer ambiguity, denoted as N in (3).
Generally, it is unknown which needs to be resolved for only
carrier phase based positioning. This quantity is unique for
each satellite and needs to be tracked continuously. It remains

constant as long as user terminal is tracking and counting
full cycles continuously since the satellite was first locked on.
This quantity is changed when the user receiver loses the lock
momentarily due to signal blockage etc. As a result, it misses
the count of some integer number of cycles. The phenomenon
is known as cycle slip. Cycle slips is detrimental phenomenon
and can cause large errors in final estimates especially for
CSC methods.

3. Finally, there is opposite sign to ionosphere delay term in
(3) w.r.t. (2). Ionosphere being highly dispersive medium
delays incoming code and carrier signals differently. In fact,
code waveform is delayed while carrier signal is advanced
by the same amount; hence an opposite sign in (3). This fact
leads to an error in estimates of CSC methods called code
carrier divergence error which becomes significant if larger
smoothing intervals are used for CSC methods.

In order to minimize the errors due to ionosphere and
troposphere, single frequency receivers operating in non-
differential mode has to rely on some mathematical model
for these mediums whose parameters are broadcast by the
satellites. Assuming that these errors have been minimized
using some method as described in [1], [2] and [17], we can
write the simplified model for error free code and carrier
observables. At discrete-time epoch n, code pseudorange,
ρc(n), can be written as

ρc(n) = r(n) + c∆tsr(n) + εc(n) = ρ(n) + εc(n) (4)

where ρ(n) = r(n) + c∆tsr(n) is the error free pseudo-
range and εc(n) contains the effect due to receiver noise
and residual ionosphere and troposphere errors. Assuming
that these errors are very small, we can model εc(n) as zero
mean Gaussian random variable with variance σ2

c i.e. εc(n)
∼ N (0, σ2

c ). The value of σ2
c depends on Signal to Noise

Ratio (SNR) and nature of code tracking loop. For example,
for common delay locked loop, its value can be in the range
10-100 meters depending on the type of correlator and loop
noise bandwidth for a fixed value of SNR, while for Kalman
filter based tracking architectures it will seldom exceed 1-5 m
range.

Also, for carrier phase measurements, we can write

ρφ(n) = ρ(n)− λN + εφ(n) (5)

where N = 0,±1,±2, · · · is unknown integer ambiguity and
εφ(n) includes residual errors on carrier phase measurements.
This quantity can also be modeled as zero mean Gaussian
random variable with variance σ2

φ i.e. εc(n)∼N (0, σ2
φ). Due

to the reasons already explained, typically, the ratio σ2
c/σ

2
φ >

100 [16].

3. ALGORITHMS DESCRIPTION
This section provides details of various CSC algorithms con-
sidered in this paper. Basic idea behind any CSC method
is to get an estimate of smoothed pseudorange using some
combination of code and carrier observables at each epoch
i.e.

ρsm(n) = f(ρc(n), ρφ(n), ρsm(n− 1)) (6)

where ρsm(n) is the smoothed pseudorange at epoch n and
f(., .) is some recursive operator , linear or non-linear, which
combines code and carrier observables. The success of
any CSC algorithm in the presence of different impairments
such as high receiver noise, cycle slips and divergence error
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depends on the nature of f(., .) that this CSC algorithm is
employing. We start our discussion with the basic Hatch
algorithm.

Hatch Filter

The idea behind Hatch Filter is a time-varying weighted
average of code and carrier measurements. In order to deal
with N , two subsequent phase measurements are subtracted
to get delta phase measurements. Then, at each epoch these
delta measurements are added to previous smoothed pseu-
dorange. Resulting quantity is combined with current code
pseudorange by assigning proper weights to both. Initially,
total weight is assigned to code measurements. This weight
is updated at each time step with more and more weight being
given to carrier measurements term subsequently, up to a cer-
tain averaging constant. Beyond this averaging constant the
filter can diverge because of the opposite sign of ionospheric
delays in code pseudorange and carrier phase observables.
The Hatch filter is mathematically formulated as [10]

ρsm(n) = W (n)ρc(n) + (1−W (n))[ρsm(n− 1)+

ρφ(n)− ρφ(n− 1)] (7)

where 0 < W (n) < 1 is the weight factor which is updated
as

W (n) = W (n− 1)− γ (8)

where γ is the averaging constant and is typically set as
0.01 or 0.02 which corresponds to smoothing interval of
100 s or 50 s respectively for the pseudorange data coming
at 1 Hz rate. Typically, W (1) = 1 and W (n) = γ in
steady state. Increasing the length of smoothing interval will
introduce more smoothing but at the same time divergence
error is increased. So, there is a limit on maximum smoothing
interval e.g. it is 100 s for LAAS users [18].

Modified Hatch Filter

There is a variety of CSC methods based on Hatch filter
idea. The one we have chosen is quite recent proposed in
[18]. This modified Hatch Filter formulation combines code
and carrier phase observables in two stages: prediction and
filtering. At each epoch the algorithm finds a new estimate of
the code pseudorange at the first epoch using the current code
pseudorange and current and first carrier phase observables
i.e.

ρ̂(n)c (1) = ρc(n)− [ρφ(n)− ρφ(1)] (9)

where ρ̂(n)c (1) is the estimate of ρc(1) using current code
observable ρc(n) and current phase observables ρφ(n) along
with first phase observable ρφ(1). Different estimates of the
first epoch code pseudorange, obtained at subsequent epochs
are then averaged over a window of length m to obtain a
refined estimate of the code pseudorange of the first epoch
as

ρ̄(1) =
1

m

m∑
i=1

ρ̂(i)c (1) (10)

This is the prediction stage. The filtering stage now constructs
the smoothed measurement at each epoch n by using the re-
fined initial code pseudorange and the raw phase observables
as:

ρsm(n) = ρ̄(1) + [ρφ(n)− ρφ(1)] (11)
This method seems promising as it depends only on code
phase measurements, so, we can expect good noise rejection
performance. However, as explained later, there are some
serious drawbacks of this approach especially in the presence
of cycle slips.

Kalman Filter

The Kalman filter formulation is the casting of the Hatch
Filter equation into the Kalman filter format. In Hatch filter,
the step size and final weights are fixed. It does not take
into account the variance of noise on the code and carrier
observables. Kalman filter setting allows the filter to take the
noise statistics into account and calculate the optimal weight
in this setting. We can decompose (7) as

Prediction Equation:

ρ−sm(n) = Φsρ
+
sm(n− 1) + [ρφ(n)− ρφ(n− 1)] (12)

where ρ−sm(n) is a priori estimate of smoothed pseudorange
at epoch n, ρ+sm(n − 1) is a posteriori estimate of smoothed
pseudorange at epoch n − 1 and Φs = 1 is state transition
matrix in this formulation.

Update Equation:

ρ+sm(n) = (I −K(n)H)ρ−sm(n) +K(n)ρc(n) (13)

where

K(n) = Kalman gain at epoch n=P−(n)HT
(
HP−(n)HT +R

)−1
H = 1 is measurement matrix

P−(n) = Predicted state vector covariance at epoch n=
ΦsP

+(n)ΦTs +Q

R = Measurement noise variance i.e. variance of ρc(n)

Q = Process noise variance

P+(n) = Updated state vector covariance = (I −
K(n)H)P−(n)

Then at each time epoch, our smoothed pseudorange is equal
to a posteriori estimate i.e. ρsm(n) = ρ+sm(n). This simple
formulation of Kalman filtering described in (12) and (13)
gives more parameters to control the behavior of smoothing
process. Proper tuning of Q, Pini and R is much necessary
to get the best out of Kalman filter. We have observed the
following facts during different simulation runs:

• For better estimates and good convergence, Q << Pini
• Q must be very small for low errors in final estimates.
Increasing Q increases the convergence rate while error in
final estimates is increased.
• Estimate of R should be accurate enough for better results.

Kalman Filter with measurement noise estimation

Since the estimation of measurement noise statistics R is
crucial for final estimates, here, we keep everything same as
that of Kalman filter formulation except a method is described
to estimate R online. R can be estimated from Kalman filter
residuals as described below. The measurement in Kalman
filter is equal to code pseudorange ρc(n), the residuals rz(n)
can be constructed inside Kalman filter as

rz(n) = ρc(n)−Hρ−sm(n) (14)

where the sequence rz(n) is independent with variance σ2
r =

R+HP−(n)HT . So, R can be estimated if σ2
r and variance
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of HP−(n)HT is known. Considering a sample window of
length Nw, we can estimate σ2

r as

σ2
r =

1

Nw − 1

Nw∑
k=1

(rz(k)−mz)(rz(k)−mz)
T (15)

where mz is the sample mean estimator of residuals given as

mz =
1

Nw

Nw∑
k=1

rz(k) (16)

The variance of HP−(n)HT over the sample window of Nw
can be computed as

1

Nw

Nw∑
k=1

HP−(k)HT (17)

In this way, we get the estimate ofR at each epoch. These for-
mulae can also be formulated in recursive form as suggested
in [19].

Gaussian Sum Nonlinear Filter

The idea behind this approach is to recursively estimate the
pseudorange dynamics from measurement likelihood. For
this purpose, classical Bayesian filtering technique is used
where in the first step, a prediction PDF is obtained through
pseudorange dynamics model. This prediction PDF is up-
dated using measurement likelihood to get a filtering PDF in
next step. We start by introducing state dynamics model. The
approach followed here is similar to the one given in [16]
with noticeable differences in state dynamics model and some
other implementation aspects.

State Dynamics Model—Let ρ(t) and v(t) be the pseudorange
(error free) and relative velocity between a single satellite and
user terminal in a generic direction. Then, Singer velocity
model assumes that v(t) is a zero-mean first-order stationary
Markov process which can be described by [20]

v̇(t) = −αv(t) + w(t) (18)

where w(t) is zero-mean White noise with constant power
spectral density 2ασ2

n, σ2
n is the instantaneous variance of the

velocity and α, in units of s−1 determines the duration of
velocity maneuver. Assuming that our state is a vector x(t) =
[ρ(t) v(t)]T, we can write the state space formulation for
(18) as

ẋ(t) =

[
1 0
0 −α

]
x(t) +

[
0
1

]
w(t) (19)

The discrete time equivalent of (19) is given by

x(n) = Φx(n− 1) + Γw(n− 1) (20)

with Γ = [0 1]T and state transition matrix, Φ, can be
calculated, for example using Caylay-Hamilton theorem, as

Φ =

[
1 1−e−αT

α
0 e−αT

]
(21)

with T is the time difference between two pseudorange
epochs. The process noise in (20), w(n), is again assumed to
be zero-mean White noise process with variance σ2

w. Exact
value of σ2

w will be function of α and T . Here, we will refer
to it as process noise variance.

Measurement Model—Measurement model can be obtained
from (4) and (5) as

z(n) ≡
[
ρc(n)
ρφ(n)

]
=

[
ρ(n)

ρ(n)− λN

]
+

[
εc(n)
εφ(n)

]
(22)

Two noise processes εc(n) and εφ(n) are assumed to be
independent as they arise from two different and independent
measuring processes within carrier tracking loops.

Measurement Likelihood—The likelihood function associated
to (4) is conditional Gaussian PDF which is given by

p(ρc(n)|ρ(n)) = N (ρc(n), σ2
c ) (23)

The likelihood function associated to (5) is an infinite train of
conditional Gaussian PDFs due to the presence of unknown
ambiguity term. As mentioned in [16], we will keep only
2L + 1 modes of this infinite series, which give rise to the
following likelihood function

p(ρφ(n)|ρ(n)) =
1

2L+ 1

L∑
i=−L

N
(
ρφ(n) + λ[i+D(n)], σ2

φ

)
(24)

In (24), the center position of the likelihood is controlled by
λD(n) and this likelihood has L modes on either side. The
integer D(n) represents the estimate of N at each time step
and integer L represents the amount of uncertainty in that
estimate which can be tracked or accommodated by nonlinear
filter. Where L will be kept constant at each epoch and
D(n) will be adjusted to center the grid around last smoothed
pseudorange i.e. ρsm(n − 1). Note that, this approach is
different from the one adopted in [16], where the authors
center the grid at last code measurement i.e. ρc(n). But
we have observed that since ρc(n) is much more noisy so
it causes a lot of fluctuations in estimate of D(n).

Since εc(n) and εφ(n) were assumed to be independent, the
joint likelihood function p(ρφ(n), ρc(n)|ρ(n)) is given by the
product

H(n) ≡ p(ρφ(n), ρc(n)|ρ(n)) = p(ρφ(n)|ρ(n))p(ρc(n)|ρ(n))
(25)

which reduces to the following expression [16]

H(n) =

L∑
i=−L

γ
(i)
H (n)N

(
ρ
(i)
H (n), σ2

H(n)
)

(26)

with

γ
(i)
H (n) = 1

2L+1G
(
ρc(n)− ρφ(n)− λ[i+D(n)], σ2

c + σ2
φ

)
G(m, v) = 1√

2πv
e
−0.5

(
m2

v

)

ρ
(i)
H (n) =

ρc(n)σ
2
φ+σ

2
c(ρφ(n)+λ[i+D(n))

σ2
c+σ

2
φ

σ2
H(n) =

σ2
cσ

2
φ

σ2
c+σ

2
φ

Bayesian Filtering—We need to estimate x(n) recursively.
For this purpose, we need to define some PDFs as

Observation Model: p(z(n)|x(n)) = H(n) in (26)
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Dynamics Model:
p(x(n)|x(n− 1)) = N (Φx(n− 1), σ2

wΓΓT) from (20)

Prediction PDF: P (n) ≡ p(x(n)|z(n− 1))

Filtering PDF: F (n) ≡ p(x(n)|z(n))

Since, our observation model is multimodal, hence the use
of nonlinear filter for estimation of x(n) is justified. Any
nonlinear filter will involve the following steps for estimation
of x(n):

Prediction: The famous Chapman-Kolmogrove equation
gives P (n) as the convolution between F (n − 1) and
p(x(n)|x(n− 1)) as

P (n) =

∫
p(x(n)|x(n− 1))F(n− 1)dx(n− 1) (27)

Filtering: F (n) is given by the multiplication between P (n)
and H(n) as

F (n) = d(n)P (n)H(n) (28)

where d(n) is a normalizing constant. The estimate x̂(n) is
obtained from F (n) by following some criterion e.g. MMSE,
MAP etc.

Gaussian Sum Filter—Exact solution to the Bayesian filtering
problem described above is not possible, so, some suboptimal
methods must be used to approximate a posterior PDFs:
P (n) and F (n). Gaussian sum filter approximates them
by weighted sum of Gaussian PDFs. The algorithm can be
described by the following steps.

Step-1: Initialization: Assuming that F (n − 1) i.e. filtering
PDF at step n − 1 is available. Then, we can approximate
F (n) and P (n) by 2L+ 1 bi-variate Gaussian functions as

F (n− 1) =

L∑
k=−L

γ
(k)
F (n− 1)N

(
η
(k)
F (n− 1),VF(n− 1)

)
(29)

P (n) =

L∑
k=−L

γ
(k)
P (n)N

(
η
(k)
P (n),VP(n)

)
(30)

Notice that each mode is bi-variate since our state vector x(n)
is two-dimensional. Here

η
(k)
P (n) = Φγ

(k)
F (n− 1) (31)

VP(n) = ΦVF(n− 1)ΦT + σ2
wΓΓT (32)

γ
(k)
P (n) = γ

(k)
F (n− 1) (33)

In order to start the algorithm at epoch n = 1, we need to
assume the parameters of P (n) so that

P (1) =

L∑
k=−L

γ
(k)
P (1)N

(
η
(k)
P (1),VP(1)

)
(34)

with

γ
(k)
P (1) = 1

2L+1

η
(k)
P (1) =

[
ρ
(k)
H (1) vo

]T
VP(1) = diag{σ2

H(1) σ2
v}

where ρ
(k)
H (1) is the initial raw estimate of means of all

modes, vo is the initial raw estimate of velocity, σ2
H(1) is the

initial uncertainty in ρ(k)H (1) and σ2
v is the initial uncertainty

in vo.

Step-2: Filtering: Now as soon as, z(n) becomes available,
we can form likelihood function H(n) according to (26).
Then F (n) = P (n)H(n) is given by [16]

F (n) =

L∑
i=−L

L∑
l=−L

γ
(i,l)
F (n)N

(
η
(i,l)
F (n),VF(n)

)
(35)

where the values of γ(i,l)F (n), η(i,l)F (n) and VF(n) are as
given in [16]. Note that the number of modes in (35) has
been doubled i.e. we have (2L + 1)2 modes. At this point
we need to discard 2L+ 1 modes having very low weight. in
this way, only 2L+1 modes are retained in (35). So, for each
l-th mode of P (n), only one mode of H(n) is retained which
minimizes the distance

∣∣∣η(l)P,1(n)− ρ(i)H (n)
∣∣∣, where η(l)P,1(n) is

the first element of η(l)P (n) [16]. Surviving modes are re-
indexed and re-weighted to get the form of F (n) as given in
(29).

Step-3: Prediction: In next step, P (n) is obtained according
to (30)-(33). In this way, we propagate and update a posterior
PDF at each epoch.

Step-4: MMSE Estimate: At epoch n, MMSE estimate of
ρ(n) is given by

ρsm(n) =

∫
ρ(n)p(x(n)|z(n))dx(n) (36)

=

L∑
k=−L

γ
(k)
F (n)η

(k)
F,1(n) (37)

4. SIMULATION RESULTS AND DISCUSSION
In order to set a simulation environment, ρ(n) in (4) and
(5) is considered to be a sinusoid as ρ(n) = 40 sin(2π nT5 )
where T = 1 ms. Code and carrier observables are generated
according to (4) and (5) respectively where σ2

φ is fixed to
0.0001m2 while σ2

c can be varied. We present two different
type of results. First, we test the convergence speed of each
method and robustness of each method against cycle slip
phenomenon. These results will provide us a reasonable
estimate for the values of parameters of each method to be
used subsequently. Then, using these parameters, we present
the results indicating the smoothing power of each method.

Convergence Speed and Cycle Slips— In order to test the
robustness against cycle slips, we introduced an artificial
cycle slip of 20 cycles at epoch 1500 which lasts for the
remaining time while σ2

c = 20m2. Results for different
algorithms are presented below.

Hatch Filter: Hatch filter described in Section 3 has only
one parameter to control its behavior i.e. averaging constant
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Figure 1. Pseudorange error of traditional Hatch Filter in
the presence of cycle slip

γ which is also the steady state value of the weight factor
assigned to code pseudorange measurements. Results are
shown in Fig. 1. The effect of parameter γ is clear from
the figure. As we decrease the value of γ, the filter con-
verges slowly, not only initially but also whenever a cycle
slip is introduced. However, for smaller values of γ, more
smoothing is achieved as the steady state weight on carrier
phase measurement is increased. So, the value of γ cannot be
decreased to very small number. Keeping in mind the trade-
off, γ = 0.01 is a reasonable number.

Modified Hatch Filter: Modified Hatch filter also has only
one parameter for tuning i.e. the window size m over which
the estimate of code pseudorange of first epoch ρc(1) is
smoothed to be used for subsequent processing. In steady
state, this filter only uses carrier phase measurements for
smoothing. So, the final estimate is supposed to be very
precise. However, the introduction of cycle slip will per-
manently introduce an error which cannot be recovered as
we are not using current code phase measurements. This is
exactly the behavior observed from the results shown in Fig.
2. Note that although final estimate is very precise, where
precision is almost the same as that of only carrier phase
observables, but the estimate has small bias which is clear
from the zoomed image. This bias is due the reason that
ρc(1) being noisy will not be close to actual ρ(1). Hence,
increasing the value of m decreases this bias which is also
evident from the results. However, we cannot increase m
beyond a maximum value due to two reasons: first it increases
the computational complexity and second in the presence of
ionosphere bias, divergence error starts increasing. So, as
suggested in [18], a reasonable value for m is 100.

Kalman Filter: Kalman filter formulation gives us much more
flexibility to tune the overall smoothing process. We can
control the behavior by tuning the values of Q, Pini and R.
If we follow the criterion Q << Pini, we have observed
that it is only Q which controls the convergence speed and
amount of final steady state error if the estimate of R is
correct. As an example, Fig. 3 shows the behavior in the
presence of cycle slips for Pini = 10 and R = 20 which
is the true value of measurement noise variance. In this
situation, decreasing the value of Q improves the accuracy
of final estimate while convergence speed reduces. Larger
inaccuracies in the estimate of R affect the behavior of
Kalman filter. In order to see this affect, Fig. 4 shows the
behavior of Kalman filter when true value of measurement
noise is 20 but the value of R used is different from the true
value. Clearly, under-estimation in value of R increases the
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Figure 2. Pseudorange error of modified Hatch Filter in the
presence of cycle slip
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Figure 3. Pseudorange error of Kalman Filter in the
presence of cycle slip when estimate of R is perfect

convergence speed while final estimate is more noisy. This
type of behavior is comprehendable as when R is small, the
value of K(n) will increase, that means, we are placing more
weight to ρc(n). This will increase the convergence speed
but the final estimate will be more noisy. An exactly opposite
behavior is observed from Fig. 4 for over-estimation of value
of R.

Kalman Filter with online estimation of R: Here, we esti-
mateR using the algorithm described in Section 3. Increasing
the window size Nw will increase the initial transient but the
estimate of R becomes more smooth. So, keeping this trade-
off in mind, we have selected Nw = 1000 and results are
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Figure 4. Pseudorange error of Kalman Filter when
estimate of R is incorrect, Q = 0.0002
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Figure 5. Pseudorange error of Kalman Filter with online
estimation of R, true value of R = 20, Q = 0.0002
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Figure 6. Pseudorange error of nonlinear filter

shown in Fig. 5.

Nonlinear Filter: Gaussian sum filter described in Section 3
has been implemented for smoothing the pseudorange using
code and carrier observables. This is very powerful algorithm
and here we discuss some aspects. Most important parameter
of the filter is L which controls the total number of modes
of the likelihood function. L must be wide enough to cover
the uncertainty due to initial ambiguity or maximum amount
of cycle slips that can be introduced during the receiver

operation. As an example, we have selected two different
values for L, 10 and 30, where first value is not enough
to cover the introduced amount of cycle slipping i.e. 20
cycles while second value is enough. For both scenarios,
pseudorange error results are shown in Fig. 6.

It is clear that for L = 30, there is no effect of cycle slips on
the estimates. On the other hand, for values of L not covering
the complete range of maximum amount of cycle slips, the
filter has a random bias in its output estimate. The reason
behind this estimate lies in the fact that whenL is small, P (n)
and H(n) gets displaced by large amount resulting in either
very small overlap or no overlap at all. Hence, the resulting
F (n) can have any mode with maximum weight.

Another important parameter of this filter structure is D(n)
which indicates the value of ambiguity at each epoch. This
parameter can be estimated either from last code measure-
ment ρc(n) or from last ρsm(n− 1). We have selected to use
ρsm(n− 1) which produces much smoother estimates.

Pseudorange MSE Performance— In next results, we aim
to compare MSE performance of all the algorithms. For
this purpose, results are generated for each algorithms with
the values of different parameters chosen from discussion
in the previous section. The value of variance on code
observables i.e. σ2

c is varied while keeping σ2
φ = 0.0001m2.

For each value of σ2
c , MSE of pseudorange is evaluated in

steady state for each run and then it is averaged over all
number of iterations. This procedure is repeated for each
algorithm. Results are shown in Fig. 7 in the absence of
any cycle slip. MSE is measured in steady state for all the
algorithms. Nonlinear filter clearly outperforms all other
methods followed by Kalman filter with perfect estimate of
R. Note that in the case of modified Hatch filter, window
size is chosen to be equal to 100 which is not sufficient to
remove all the bias due to imperfect estimate of ρc(1). This
bias lifts the curve to larger values. If this bias is removed
from the final estimate, its performance will be equivalent to
pure carrier phase observables.
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Figure 8. Pseudorange and carrier phase observables from collected data

5. REAL GPS DATA RESULTS
All the smoothing algorithms, described in Section 3, were
tested on real GPS collected using GNSS RF signal recorder
from iP-Solutions. The Intermediate Frequency (IF) data
was collected outside School of Science and Engineering
(SSE) building in Lahore University of Management Sciences
(LUMS). IF data was processed using Kalman filter based
tracking loop to get code and carrier phase observables.
Resulting code and carrier phase observables from five visible
satellites are shown in Fig. where the variance of the noise on
ρc(n) is in the range 1-5 m2 while on ρφ(n) is of the order of
10−4 m2. These observables are processed by CSC methods
considered in this paper and the computed position using
least-square navigation solver is shown in Fig. 9. Results are
very much in agreement with what we have already observed
in simulations. Although it may not be directly observable
from the figure due to very close proximity of all the points,
the minimum variance is obtained in the case of nonlinear
filter followed by Kalman filter and then Hatch filter. For
nonlinear filter to work, we need to provide a rough estimate
of integer ambiguity which goes directly as starting value of
the integer D(n). We have calculated this value as

D(n) =
1

n

n∑
i=1

ρc(i)− ρφ(i) (38)

This value of D(n) along with sufficient larger value for
L was sufficient for nonlinear filter to give the smoothed
estimate which were used to compute the position displayed
in Fig. 9.

6. CONCLUSIONS
The problem of smoothing GNSS satellite pseudorange using
both code and carrier observables in a filter structure has been
considered. Some representative algorithms from linear and
nonlinear filtering domains have been chosen for comparison.
Classical Hatch filter was formulated in a simple Kalman

Figure 9. Position computation using real GPS data after
smoothing pseudoranges from each algorithm

filter based structure which gives more flexibility and control
to tune the behavior of smoothing process. A nonlinear
filter with simplified state dynamics model was devised to
work with simulated as well as real GPS data. Simulation
results presented in the paper, along with real GPS data
results, indicate the superiority of nonlinear filter over all the
linear domain filters. However, the computational complexity
involved in estimating pseudorange from nonlinear filter is
much higher as compared to simple Kalman or Hatch filter.
The choice of any single algorithm depends highly on the
type of application. For instance, nonlinear filter has been
observed to be highly robust towards cycle slips given the
number of modes have been chosen to be sufficiently large.
On the other hand, large number of modes also increases the
computational complexity. So, if number of modes are not
enough to span the whole uncertainty of cycle slips, nonlinear
filter has a random bias in its output and the filter cannot
recover this bias by its own. In such situations, Kalman filter
would be the better choice which will always be affected by
cycle slip but will also recover from it after some time. As a
future work, it will be interesting to completely characterize
the performance of nonlinear filter in different environments
especially in the presence of ionosphere storms.
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