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Abstract—The need of accurate and reliable positioning in various
location-aware safety critical transportation applications is increasing
day by day. The Global Positioning System (GPS) is not able to provide
lane-level vehicle localization without the aid of differential corrections.
It also suffers from signal outages in urban areas resulting in a complete
loss of location information. Therefore, GPS independent localization
methods are now being developed. In this domain, inertial sensors along
with a terrain map have been successfully deployed to achieve sub-
meter level accuracy in the longitudinal direction of the vehicle in an
urban environment. However, lateral localization of the vehicle with
good accuracy and computational efficiency remains a challenging topic.
Existing algorithms are computationally intensive, and do not provide
location information during the process of lane change by the vehicle.
This information is very crucial as the risk of potential conflict with
nearby vehicles is higher during lane changes. In this paper, we present a
computationally efficient method for achieving lane-level localization in a
multi-lane scenario by combining the particle filter with dead-reckoning.
The particle filter provides the location information about a single lane
while location information during the lane change maneuvers is provided
by dead-reckoning. Lane-change maneuvers are detected by constantly
observing the yaw rate of the vehicle. Developing a computationally
efficient algorithm enables the GPS independent localization algorithm
to be run on low cost micro-controllers making its deployment feasible
for packaged devices. Experiments performed on an instrumented vehicle
show the superiority of the proposed algorithm on the existing ones.

I. INTRODUCTION

Numerous driving related applications developed in the past couple
of years have been focused on making driving as smart, safe and
automated as possible. These developed solutions have reduced the
risk of accidents through lane keeping and active steering systems,
increased road throughput by fleet management & lane allocation,
and caused lots of convenience to the drivers by automated toll col-
lection and ticketing systems. Accurate and reliable vehicle location
information is a key element of all these applications. The accuracy
requirement on the vehicle location information has also increased
with the increasing sophistication level of these applications. Now,
lane-level localization is a must requirement for all the applications
mentioned above.

The Global Positioning System (GPS) has been the standard for
providing vehicle localization for decades. The visibility of GPS
satellites in urban environments is very poor due to urban canyons
and tunnels which degrade the quality of location information from
GPS. If unobstructed GPS signal is somehow available, differential
corrections provided by Differential-GPS (DGPS) are required to
increase the accuracy to lane-level. Unfortunately, DGPS subscription
is only available in a very few countries, and is costly. Therefore the
efforts have been focused towards developing solutions that are either
independent of GPS or can overcome the visibility and low accuracy
issues of GPS for lane-level positioning.

Camera and LIDAR based solutions have been extensively pro-
posed and studied in the literature [1] [2]. They rely on detecting
the lane markings by image processing to estimate the lane of travel.
However the camera suffers from visibility problem in poor light

conditions and the LIDAR is inaccurate due to road reflections. Fur-
ther, both of these sensors are costly and require hefty image/signal
processing to extract lane information which increases the on-board
processing requirements. A simple and cost-effective solution is to
integrate an Inertial Measurement Unit (IMU) with GPS receiver for
aiding [3]. GPS/IMU integration not only increases the accuracy but
also provides location during signal outages. However, the IMU based
location begins to drift if the GPS outage lasts for a long time, as
the case with tunnels.

To resolve these predicaments, recent research efforts have de-
veloped solutions which provide location information completely
independent of GPS. In this category, the use of terrain map of
a road segment (road elevation and bank angles) along with an
IMU sensor (gyroscope & accelerometer) inside a Particle Filter
have been successfully demonstrated for achieving the accuracy at
decimeter levels [4]. However, in this work, there has been an
inherent assumption that the vehicle never changes its lane of motion.
For lateral localization and lane change estimation two approaches,
namely Bayesian Belief (BB) algorithm and Lateral Particle Filter
(LPF), were proposed in a later work [5]. Both of these approaches
increase the overall computations of the system thus prohibiting it
to function on low end microprocessors. Another problem with these
approaches is that they only provide location while the vehicle is
traveling in a single lane. They do not provide location during the
lane change. As one can observe that the event of lane changing
is the most crucial during which the risk of potential collisions is
the highest. Hence, a location estimate during this event is utmost
desired for safety critical applications. Also, the work described in
[4], [5] assumes the use of highly accurate IMU sensors which are
quite expensive.

We have been working on enabling the IMU based terrain aided
localization with low cost MEMS-IMU sensors suited for low cost
processors which will enable a low cost finished device for commer-
cial use on large scale. Recently, we proposed a novel Kalman filter
to extract the accurate roll angle of the vehicle which is subsequently
used inside a Particle Filter for longitudinal vehicle localization. The
proposed solution achieves good accuracy using low cost MEMS-
IMU sensors [6]. In this work, we extend our previous study to
develop a new algorithm which estimates the lane of travel without
using any sensor other than the IMU and without increasing the
computational complexity of the algorithm so that it is still able to
function on a low cost microprocessor. We monitor the yaw rate
of the vehicle to detect the lane change maneuver. The algorithm
is only triggered in the events of lane change, thus keeping the
computational cost low. We also introduce dead reckoning into our
algorithm so that it also provides solution during the maneuvers
of lane changing. Hence we achieve lateral localization along with
longitudinal localization to complete the solution.

The rest of this paper is organized as follows. Section II briefly
describes the single lane longitudinal localization algorithm using



Particle filter algorithm. Section III presents the proposed approach
for lane-level localization in the presence of lane change maneuvers.
Section IV describes the experiments that were performed to test,
validate and compare the algorithm. Finally, section V concludes the
work based on the discussion carried out in previous section.

II. SINGLE LANE LONGITUDINAL LOCALIZATION

Before describing the proposed algorithm, an explanation of the
longitudinal localization algorithm is in order. The road terrain
consists of both road elevation and bank angles. The elevation angle
affects the vehicle pitch and the bank angle affects the vehicle
roll. In order to localize a vehicle using road terrain, information
regarding any one of these angles is required. As we have shown in
our previous work, obtaining the roll angle from low cost sensors
is computationally efficient as compared to pitch angle. Hence we
used only the roll angle in our localization algorithm [6]. The given
terrain map of a single road segment consists of longitude and latitude
values of the road with the bank (or roll) angle of the road at that
location. This readings are spatially spread at every 0.1m distance
of the road segment. This map is generated using extremely accurate
IMU sensors and DGPS so that they can be considered as a ground
truth and serve as an accurate localization reference.

The in-vehicle roll sensor which is a low cost MEMS IMU,
provides the roll angle after fusing the measurements from a gy-
roscope and accelerometer through a Kalman filter as described in
[6]. For matching this roll angle with the already available terrain
map, we used the particle filter. Note that at the start of the drive, the
vehicle can be present anywhere along the map hence the probability
distribution describing the initial location of vehicle is uniform (non
Gaussian). Any probabilistic technique that assumes a Gaussian
distribution cannot be used here. Particle filters are sequential Monte-
Carlo methods with the ability to work on non-Gaussian densities.
The particle filter used here is the third algorithm described in [7].
Following are main steps of this algorithm.

A. Drawing the particles

At the start of the algorithm, N particles are distributed uniformly
across the entire map due to uniform distribution at the beginning
of the drive. Each particle i = 1...N has a location X , a roll angle
value φp,i and a weight qi. The weight of a particle is an indicator
of the match between its roll angle value and the value measured by
the in-vehicle sensor. The range of this weight is from 0 to 1. At the
beginning, all particles are assigned an equal weight 1/N .

B. State Update

The odometery of the vehicle is also available through the CAN
bus and is used to update the location of each particle at every time
instant k. The location of each particle is projected forward according
to the speed of the vehicle v from the odometer reading. A variance
equal to the variance of the odometery is added to each particle’s
position.

Xk = Xk−1 + dX + dO (1)

where dX = ∆t × v is the forward projected distance, ∆t is the
sampling time and dO is the added variance.

C. Measurement Update

For each particle i, its roll angle φp,i is compared with the roll
measured by the IMU sensor φa and the particle’s weight qi is
calculated using

qi =
exp(− 1

2R
.(φa − φp,i)

2)

ΣN
j=1(exp(− 1

2R
.(φa − φp,j)2))

(2)

where R is the variance of the roll measured by the IMU sensor. The
particles with roll similar to that measured by the sensor will get a
higher weight from this function.

D. Resampling

At each step, the number of effective particles is calculated by

Neff =
1

ΣN
i=1(qi)2

(3)

When number of effective particles are below a defined threshold
NT , the particles are re-sampled according to the re-sampling al-
gorithm given in [7]. The resampling algorithm is presented below
in Algorithm 1. The particles with roll very different from the

Algorithm 1. Algorithm for Particle Resampling

c = cumsum(qi)
u1 = rand(1).N−1

i = 1
for j = 1...N do
uj = u1 + (j − 1).N−1

while uj > ci do
i = i+ 1

end while
Xj = Xi

qj = N−1

end for

sensor measurements get a lower weight and the particle population
eventually becomes less effective. The resampling step draws the
particles again from the cumulative density resulting in more particles
being drawn from the neighborhood of the higher weighted particles.
This causes the filter to converge when the variance of all the
particle’s location becomes less than a threshold. The mean location
of the particles is the location of the vehicle. So, given that the vehicle
travels in the same lane on the road segment, the above algorithm
not only finds its location in the mapped segment but also continues
to track it. The complexity of the problem however, increases if lane
changing is taken into account because each lane will have its own
terrain map and the particle filter will need to operate on the correct
map for localizing and tracking the vehicle. Therefore whenever the
vehicle changes its lane, the correct terrain map should be switched
automatically.

III. PROPOSED METHODOLOGY

The proposed approach extends the Particle Filter based single
lane localization as described in the previous section to multi-lane
localization by incorporating a lane change detection and dead-
reckoning modules. Suppose the vehicle is traveling on a road with
two lanes L1 and L2. At the start of the drive, the Particle Filter
algorithm essentially has two maps to localize the vehicle as the
vehicle could be present anywhere on either lanes. Hence the total
number of particles are spread over both the lanes. Eventually the
filter converges to the right lane providing longitudinal position of
the vehicle.

Now, given that vehicle has been initially localized by the Particle
Filter in the correct lane, Fig. 1 shows the next steps of the proposed
approach which are described below.

Lane change detection : When the vehicle is changing lanes, the
gyroscope aligned with the yaw axis of the vehicle measures the yaw
rate and hence it can be used as an indication that the vehicle is in
the process of changing lanes. The yaw rate observed during a typical
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Fig. 1. Block diagram describing the proposed approach

lane change is shown in Fig. 2. It is evident that the yaw rate exhibits
a specific behavior due to lane changing. By taking the variance of
the gyroscope measurements over a pre-defined window length M ,
we can get an indication whenever the car changes lanes. The choice
of window length M is interesting. There is a trade-off between
accuracy and the delay to lane change detection which depends on
the window length M . If a large window is chosen, there will be a
sufficient delay in the detection process. If a small window is chosen,
then the signal may remain buried in the noise floor. We collected
data for a lane change and recorded the variance of yaw rate over
different window sizes. Fig. 3a indicates that the window size of 0.1s
is too small to detect the lane change. On increasing it to 0.5s, there
is a visible peak in the variance (Fig. 3b) which can be used as an
indication that the vehicle is changing its lane. Further increase in the
window sizes will only increase the delay in the detection process.
The optimal value of threshold to trigger the lane change detection
can be set via a machine learning classifier which can be trained
to separate the two cases of driving i.e. straight lane drive and lane
changing maneuver. However for simplicity, here we set this value
manually by observing the variance over several lane change drives.

Lane change aid to localization module : Suppose the vehicle was
initially occupying L1. The particle filter will be tracking the vehicle
in L1 using the terrain map of L1. When the yaw rate monitor senses
a lane change, it notifies the localization module which switches to
dead reckoning instead of Particle Filter tracking. This is due to the
reason that the vehicle is no longer in L1 and the particle filter will
continue to track it in L1 causing lateral location error.

Dead-Reckoning during lane change : In dead reckoning, the x and
y coordinates of the vehicle at time t are updated from the coordinates
at time t− 1 by using the speed v and yaw rate ψ̇t by the equation[

x
y

]
t

=

[
x
y

]
t−1

+ ∆t

([
cos(ψt−1 + ∆t.ψ̇t

sin(ψt−1 + ∆t.ψ̇t

]
.v

)
(4)
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Fig. 2. Yaw rate during a typical lane change maneuver
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Fig. 3. Variances of vehicle yaw rate over different window sizes (a) 0.2s (b)
0.5s (c) 1s

It is evident that the accuracy of this location estimate will only hold
for a short duration and the error will grow because the integration
process will accumulate any noise present in the sensors. However,
lane changing is a short maneuver lasting for a few seconds, in which
the accuracy of the dead reckoning does not deteriorate. Hence we
get a location estimate even during the process of lane changing.

Particle Filter after lane change : When the variance of yaw rate
goes below the threshold, the vehicle is assumed to have shifted to
the desired lane and is not maneuvering anymore. Now the terrain
map for the appropriate lane should be used for further tracking the
vehicle. We choose the terrain map of that lane, in which the dead
reckoning placed the vehicle. The particle filter starts tracking the
vehicle on this new map.

IV. RESULTS AND DISCUSSION

A. Experiments

STMicroelectronics 3-axis MEMS accelerometer ‘LSM303DHLC’
and gyroscope ‘L3GD20’ were mounted on the test vehicle. Exper-
iment was performed in the vicinity of the Lahore University of
Management Sciences. The terrain map of both the lanes of the road
was available, and is shown in Fig. 5. The vehicle was driven for
some time in the first lane and then shifted to the second lane. The
roll measured by the vehicle is also shown in Fig. 5 for the test drive.
It can be seen that the vehicle travels in the first lane for about 160m
and then starts to shift lanes. At about 230m, the vehicle has entered
lane 2 and the measured roll angle now resembles the terrain map of
the second lane.
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Fig. 4. Particle distribution over the two lanes for different distances traveled (a)-(b) Start (c)-(d) 10m (e)-(f) 50m (g)-(h) 250m
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Fig. 5. Terrain map of both lanes and the roll measured in a test drive

B. Vehicle localization using the proposed approach

For the proposed approach, the particle filter was implemented with
N = 100 particles. The window size for monitoring yaw rate was set
to 0.5s. Half of the particles were spread in lane 1 (Fig. 4a) and half
in lane 2 (Fig. 4b) as initially the vehicle can be present in any lane.
After only 10m of travel, all the particles are converged to lane 1 (Fig.
4c-4d) which indicates that the vehicle has been localized in lane 1.
The longitudinal localization was achieved after 50m of travel (Fig.
4e-4f) where the error was within 1m which can be observed from
Fig. 6. At 165m, the vehicle initiates a lane change. The yaw rate
monitors detects it at 168 meters. At this point, the dead reckoning
takes over and keeps tracking the vehicle until the variance goes
below the threshold. The new lane map is decided based on the lane
in which the vehicle was localized by the dead reckoning solution.
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Fig. 6. Error in position estimate with distance traveled

As shown in Fig. 4g-4h, the particles now have shifted to lane 2
because the dead reckoning solution localized the vehicle in lane 2
as shown in Fig. 7a. Fig. 6 indicates that the proposed approach was
able to achieve sub-meter level accuracy during the complete drive
of the vehicle.

C. Comparison with the BB algorithm

To compare the proposed techniques, we also implemented BB
algorithm as well from [5]. Other algorithm described in [5] i.e. LPF
algorithm is infeasible for a low cost packaged device as it requires an
extra sensor to measure the vehicle yaw. Hence, it was not considered
for comparison. The BB algorithm terms the vehicle occupying any
lane as a ‘state’. An assumption on the likelihood of changing lanes
is assumed, and the beliefs of each state are propagated at periodic
time intervals. These beliefs are then updated in next step using the
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Fig. 7. Vehicle localization during the test drive

measured roll value. The state with higher belief is termed as the
lane of travel of the vehicle.

Fig. 7a & 7b show the localization results of the proposed approach
and BB algorithm during the same test drive. In the case of BB
algorithm, it can be seen that the location information during the
lane changing is meaningless which indicates the inability of the
algorithm to localize during lane change maneuvers. another problem
with the BB algorithm is that it estimates incorrect lane indices during
certain intervals e.g. between 260 − 290m and 320 − 350m. The
reason is that the terrain map of both lanes is quite similar in these
regions (clear from Fig. 5) which confuses the BB algorithm. Also,
the BB algorithm has to make assumptions on lane change likelihood.
In reality, this assumption is very hard to make and calculate. The
proposed approach does not make any assumption of this kind.

D. Computational complexity comparison

The BB algorithm propagates and updates the state beliefs at
periodic time intervals in addition to running the expensive Particle
Filter. Also, the number of beliefs propagated and updated at each
time instance is equal to the number of lanes. Hence the computa-
tional complexity increases with the number of lanes. In the proposed
method, only the particle filter is running, and an accompanying yaw
rate monitor which is simply a variance estimator. The complexity
of the proposed approach does not scale with the increase in number
of lanes. Hence, the proposed approach is computationally efficient
as compared to the BB algorithm.

V. CONCLUSION

In this work, we have extended the terrain based localization
algorithm using low cost IMU sensors to detect lane changes and
localize the vehicle in the lateral direction as well, thus completing
the localization solution. The proposed method also provides location
information during lane change maneuvers which were missing
in previous algorithms. It is also computationally efficient making
it feasible for implementation on low cost microprocessors. The
method was experimentally verified and compared with an existing
algorithm in the literature. Future works aims to extend this work for
incorporation of curved and geometrically complex road networks.
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