
1

A Low-Cost, Wireless, Multi-Modal Sensing
Network for Driving Behavior Modeling and Early

Collision Warning
Hamad Ahmed, Member, IEEE, and Muhammad Tahir, Member, IEEE

Abstract—Traffic accidents have escalated to an alarming level
in the last decade or so, mainly due to inattentive and rash
driving behavior. Recent research efforts have resulted in systems
for automatic detection of abnormal driving, that can warn the
driver as well as notify traffic authority so that the person
can be taken off the roads. However, these systems lack large-
scale deployment as they are expensive and suffer from false
positives. Driving is a complex multi-dimensional interaction
of the driver with his environment. Therefore, to effectively
capture the driving behavior, information of surrounding vehicles
should be considered as well, which is also missing in existing
systems. In this paper, we have proposed a multi-modal vehicular
sensor network which is low-cost and uses both the vehicle’s
motion profile and surrounding traffic information for behavior
modeling. Heading (pose) and speed of the vehicle are determined
from an IMU and vehicle CAN bus respectively, whereas the
surrounding traffic is sensed and tracked by a LIDAR. To process
and fuse the data of various sensors, algorithms of low-complexity
are proposed which are able to run on low-cost microprocessors,
thus removing the need of an on-vehicle computer which further
reduces the cost of the system. We also provide early warnings of
risk of collisions based on the motion of surrounding traffic and
the driver’s intent inferred from his eye movements which are
tracked by a camera. The hardware architecture of the system
is also discussed. Experimental results on a test vehicle in real
traffic scenario show robustness to false positives.

Index Terms—Driver Safety, Driving Behavior, Driving Events,
Aggressive Driving, IMU, Kalman Filter.

I. INTRODUCTION

STEADY development of motor vehicles during the 20th
century has greatly influenced human life, providing

greater mobility for people and promoting socio-economic
development. However the alarming increase in traffic con-
gestion has not been matched with adequate availability of
safety measures, making motor vehicle accidents a major
cause of death. According to National Highway Traffic Safety
Administration (NHTSA), 32,675 people died in U.S. due to
road accidents in 2014. Roughly one-third deaths occurred
due to drunk driving and an additional 12.5% occurred due
to inattentive driving [1]. Furthermore, the first six months
of 2015 have already seen an alarming increase of 8.1% in
this fatality rate as compared to 2014. In order to address this
startling situation and increase road safety, several methods
have been used over the years including traffic monitoring
cameras and strict penalties on breaking traffic laws. These
have somewhat forced the drivers to drive within safety limits
but the fatality rate still continues to rise. There is a need
to catch drunk drivers, alert inattentive drivers and force rash
drivers to drive safely.

It has been shown that drivers tend to drive attentively and
are unlikely to perform rash maneuvers when they know that
they are being monitored [2]. For example, drivers are less
likely to take a red light when they know that cameras are
watching as compared to when there are no cameras. ‘How
am I driving’ bumper stickers and call service are utilized
for this same purpose. These stickers are installed on trucks,
buses and other commercial vehicles and the companies claim
that drivers are less likely to engage in unsafe maneuvers when
they are being monitored due to these stickers [3]. However as
pointed out in [4], it is not practical for someone to actually
call the hotline and complain about somemone’s driving as
using cell phones are not allowed while driving and 76% of
workers drive alone to work which means that there is no
passenger available to make the call.

To overcome these issues, researchers have developed sys-
tems that can be installed on vehicles to automatically monitor
driving behavior. These systems serve to alert a driver if
they sense inattentive driving or provide feedback to the
driver in case of rash driving. The functionality can also be
extended to notify traffic authorities if the driver continues
rash driving or in case of drunk driving. With the help of
certain sensors, speed and heading (pose) of the car are
determined and modeling or learning based techniques are
applied to determine ‘Driving Events’ or maneuvers. These
events include accelerating, decelerating, lane changes and
turns. Based on the nature and frequency of these driving
events, driving behavior of the driver is determined.

The measure of success of such an automated system
depends upon two factors: the cost-effectiveness of the system
and its false positive rate i.e. how often does the system
perceive rash driving while actually it is not the case. Re-
garding the first factor, a high cost of the system will serve
as an inhibiting factor towards its widespread and global
usage. To decrease the overall cost, it is imperative that only
low cost sensors are used in the system, and the algorithms
used to determine driving behavior from low-level sensor data
are of low complexity so that they can be run on low cost
microprocessors and do not require an on-vehicle computer.
Existing systems use sensors which are either expensive (high
precision GPS, RADAR, LIDAR, camera) or are mobile phone
based, which leaves the system to the disposition of the
driver. The sensor fusion algorithms are also computationally
expensive and are run on the processors of mobile phones or
offline on a computer using the data logged by these sensors.
Thus creating algorithms which are able to run in real time

2

without an on-board computer is another challenge. Regrading
the second factor, too many false positives will cause the
driver to eventually uninstall the system. Different learning
and classifying based methods are used to determine driving
events, whose accuracy can be affected by a number of factors
including noise, outliers or other misleading cues in the sensor
data, especially when low cost IMU are used. Therefore, a
more robust sensor fusion and modeling method is required
which is able to reduce the false positive rate of the system
to an acceptable value.

Existing systems also do not use the surrounding traffic
information while determining the driving behavior which is
perhaps the most influential factor on one’s driving. By sensing
only the motion of the ego-vehicle and detecting rash driving
events, the system flags the driver without taking into account
the influence that the surrounding vehicles may have had on
the driver’s intent to perform that rash maneuver. For example,
sudden abnormal behavior by the leading car could have
caused the driver to perform an emergency evasive maneuver.
Similarly, a driver accelerating rapidly on an empty road will
also be termed as driving rashly whereas he is not a threat to
anyone. Trying to sense the surrounding traffic information is
a very challenging task as expensive equipment like a radar or
camera is required which also demands an on-board computer
for signal processing thus the overall cost and deploy-ability
of the system is severely affected.

This paper proposes a low-cost wireless multi-modal sensor
network which can be installed on any vehicle and takes
into account both the maneuvers performed by the ego-
vehicle as well as the motion of the surrounding vehicles
to determine the driving behavior. The proposed system uses
only low-cost sensors i.e. low-cost MEMS-IMU, speed of
the vehicle from CAN bus and low-cost LIDARs to sense
the surrounding traffic. Choosing independent sensors makes
the system deploy-able as smart-phones or IMU sensors data
on the CAN bus are not required. Heading of the vehicle is
determined from IMU using an adaptive Kalman filter based
fusion scheme which is robust to both dynamic conditions
and environmental disturbances. We improve the learning and
classification based method for detecting driving events to
further provide robustness against false positives. The scans
from LIDARs are processed and surrounding vehicles are
detected and tracked using inexpensive algorithms capable of
running on low-cost microprocessors. An overall information
fusion scheme which collectively evaluates the performed
maneuvers and surrounding traffic to provide a meaningful
behavior model is also proposed.

Since we have the motion profile of both the ego-vehicle and
the surrounding vehicles, we extend the system to also provide
early detection of risk of accidents. The system triggers an
alarm if it senses the potential of a collision in the near
future. To provide a considerable warning time in advance
of the collision, a camera is installed to monitor the driver’s
eye movement and predict his intentions of performing certain
maneuvers which can lead to an accidental situation.

Decreasing the cost of the system by using only low-
cost sensors with low-complexity algorithms enables the de-
ployment of the system on a wide scale. The rest of the

papers is organized as follows: Section II reviews the scientific
literature for the previous work done on driving behavior
modeling. Section III presents all the algorithms of sensor
fusion, processing and modeling as well as the hardware
platform of the proposed system. Section IV shows results
of the system installed a test vehicle in real traffic situation
and section V presents the conclusion.

II. RELATED WORK

Though the aim of our system is to detect abnormal driving
behavior which has only been done in a few selected studies,
the literature abounds with works that perform maneuver
detection or surrounding vehicles tracking for different appli-
cations. We provide a review of the literature from 3 aspects:
on the basis of sensors used and modalities sensed, on the
basis of maneuvers detected and on the basis of algorithms
used for detecting maneuvers.

A. Sensors and Modalities

The most crucial factor in the development of such a system
is the choice of sensors as they directly impact the cost and
complexity of the system. A summary of different sensors used
in various studies is presented in Table I.

It is evident that the most widely used sensors are the
accelerometer & gyroscope, which collectively form an IMU
and data from the vehicle’s CAN bus. An accelerometer alone
has been used to determine the driving behavior in [9] and
[10], by thresholding the longitudinal and lateral accelerometer
measurements which indicate acceleration/deacceleration and
turning respectively. [11] explores a number of statistical
features (mean, median, standard deviation etc.) of the ac-
celerometer data and uses a learning based approach. Detecting
turning events from only lateral accelerometer data is prone
to a high false positive rate due to the susceptibility of the
accelerometer to noise.

An accelerometer in conjunction with the gyroscope is used
to detect acceleration, braking and turning events in [13]
and [4]. The latter uses the sensors inside a smartphone to
develop a smartphone based application called MIROAD. [12]
uses both the iPhone’s camera and accelerometer to detect
lane markings and detect lane drifting. [14], [18] and [19]
use vehicle’s speed data with the accelerometer for detecting
events of interest.

The CAN bus is vastly used for obtaining different sensors’
data directly from the vehicle. Speed is available on the
CAN bus of all vehicles, while other parameters like throttle,
steering wheel angle and braking etc. are available only on
some vehicles.

Toledo et al. [8] and Liu et al. [7] fuse a GPS with IMU to
achieve lane level position accuracy and then use it to detect
lane changes. The fusion algorithm is quite involved and not
feasible for real time implementation on micro-controllers.

As far as detecting the surrounding vehicles are concerned,
radar and camera have been mostly used. However, radar is
an expensive sensor whereas a camera requires an on-board
computer for image processing and cannot function in dark or
poor lightning conditions.

3

TABLE I: Sensors used in various studies

Sensors Modalities
Used in

Our System Studies

Accelerometer

Attitude Yes [5] [6] [7] [8]

Accl.\DeAccl. Yes
[9] [10] [11]
[12] [13] [4]

[14] [15]

Turning No
[10] [12] [13]
[4] [14] [15]

Gyroscope
Attitude Yes [6] [7] [5] [8]

Heading\Turning Yes
[9] [13] [4]

[7] [15]

Magnetometer Pose Yes [9]

CAN Bus

Speed Yes
[16] [17] [7]
[18] [19] [5]

[8] [20]

Throttle No [16] [19]
Accl.\DeAccl. No [18]

Steering No [19] [5] [20]
Brake No [19] [5]

GPS
Position No

[16] [7] [19]
[5] [8]

Speed No [14]

LIDAR
S.Vehicles Positions Yes

S.Vehicles Speed Yes

RADAR
S.Vehicle Positions No [21] [20]
S.Vehicle Speeds No [21]

Camera

E.Vehicle
Position No

[12] [17] [5]
[20]

S.Vehicle Position No [5]
Eye\Head Tracking Yes [20]

B. Maneuvers Detected

Since different studies have different scopes, the maneuvers
or events focused upon in them are also application dependent.
There are only a handful of driving maneuvers that are perform
while driving ,which include accelerating, braking, changing
lanes and making a turn. A brief overview of detected maneu-
vers is given in Table II.

The most widely used events for classifying driving be-
havior are acceleration and deceleration because they are
both easy to determine and give us a direct measure of the
rashness of the driver. Lane changing and turns have also been
detected in quite a few studies, however only [4] goes on to
differentiate them into safe or dangerous lane change/turn. U-
turns and round abouts do not need special treatment as they
are formed by combining smaller events (U-turn is actually
two consecutive turns).

C. Algorithms Used

Mostly supervised machine learning has been used in the
literature to classify driving events. A classifier is trained
beforehand using collected labeled examples. Mitrovic [14]
trained Hidden Markov Models (HMMs) to detect turns,
lane changes, curves and round abouts from accelerometer
data. Two classifiers were used in [16]: Decision Trees and

TABLE II: Driving Events Detected in Various Studies

Events
Used in

Our System Studies

Acceleration Yes
[16] [4] [12] [13]
[8] [18] [10] [9]

Braking
(Deceleration) Yes

[16] [4] [12] [13]
[8] [18] [10] [9]

Turns Yes
[4] [12] [13]

[14] [23] [10] [9]

Safe\Dangerous Turns Yes [4] [12]

Lane
Change Yes

[4] [12] [22] [8]
[7] [23]

Safe\Dangerous Lane Change Yes [4]

Overspeeding Yes [4]

Curves Yes [14]

U-turn Yes [4]

Round Abouts Yes [14]

Linear Logistics Regression Based Classifier to detect those
maneuvers which affect fuel consumption of trucks. [11] takes
all possible statistical measures of the acceleration readings
and applies feature ranking to select the appropriate features
before training and classifying.

Mandalia et al. [22] train Support Vector Machines (S.V.M.)
to classify driving behavior. [17] uses a Bayesian Filter on the
output of SVMs for further improving lane change detection.
[4] and [9] use Dynamic Time Warping algorithm to match the
collected samples to a stored template of the maneuver. [18]
uses Fuzzy Logic to recognize driving style. [23] presents a
new hierarchical PWARX model for hierarchical classification
of driving events. Luis et al. [12] create a function to score
driving behavior depending upon the number of rash maneuver
performed in unit time. The authors in these studies have not
focused upon the complexity of their algorithms or guarding
against false positives.

D. Vehicle Tracking by LIDAR
Vehicle tracking by a LIDAR is the classical ‘obstacle de-

tection’ problem of robotics and has been studies in detail for
various SLAM based applications. Though the ICP algorithm
[24] exists to accurately determine shapes from a LIDAR, it
is too complex to run on a low cost processor. Apart from it,
two classic approaches exist for detecting objects in a laser
scan: cluster based approach and model based approach.

In cluster based approach, laser points that are close together
are clustered and each cluster is said to represents one object.
The temporal distance between the clusters in successive scans
yields motion characteristics of the object [25]–[27]. This
approach has very low complexity however it is bound to fail
in urban environment where complex entities are present and
the target is to detect vehicles only. In model based approach,
it is assumed that the geometric model of the obstacle is
known and it follows some shapes e.g. line, box, circle etc.
Thus objects are detected with the help of their model which
improves accuracy as it filters out the outliers [28]–[30].

To refine the velocity estimates of the obstacle while
tracking it, often a Kalman filter is used to fuse LIDAR

4

IMU Sensors CAN Bus LIDARs Camera

Fusion

Accl.

Decel.
Heading Speed

Motion Profile

of S. Vehicles

Eye

Moement

Image

Processing

Scan

Processing

Maneuver DetectionClassifier

Risk of Collision

Notification Alert

Sensors

Processing

Modalities

Modeling

Output

Behavior Modeling

Fig. 1: System Architecture

detected trajectory with a dynamical model [31]. The velocity
of obstacles measured using LIDAR is relative to the motion of
the LIDAR and can either be used as it is or converted to static
frame of reference by applying ego-motion compensation [32].

III. METHODOLOGY

To determine abnormal driving behavior, maneuvers are
detected using the heading from IMU and speed from CAN
bus whereas the surrounding vehicle information is gathered
by LIDARs. The system architecture is shown in Fig 1. Each
of the algorithms used in the system are detailed below.

A. Heading From IMU

The vehicle axes convention used in this paper is shown
in Fig. 2. Pitch (θ), roll (δ) and heading (φ) angles are the
rotation angles about the x, y and z axes respectively. To detect
maneuvers performed by the vehicle, we require the heading
angle i.e. rotation about the z-axis only as it indicates how
much the vehicle is turning.

z-axis

φ
y-axis

δ

θ

x-axis

Fig. 2: Vehicle Axes & Orientation Angles

An IMU consists of a tri-axial accelerometer and a tri-axial
gyroscope, and an electronic compass consists of a tri-axial
magnetometer. Let the outputs of these three sensors at time
t be denoted by

at =

axt

ayt

azt

 gt =

gxt

gyt

gzt

 mt =

mxt

myt

mzt

 (1)

The accelerometer measures gravitational and linear accel-
erations about its axes which remain the same if the vehicle
rotates about the z-axis, hence the accelerometer cannot give
any information about the heading of the car. The gyroscope
measures the angular rates of rotation about the x, y and z-axis.
Time integration of the z-axis angular rate yields the heading
angle.

φt = φt−1 + ∆t.gzt (2)

However gzt is the gyroscope measurement of the rotation
rate, which is related to the actual rotation rate ωzt by gzt =
ωzt + nzt where nzt is the noise and bias in the gyroscope
measurement. Substituting into (2), we get

φt = φt−1 + ∆t.ωzt + ∆t.nzt (3)

We can see that the integration process will also accumulate
the noise and bias in gyroscope measurements, causing the
heading estimate to drift after some time. Hence the gyroscope
alone is not sufficient to accurately compute the heading angle.

The magnetometer measures the magnetic field about its x, y
and z-axis. If not under the influence of any external magnetic
field, it measures only the Earth’s magnetic field which points
towards the North pole. Any change in heading of the vehicle
will change the modulation of Earth’s magnetic field about
the x and y axes of the magnetometer, thus we can find the
heading by simply taking the angle between the x and y-axis
magnetometer measurements.

φt = tan−1

(
myt

mxt

)
(4)

However this is only true if the motion of vehicle is strictly
restricted to the x-y plane. In reality, vehicle motion happens in
xyz plane because the road structure causes changes in vehicle
pitch and roll orientation as well. Earth’s magnetic field is then
modulated about the xyz axes and (4) no longer remains valid.
To solve this, we have to determine the vehicle pitch and roll
angles first, and rotate the magnetometer readings back to the
horizontal plane before using (4) to compute the heading.

Pitch and roll angles can be measured by the accelerometer,
only when the vehicle is static. Once the vehicle starts moving,
the accelerometer measurements are influenced by the linear
accelerations of the car. So we compute the pitch and roll
angles at the start of the drive i.e. θ0 ad δ0 and use them for
orientation compensation throughout the drive by assuming the
car travels on a flat road with negligible changes in orientation.
The pitch and roll angle are given by [33]:

δ0 = atan

(
ay0

az0

)
θ0 = atan

(
−ax0

ay0
/sinδ0

)
(5)

5

Accelerometer Magnetometer Gyroscope

Starting
Pitch & Roll

Estimate

Orientation
Compensation

Kalman Filter

θ0, δ0

ax0 , ay0

az0

mxt , myt

mzt

gzt

φt

Mxt , Myt

Fig. 3: Sensor Fusion Scheme for IMU

The heading is then computed by [34]:

Mxt = mxtcosθ0 +mytsinθ0sinδ0 +mztsinθ0cosδ0 (6)
Myt = mztsinδ0 −mytcosδ0 (7)

φt = tan−1

(
Myt

Mxt

)
+ εt (8)

where εt is a small error in the heading estimate due to the
assumption made above and presence of external magnetic
fields. We can see that no integration is involved in estimating
the heading from magnetometer due to which it does not
drift, however it is still sensitive to magnetic disturbances
and considerable changes in pitch and roll orientation where
our above assumption will not hold. Thus the magnetometer
alone is also not sufficient for accurate estimation of heading,
however we can fuse the gyroscope and magnetometer based
heading estimate by using a Kalman filter to obtain the best
possible estimate. The sensor fusion scheme is shown in Fig
3. The Kalman filter formulation is detailed below.

We want to determine the heading hence we define the state
vector xt as

xt =
[
φt
]

(9)

The process and measurement equations of a typical Kalman
filter are given by

xt = Fxt−1 + But + wt−1 (10)
zt = Hxt + vt (11)

where F is the state transition matrix, B is the control input
model, wt−1 is the process noise, zt is the measurement, H is
the observation matrix and vt is the measurement noise.

We update the state estimate using gyroscope measurements
in the process equation and magnetometer measurements in the
measurement equation. The new heading was obtained from
the gyroscope through (3). Comparing (3) with (10) we get

F = 1, B = ∆t, wt−1 = ∆t.nzt (12)

The process noise covariance Qt−1 is given by E[wt−1wT
t−1]

and set to ∆t2.σ2
G where σ2

G is variance of the gyroscope
noise.

Heading is computed from magnetometer by (8). Comparing
(8) with (11) we get

zt = tan−1

(
Myt

Mxt

)
, H = 1, vt = −εt (13)

The measurement noise covariance Rt is given by E[vtvTt].
Since εt is time varying and cannot be determined as it
depends upon varying external magnetic fields and pitch and
roll orientation of the vehicle, we take an adaptive approach
and set Rt according to the residual of the filter.

Rt = A.(zt −Hxt) (14)

where A is a scale factor to tune. We can see from (14)
that measurement noise covariance will be high when the
magnetometer measurements differ greatly from the gyroscope
updated state estimate indicating large error in magnetometer
based estimate. Consequently, magnetometer measurements
will get lesser weight in the Kalman Filter.

Once the process and measurement models have been de-
fined the general procedure of the Kalman filter is as follows.
The − superscript denotes the a-priori and + superscript
denotes the a-posteriori estimate.

x−t = Fx+
t−1 + But (15)

P−
t = FP+

t−1FT + Qt−1 (16)

Kt = P−
t HT (HP−

t HT + Rt)
−1 (17)

x+
t = x−t + Kt(zt −Hx−t) (18)

P+
t = (I−KtH)P−

t (19)

The optimal heading estimate is given by

φt = x+t (20)

B. Speed of Vehicle

The speed of the vehicle is obtained from the CAN bus.

C. Maneuver Detection

When a vehicle performs a maneuver, its heading changes in
accordance with the maneuver being performed. Fig. 4(a)-(d)
show heading response of a vehicle for various maneuvers. In
case of a lane change, the driver first steers the vehicle towards
the intended lane, causing a sharp change in the heading. The
vehicle travels in this direction until it reaches the intended
lane. Then the driver steers the vehicle back to drive in the
intended lane, causing another sharp change in the heading.
The magnitude of change indicates whether the lane change
was slow or fast, as shown in Fig 4a and 4b, where a slow
lane change causes a heading change of 3−4 degrees whereas
for a fast lane change, this change is 10− 12 degrees. In case
of a turn, the change in heading is continuous from the start
till the end of the turn. A slow turn takes longer to complete
as compared to a fast turn as shown in Fig 4c and 4d, where
a slow turn takes 5 seconds while a fast turn takes only 2
seconds to complete.

To detect maneuvers from the changes in heading, we can
take its variance over a fixed time window ‘W’. In addition to
the variance of heading, the speed at which the maneuver is

6

0 2 4 6 8 10
Time (s)

346

349

352

355

358

H
ea

di
ng

 (
de

g)

(a)

0 2 4 6 8
Time (s)

346

349

352

355

358

H
ea

di
ng

 (
de

g)
(b)

0 2 4 6 8 10
Time (s)

220

260

300

340

380

H
ea

di
ng

 (
de

g)

(c)

0 2 4 6 8 10
Time (s)

220

260

300

340

380

H
ea

di
ng

 (
de

g)

(d)

2 4 6 8 10
Time (s)

0

0.5

1

1.5

H
ea

di
ng

 V
ar

ia
nc

e
(d

eg
2 /s

)

(e)

2 4 6 8 10
Time (s)

0

2

4

6

8

H
ea

di
ng

 V
ar

ia
nc

e
(d

eg
2 /s

)

(f)

2 4 6 8 10
Time (s)

0

100

200

300

H
ea

di
ng

 V
ar

ia
nc

e
(d

eg
2 /s

)
(g)

2 4 6 8 10
Time (s)

0

200

400

600

800

H
ea

di
ng

 V
ar

ia
nc

e
(d

eg
2 /s

)

(h)

Fig. 4: (a)-(d) Heading during a Slow Lane Change, Fast Lane Change, Slow Turn, Fast Turn (g)-(h) Variance of Heading
during a Slow Lane Change, Fast Lane Change, Slow Turn, Fast Turn

performed is also required. This is because at higher speeds,
only a small change in heading can cause a significant change
in vehicle trajectory. Thus the same change in heading at a
lower speed might represent a Slow Lane Change which at a
higher speed, represents a Fast Lane Change. This was also
experimentally verified and shown in Fig. 5. As we are dealing
with data in a window ‘W’, we can assume that the speed
remains constant during this window i.e. equal to its mean
value over ‘W’. Thus variance of heading and mean of speed
are our two features for maneuver detection.

As we want to create a real time system, heading and speed
data will be continuously streaming, and the window ‘W’ will
be a sliding window. The length of ‘W’ is important. If it is
large such that the window is able to contain an entire lane
change then the heading variance will exhibit only one peak
for the whole maneuver and the detection time of the system
will increase because the lane change can only be detected

0 1 2 3 4 5
Time (s)

202

204

206

208

210

H
ea

di
ng

 (
de

g)

(a) Heading for a Slow Lane Change
at 6.2 mph

0 1 2
Time (s)

202

204

206

208

210

H
ea

di
ng

 (
de

g)

(b) Heading for a Fast Lane Change
at 32 mph

Fig. 5: Similar heading response of Slow and Fast Lane
Change due to different speeds

when it has been completed and the peak in variance has
been observed. If ‘W’ is small, the window will separately
capture the starting and ending of lane change and the heading
variance will exhibit two peaks, first one the driver is initiating
the lane change and second when the driver is finishing the
lane change as shown in Fig 4e and 4f. This not only reduces
the detection time but also increases the accuracy of the system
by detecting false alarms when a first peak for starting lane
change is not immediately followed by a second peak for
ending lane change. Thus we selected W = 1 second. The
variance of heading plots for various maneuvers with W = 1
are shown in Figs. 4 (e)-(h).

For each window ‘W’ of driving data, we create a feature
vector ‘x’ as discussed before:

x =

[
x1
x2

]
(21)

where
• x1 = Mean of the velocity over a time window ‘W’
• x2 = Variance of the heading over a time window ‘W’

We need to detect the state of the vehicle for the time duration
‘W’ based on x. The state can be any one of the following:
1. Going Straight (x ε GS)
2. Performing Slow Lane Change (x ε SL)
3. Performing Fast Lane Change (x ε FL)
4. Performing Slow Turn (x ε ST)
5. Performing Fast Turn (x ε FT)

This forms a classical machine learning problem where we
need to classify data into the above mentioned five classes.
Hence, we use supervised machine learning, in which labeled
examples are used to learn a classifying function. This classi-
fying function is then applied to unlabeled data to assign it a

7

Starting

Fast Lange

Change

x ϵ SL

x ϵ

SL

x ϵ

GS

Performing

Slow Turn

x ϵ GS

x ϵ GS

x ϵ GS

x ϵ FT

x ϵ ST

x ϵ

GS

x ϵ

FL

x ϵ FL

t > Tman
Finishing

Slow Lane

Change

Performing

Fast Turn

x ϵ GS

t > TmanFinishing

Fast Lane

Change Performing

Fast Lane

Change

Performing

Slow Lane

Change

Starting

Slow Lane

Change

x ϵ GS

Going

Straight

Fig. 6: State Machine

label. The classifying function can be of any order, however
we chose a linear classifier to keep the complexity of the
system minimum. The set of labeled examples (training set)
χ is defined as

χ = {xk, rk}Nk=1 (22)

where ‘N’ is the total number of labeled examples that
constitute the training set, xk is the feature vector of the ‘kth’
example and rk is its label. Since we have five classes, we
require four linear classifiers to divide the feature space into
five sub-spaces. The state of the vehicle is classified as a
certain class if x lies in the sub-space of that particular class.
Each ‘ith’ linear classifying function gi(x) has the form

gi(x) = wT
i x + wi0 =

d∑
j=1

wijxj + wi0 (23)

where ‘d’ is the dimension of the feature vector which is two
in our case. The data belongs to ‘ith’ class iff gi(x) > 0 &&
gj(x) < 0 ∀j > i.

After the classifying functions have been learnt, they are
used for classifying real data. We determine the current state
of the vehicle and traverse the state machine shown in Fig. 6.
The vehicle leaves ‘Going Straight’ state as soon as x /∈ GS. It
sequentially moves along the outer edge of the state-machine
as long as variance keeps increases. Once the variance settles,
it enters the branch of that maneuver. A maneuver is completed
if the variance pattern completes the cycle of the maneuver in
the state machine. We can see that lane changes are validated
by two peaks. If a timeout condition t > TMAN occurs and
the second peak has not been observed then it is detected as
a false alarm. The complete maneuver detection algorithm is
presented as a flow chart in Fig. 7.

Sensor Data

Data Fusion

Acquire Data
Over ‘W’

Feature
ConstructionGPS

Training
Examples

Offline
Training

Real Time
Classifier

State
Machine

Classifier
Parameters

Training System

Acquisition

Real Time System

State of Vehicle

Fig. 7: Flow Chart of Maneuver Detection & Classification

On curved roads, a vehicle traveling in a single lane will
exhibit a change in heading due to the curvature of the road
(Fig. 8b), which will cause a constant offset in the heading
variance (Fig. 8d) and lead to incorrect detection of vehicle
state. To mitigate this issue, we use a low cost GPS which is
able to provide the location of the vehicle within a few meters
accuracy. A low density map table is stored in the device which
contains blocks of co-ordinates against the heading variance
offset for single lane travel in that region (Fig. 8a). This offset
is subtracted from the heading variance whenever the vehicle
is traveling through that block.

(a) Map (b) Curved Lane Change

0 5 10
Time (s)

240

260

280

300

320

H
ea

di
ng

 (
de

g)

(c) Heading Response

0 5 10
Time (s)

0

5

10

15

20

V
ar

ia
nc

e
(d

eg
2 /2

)

(d) Variance of Heading

Fig. 8: Lane Changing on Curved Road

8

D. Motion of Surrounding Vehicles

A LIDAR sensor or more commonly known as a laser
scanner is a distance sensor which measures distance by
noting the return time taken by a laser beam to travel to and
from a surface at which the beam is pointed. By rotating
the LIDAR in angular steps, we can span a field of view
and create a 2D distance map of the environment. Detecting
the motion of surrounding vehicles using a LIDAR in an
urban environment is a complex task, posing a number of
challenges: urban entities such as buildings, trees, pedestrians
serve as outliers and complicate vehicle detection, movement
of detected vehicle causes the impact points returned by it
to differ in shape between successive scans and occlusion of
vehicles causing multiple vehicles to appear as one cluster.

We adopt a model based approach to detect vehicles from
the laser scans in which polygonal shapes are searched within
the scan and registered as vehicles if they fulfill certain
length criterion. This facilitates in differentiating vehicles from
outliers while keeping the algorithm complexity low. The
flowchart of vehicle detection and tracking is shown in Fig
9. The LIDAR is installed on a stepper motor for rotating it
in angular steps. Hence for each measurement, the LIDAR
returns the distance r and the stepper motor gives the angle
of the measurement θ. A single complete laser scan will be

S = {rj , θj}Nj=1 (24)

where N is the total number of steps in the scan. Two scanner
are installed on the hood and boot of the car and rotated to
span the 180◦ field of view in front of and behind the vehicle
to detect traffic. To demonstrate each scan processing step,
experimentation results are shown in Fig. 10. The actual scene
captured by the camera is shown in Fig. 10a whereas the raw
scan points returned by the scanner are shown in Fig. 10b. The
range of the LIDAR was set to 30m hence all points beyond
this range are plotted as 30m.

1) Vehicle Detection: The first step is to determine the
number and positions of all vehicles present in the raw laser
scan. The scan split into clusters by simple thresholding. We
define a range r interested, then traverse the scan and mark
all points with distance less than r interested as 1s and the
others as 0s. Continuous 1s in the scan give us one cluster.
This is shown in Fig. 10c where each cluster has been drawn
with a different color. The scan S can now be written as a
collection of clusters c:

S = {ck}NC

k=1, ck = {rj , θj}Nk
j=1 (25)

where NC is the total number of clusters and Nk is the number
of points in the kth cluster.

After clustering, we convert the coordinates from azimuth
plane to cartesian plane to facilitate the execution of remaining
algorithms. Thus for each jth measurement in the azimuth
plane we compute its equivalent in cartesian plane by

xj = rjcosθj (26)

yj = rjsinθj (27)

Then we fit each cluster with polygonal segments. This is
because the bodies of vehicles return laser points creating

Scan Field of View

Threshold Based Segmentation

Polygon Fitting by RDP Algorithm

Filtering of Polygon Fitted Segments

Vehicle Detection

Previous
Tracks

Database

Association with Prev. Scans

Calculate Displacement

Measurement
Model

Process
Model

Vehicle Tracking

Polygon Fitted
Segments

Raw Laser Scan

Segments of Scan

Filtered Segments

Vehicle Positions

Detection

Association

K.F. for Vehicle Tracking

Fig. 9: Flowchart of Vehicle Detection & Tracking by LIDAR

either straight lines or polygonal shapes. To do so, we use
the so called RDP (Ramer-Douglas-Peucker) algorithm which
is a recursive algorithm [35]. In this algorithm, the first and last
points (say A and B) of the cluster are joined through a straight
line (AB). Then that point in the cluster is determined from
which, the distance to this line segment is the greatest (say
C). The line segment AB is broken into AC and CB and then
the algorithm is again applied individually on these segments.
The algorithm continues until the distance of the farthest point
from the segment is less than a certain error threshold. The
segments after polygon fitting are shown in Fig. 10d. The scan
can now written as a collection of clusters where each cluster
is fitted with a number of line segments and each jth segment
vj is defined by its two end points {(xj1, y

j
1), (xj2, y

j
2)}.

S = {ck}NS

k=1, ck = {vj}NS
j=1, vj = {(xj1, y

j
1), (xj2, y

j
2)}
(28)

where NS is the total number of segments in the kth cluster.
After polygon fitting we need to detect vehicles present

in these polygons. The laser scan contains many outliers in
addition to the vehicles. These are surrounding buildings and
pedestrians. Separating vehicles from the outliers is a complex

9

(a)

-30 -20 -10 0 10

X Coordinates (m)

0

5

10

15

20

25

30

Y
 C

oo
rd

in
at

es
 (

m
)

(b)

-30 -20 -10 0 10

X Coordinates (m)

0

5

10

15

20

25

30

Y
 C

oo
rd

in
at

es
 (

m
)

(c)

-30 -20 -10 0 10

X Coordinates (m)

0

5

10

15

20

25

30

Y
 C

oo
rd

in
at

es
 (

m
)

(d)

-30 -20 -10 0 10

X Coordinates (m)

0

5

10

15

20

25

30
Y

 C
oo

rd
in

at
es

 (
m

)

(e)

-10 -5 0 5 10

X Coordinates (m)

0

5

10

15

20

25

30

Y
 C

oo
rd

in
at

es
 (

m
)

(f)

Fig. 10: Stages of Laser Scan Processing (a) Camera view of the scene - 3 vehicles are fully visible, 2 are occluded (b) Raw
Scan - Impact points returned by the laser (c) Scan after segmentation - Each segment is drawn with different color (d) Scan
after polygon fitting (e) Scan after filtering of segments (f) Position of detected vehicles

(a) Car in front (b) Car on the side

(c) Occlusion at the back

Fig. 11: Shapes of scan points returned from vehicles

job and can only be done upto a certain degree. We observe
that the laser points returned from a preceding vehicle are
either a straight line (vehicle directly in front of our car) as
shown in Fig. 11a or L shaped (vehicle is towards the side of
the car) as shown in Fig. 11b. As far as occlusion of vehicles is
concerned, we observe that a portion of the occluded vehicle is
present in the scan, clustered with the fully observable vehicle
as shown in Fig. 11c.

Based on these observations, we define a set of rules. For

each segment vj in a cluster, we calculate three things:
1) Length of the segment

lj = ‖vj‖ (29)

2) Its angle with the next adjacent segment

ψj = cos−1

(
vj .vj+1

‖vj‖.‖vj+1‖

)
(30)

3) The orientation ‘Oj’ of the segment w.r.t. the laser
scanner i.e. whether it is horizontal or vertical. Given
that the laser is at the coordinates (0, 0), the orientation
is computed as

Vj =
[
0− xj

1+xj
2

2 0− yj
1+yj

2

2

]
(31)

γj = cos−1

(
V j .vj

‖V j‖.‖vj‖

)
(32)

Oj =

{
Horizontal if |γj − 90◦| > 45◦

Vertical Otherwise
(33)

Then based on the set of rules, we filter the segments and
discard all those which do not follow the rules. We assume
that the length of a vehicle is ‘L’ meters and width is ‘W’
meters. For the segments on the left side of the scanner:

1) If a segment does not have any adjacent segments, then
its length should satisfy |lj −W | < ζ if it is a horizontal
segment i.e. we are observing the back side of the vehicle

10

(Fig. 11a) or |lj − L| < ζ if is vertical i.e. we are
observing the side of the car. ζ is the leniency allowed
in the segment length observation.

2) A horizontal segment is allowed if its adjacent seg-
ment is vertical and its angle with this segment satisfies
|ψj−90◦| < ξ as these two segments represent a vehicle
observed from the side as in Fig. 11b. ξ is the leniency
allowed in the angle observation.

3) A vertical segment is allowed if its adjacent segment is
horizontal and its angle with this segment satisfies |ψj −
270◦| < ξ as these represent an occluded vehicle cluster
(Fig. 11c). The vertical segment is a part of one vehicle
and the adjacent horizontal segment is the part of another.

For segments on the right side of the scanner, rules 2 and 3
will be reversed in terms of orientation (vertical/horizontal)
constraints as the scan points returning from vehicles on this
side are represented by polygons in the reverse manner.

After detecting vehicles, we compute the position P of each
vehicle relative to the scanner in the following manner.

1) If the vehicle is represented by a single horizontal seg-
ment vj then P =

(
xj
1+xj

2

2 , yj1 + L
2

)
since yj1 ' yj2 for a

horizontal segment.
2) If the vehicle is represented by a single vertical segment

vj then P =
(
xj1 + W

2 ,
yj
1+yj

2

2

)
since xj1 ' xj2 for a

vertical segment.
3) If the vehicle is represented by combination of horizontal

and vertical segments vj and vj+1 respectively then P =(
xj
1+xj

2

2 ,
yj+1
1 +yj+1

2

2

)
.

Hence now we have the total number of vehicles present in
the current scan ‘N’ and the position (xP , yP) of each vehicle.

P = {Pi}Ni=1, Pi = (xiP , y
i
P) (34)

2) Vehicle Association: After detecting the position of all
vehicles present in the current scan, we need to associate them
with vehicles in the previous scans i.e. we need to determine
which vehicle from the current scan was which vehicle in the
previous scans, so that we can compute its speed and predict
its future trajectory.

Here we define the term ‘track’ denoted by T which refer
to the motion characteristics of a vehicle that has been tracked
over successive scans and its speed has been determined. Each
track at time t consists of vehicle position and speed. If the
total number of tracks are NT then

Tt = {T j
t }

NT
j=1, T j

t = {Xj
t , Y

j
t , V

j
Xt
, V j

Yt
} (35)

Vehicle association problem is basically the task of associating
each vehicle with one of the existing track. To find the
appropriate track for a vehicle, we use the nearest neighbor
method. When association is carried out, the position and
velocity of the tracks have not been updated to the current
time ‘t’ and contain estimates of previous time instant ‘t−1’.
Therefore, each track is projected one time step forward
according to its speed to predict its current position (X j

t ,Y
j
t)

using

X j
t = Xj

t−1 + ∆t.V j
Xt−1

, Yj
t = Y j

t−1 + ∆t.V j
Yt−1

(36)

That vehicle is associated with the track whose position is
within 1m of the projected position of the track i.e. ith vehicle
is associated with the jth track if√

(xiP −X
j
t)2 + (yiP − Y

j
t)2 < 1 (37)

If multiple vehicles are in contention for the same track then
that vehicle is selected which is closest to the projected track
position. Same is the case if one vehicle is in contention for
multiple tracks. If a vehicle cannot be associated to any of the
existing tracks, (a new vehicle has appeared in the scan) then
we create a new track for that vehicle and initialize its speed
by 0. If a track does not get associated with any vehicle in the
current scan (the vehicle representing that track has moved out
of range or become fully occluded) then the track is deleted.

3) Kalman Filter for Tracking: Vehicle positions detected
by the LIDAR suffer from errors due to several uncertainties
in the detection process. Consequently the tracks of these
vehicles are also irregular and can be smoothed with the help
of a Kalman filter which fuses the LIDAR detected position
of each vehicle with a constant velocity model. One Kalman
Filter is required per track. Hence for k tracks, we require k
Kalman Filters. The state vector for the Kalman Filter of each
track consists of its position at time t.

xt =
[
Xt Yt

]
(38)

The state is updated in the process step by

xt = xt−1 + ∆t.Vt−1 (39)

where Vt−1 is the estimate of the track’s speed

Vt−1 =
[
VXt−1 VYt−1

]
(40)

which is related to the true track speed vt−1 by

vt−1 = Vt−1 + εt−1 (41)

where εt−1 is the error in speed estimate. Substituting (41)
into (39) and comparing with (10), we get

F = I2, B = ∆t, wt−1 = ∆t.εt−1 (42)

The process noise covariance matrix Qt−1 is given by
E[wt−1wT

t−1] and set equal to ∆t2σεI2 where σε is the
variance of the speed estimate error and tuned between 0 and
1 for performance.

The position of the vehicle associated with this track, as
measured by the LIDAR was given in (34)

Pt =
[
xp yp

]
(43)

where we have dropped the superscript for simplicity. If the
error in this LIDAR detected position is ρt, then

xt = Pt + ρt (44)

Substituting (44) into (43) and comparing with (11) we get

zt = Pt, H = I2, vt = ρt (45)

The measurement noise covariance Rt is given by E[vtvT
t].

Since ρt is time-varying and cannot be determined, we take
an adaptive approach to set it. Considering that more scan
points are returned from a vehicle that is closer to the scanner

11

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

X Coordinates(m)

0

5

10

15

20
Y

 C
oo

rd
in

at
es

(m
)

True Position
LIDAR only
KF Based

0 5 10 15 20 25

Time(s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

V
el

oc
ity

(m
/s

)

True Speed
KF Estimated

(a) Vehicle Location Estimates

(b) Vehicle Speed Estimates

Fig. 12: Kalman Filter Results

thus giving more accurate position as compared to a distant
vehicle that returns less scan points, we set Rt according to
the distance of the vehicle from the scanner:

Rt =
(
B.
√

(0− x2p) + (0− y2p)
)

I2 (46)

where B is a constant to be tuned. Thus more weightage is
given to the LIDAR measurement in the Kalman filter if the
vehicle is closer the scanner and returning more scan points.

The procedure of the filter is the same as given in Eqs. (15)-
(19). Once the a-posteriori state estimate has been determined,
the track position is given by

Xt = x+
t (1), Yt = x+t (2) (47)

and track speed is updated by

VXt
=
Xt −Xt−1

∆t
, VYt

=
Yt − Yt−1

∆t
(48)

Note that we could have included the speed components into
the state vector as well, however the Kalman filter would then
be of 4th order and computationally very expensive. To test
the performance of the formulated Kalman filter, we installed
a second test vehicle with a high precision GPS and recorded

its position for ground truth while tracking the vehicle from
the LIDAR. The results are shown in Fig. 12 where it can be
seen that the Kalman filter performs smooth tracking of the
vehicle as compared to using LIDAR only.

E. Tracking Eye Movement

Tracking the driver’s eye movement helps in predicting
certain maneuvers in advance and allow the collision warning
system to generate premature warnings. For example, if the
driver is looking to change to the left lane then he might gaze
on to the left lane or in the left side mirror. The system after
receiving this indication, can check for occupancy of the left
lane and generate an alarm if a potential accident situation will
be created by this lane change. To track the eye movement,
a camera is installed inside the vehicle behind the steering
wheel and pointed at the driver’s face. To track eye centres,
the algorithm given in [36] is used which proposed a multi-
stage solution to detecting eye centers. The algorithm is very
accurate and has low complexity which enables it to run at a
high frames-per-second even on low cost processors.

First, a frame is captured from the video stream and the
driver’s face is detected from the frame using Viola-Jones
algorithm [37] which applies machine learning to detect faces.
We noted that the camera will always point at the frontal
portion of the driver’s face except when he is looking in
the left side mirror, in which case his face will be turned
towards the left as shown in Fig. 13e. Hence two classifiers
were run simultaneously, one for frontal face detection and
second for side face detection. After the face region has been
identified, eye region is estimated from it using an assumed
face geometry. From these eye regions, a minimum gradient
algorithm is applied to detect eye centers as given in [36]. The
results are shown in Fig. 13.

We used eye movement tracking to identify five scenarios:
looking straight (Fig. 13a), looking onto the right lane ahead
(Fig. 13b), looking into the right side mirror (Fig. 13c), looking
onto the left lane ahead (Fig. 13d) and looking into the left
side mirror (Fig. 13e).

(a) (b) (c)

(d) (e)

Fig. 13: Screenshots of Eye Center Localization Process - Eye
Centers while (a) Looking Straight (b) Right Lane (c) Right
Side Mirror (d) Left Lane (e) Left Side Mirror

12

F. Behavior Modeling

After detecting the maneuvers performed by the vehicle
and the position of the surrounding vehicles, the next task
is to model the driving behavior of the driver and determine
whether he is driving safely or rashly. To do so, we define
the term ‘Driving Index’ (D.I.) which is a score between 0
and 100 assigned to the driver based on his driving. A higher
score indicates rash driving behavior whereas a lower score
indicates safe driving behavior.

Before explaining D.I. we define the term ‘safe distance’
as the minimum distance that the vehicle must keep with
the preceding vehicle. It is also commonly known as braking
distance and depends upon the speed of the vehicle v0 at the
instant of applying the brakes. We can derive the equation
for braking distance by assuming that the deceleration of the
vehicle during braking at is constant i.e. at = a and using the
third equation of motion:

v2t = v20 + 2adbrake (49)

By setting the final velocity to zero, we can find dbrake as

dbrake =
−v20
2a

(50)

The work done during the braking process F = ma is actually
done by the friction F = −µmg. Comparing these two
equations, we get a = −µg which substituted into (50) gives
us

dbrake =
v20

2µg
(51)

µ is the coefficient of friction and depends upon tyre and road
characteristics. A graph of safe distance vs speed is plotted in
Fig. 14 with µ = 0.7.

D.I. is initialized by 0 at the start of the drive. A penalty is
incurred and D.I. is increased if the driver performs any one
of the following dangerous maneuvers:

1. Exceeding the speed limit.
2. Violating safe distance with the preceding vehicle.
3. Decelerating and violating the safe distance with the fol-

lowing vehicle.
4. Performing a fast lane change.
5. Performing a slow lane change such that the safe distance

is violated with either the preceding or following vehicle
in the new lane.

6. Performing a fast turn.
7. Performing a slow turn not from the exit lane, while there

was a vehicle following in the exit lane.
8. Needlessly accelerating & decelerating continuously in a

short period of time.

Also, D.I. is decreased monotonically with time if no dan-
gerous maneuvers are performed. Thus if the driver performs
several dangerous maneuvers in a short span of time, D.I.
will increase and exceed a certain threshold (D.I.thresh)
resulting in the driver getting reported. However, the driver
will not be reported if a dangerous maneuver occurs once
in a while because D.I. begins to automatically decrease as

0 20 40 60 80

Initial Speed (mph)

0

20

40

60

80

100

D
is

ta
nc

e
(m

)

Braking Distance
Evasion Distance

Fig. 14: Safe & Evasion Distance as a function of Vehicle
Speed

described above. Thus the mathematical expression for D.I.
was formulated as

D.I.t = min (100, D.I.t−1 − C︸︷︷︸
Decrease

+ D ∗R︸ ︷︷ ︸
Increase

) (52)

where

R =

{
1, Dangerous Maneuver
0, Otherwise

(53)

and C & D are constants which control the behavior of D.I.
evolution and are upto the system designer. The values set in
our system were C = 10−1 & D = 10.

Once the driver has been detected as driving dangerously,
any counter measure can be taken by the system depending
upon the provision e.g. stopping the car or notifying traffic
authorities.

G. Collision Warning

The system continuously monitors the risk of a collision
with any of the surrounding vehicles and generates an alarm
if a potential collision situation is determined. ‘Safe distance’
defined in Section III-F refers to the braking distance that a
vehicle must keep and is a good indicator of the quality of
driving, however accidents are extreme situations demanding
the driver to do much more than braking. Mostly, an evasive
maneuver like steering away from the obstacle is performed to
avoid an accident. So in addition to the ‘Safe distance’ defined
above, another term called ‘Evasion distance’ is defined here
which is the minimum distance that the vehicle must keep
from the preceding vehicle so that it can perform an evasive
maneuver in case of an emergency. It is also a function of
vehicle speed and can be derived as follows [38]:

Consider Fig. 15 where a vehicle performs an evasive
maneuver towards the left by moving along a circle of radius
‘r’. The distance of the vehicle from the preceding vehicle is
called evasion distance and is given by ‘ds’. The center of the

13

Fig. 15: Evasive Maneuver

circle is located at (0, r). We know that the general equation
of a circle with center (h, k) and radius r is given by

(x− h)2 + (y − k)2 = r2 (54)

Applying this equation and solving for ds gives us

(ds − 0)2 + (W − r)2 = r2 (55)

ds =
√
r2 −W 2 − r2 + 2Wr (56)

=
√

2Wr −W 2 (57)

We know that in circular motion, α = v2

r , where α is the
centripetal acceleration which is provided by tyre friction α =
µg. Thus substituting for r

ds =

√
2W

v2

µg
−W 2 (58)

We can see that the evasion distance varies almost linearly in
response to the initial speed of the vehicle whereas the braking
distance in (50) varied quadratically. The evasion distance
has been plotted in Fig. 14 for µ = 0.7 and W = 1.5m.
Evasion distance is much less than the braking distance at
higher speeds.

Apart from the evasion distance we define ‘time to collision’
as the time remaining for a surrounding vehicle to collide with
the ego-vehicle if they continue to move at their current speeds.
We check those tracks from the existing tracks whose relative
velocity w.r.t our vehicle is negative which means that they
are moving towards us. Since the ego-vehicle is at (0,0) time
of collision is then determined by

t = solt0{Pobj(t+ t0) = 0} (59)

We generate an alarm for risk of collision if any of the
following three scenarios occur.
1. If the vehicle is keeping less than the evasion distance from

the preceding vehicle.
2. If the time to collision with any vehicle is less than 2

seconds.
3. If the vehicle is about to change lane and changing lane

will put it in within < 2 seconds of collision.

H. Node Architecture & Communication Protocol

The hardware of the system consists of six sensor nodes
which are installed on the vehicle. Each node consists of one

Node 6

Node 5

Node 1

Communication

Channel

Surrounding

Vehicles

RX

RX

Speed

Maneuvers

Performed

TX

LCD

(Notifi-

cation)

TX

LIDAR

(Scan

Points)

Processor

(Scan Processing

Algorithms)

TX

Node 3 & 4

Camera
RX

CAN

Interface

RXProcessor

(Behavior Modeling,

Risk Assessment)

Processor

(Image Processing,

Eye Tracking)

Processor

(CAN Protocol)

Node 2

IMU

& GPS

RXProcessor

(Data Fusion,

Classification) TX

TX

Eye

Movement

Fig. 16: Node Architecture & Communication Protocol

Fig. 17: Placement of Sensor Nodes in the car

or more sensors, a processor and a wireless communication
module and is responsible for sensing a specific modality,
processing it and transmitting the processed information onto
the wireless channel. The architecture of each node alongwith
the transmission and reception of shared messages is shown
in Fig 16. The placement of nodes on the vehicle is shown in
Fig. 17.

The first node is responsible for obtaining the speed of the
vehicle from the CAN bus and is installed under the steering
wheel where the CAN bus connector is available in most
vehicles. It contains a tranciever circuit to communicate with
the CAN interface, a processor which requests speed from the
CAN interface using CAN protocol and a wireless module to
transmit the vehicle speed onto the wireless channel.

The second node is responsible for maneuver detection. It
contains inertial sensors and a low cost GPS, and is installed in
the boot of the vehicle so that the magnetometer is free from
any magnetic disturbances that may arise from the vehicle
engine. This node receives the vehicle speed from the wireless
channel, fuses the data obtained from inertial sensors, receives
vehicle location from the GPS and detects the maneuver
performed by the car using the algorithms described in Section

14

III-C. The detected maneuver is then transmitted onto the
wireless channel.

The third and forth nodes deal detecting and tracking the
surrounding vehicles. One node is placed at the front of
the vehicle, with the LIDAR on the hood and the processor
and wireless module inside the hood and the other node is
placed at the vehicle with the LIDAR on the boot and the
processor and wireless module inside the boot. The processor
controls the stepper, receives scan points from the LIDAR.
After a scan is complete, it processes the whole scan to detect
and track surrounding vehicles as described in Section III-D
and transmits the position and trajectory of each surrounding
vehicle onto the wireless channel.

The fifth node contains the camera and is responsible for
tracking eye movement. It is installed just above the steering
wheel where the camera will have a complete view of the
driver’s face. The processor runs the image processing and
eye tracking algorithm of Section III-E and transmits the eye
tracking results on to the wireless channel.

The sixth node is placed inside the car. It has an LCD
which is mounted just beside the steering wheel. It receives the
maneuver information from the Node 2, surrounding vehicles
information from Nodes 3 and 4 and eye tracking results
from Node 5. It uses this information to apply behavior
modeling and collision risk algorithms described in Sections
III-F & III-G. It displays information to the driver regarding
his driving.

All nodes transmit on the same frequency channel to fa-
cilitate easy transmission and reception among the nodes. To
avoid collision of messages listen before talk algorithm was
implemented. Each node assessed the channel to check if it
is free and only transmits if it is free. Each message has a
source address label so that the other nodes can check which
message is being transmitted. The recipient node can either
receive the message if it is relevant or discard it.

IV. EXPERIMENTS

To experimentally test the system, we installed the wire-
less nodes on a test vehicle shown in Fig. 18a. The IMU
used in Node 2 (Fig. 18b) comprised of STMicroelectronic’s
LSM303DHLC which contains a tri-axial accelerometer &
magnetometer and L3GD20 which is a tri-axial gyroscope. The
low cost GPS was SkyNav’s SKM53 (Fig. 18d). Nodes 3 and
4 used Pulsed Light’s LIDAR-Lite module which is a single
beam laser scanner (Fig. 18c). Node 5 used Logitech’s HD
webcam C290 for eye tracking (Fig. 18e). Node 6 contained
a 256x64 pixels JHD12864 Graphical LCD for notification
purposes (Fig. 18f). Nodes 1-4 and 6 used STMicroelectronic’s
STM32F3 microcontroller board which runs at 70 MHz as the
processing unit whereas Node 5 used a Raspberry Pi board
running at 700 MHz for image processing algorithms. Each
node was equipped with Texas Instrument’s CC1101 module
which is a sub-GHz tranciever operating on 868 MHz channel
for wireless communication.

To generate efficient ground truth for comparison, the ve-
hicle was also equipped with Advanced Navigation’s Spatial
GPS module (Fig. 18g) which a high precision GPS receiver

(a) Instrumented Vehicle (b) IMU & GPS node in the boot

(c) LIDAR on the hood (d) Low Cost GPS under rear screen

(e) Camera node (f) LCD for notification

(g) High precision GPS on the roof (h) Camera to record proceedings

Fig. 18: Experimental Test Bed

TABLE III: Number of Examples For Each Maneuver

Maneuver Number of Examples

1. Going Straight 33

2. Slow Lane Change 43

3. Fast Lane Change 36

4. Slow Turn 40

5. Fast Turn 17

and provides sub-meter accurate position of the vehicle and a
Camera to record the proceedings simultaneously (Fig. 18h).

To train the system, several examples of each maneuver
were collected. Table III shows the number of examples of
each maneuver. To learn the parameters of each classifier,
we used the minimum error gradient approach presented in
Chapter 10 of [39]. MATLAB machine learning toolbox was
used.

The vehicle was driven for 1 km in traffic with the driver
randomly performing different maneuvers including slow and
fast lane changes and turns. The system kept detecting the
maneuvers and tracking the surrounding traffic to determine
driving behavior and risk of accident. The results are shown
in Fig. 19.

15

(a) GPS mapping of Test Drive

0 50 100 150 200

Time (s)

-50

0

50

100

150

200

H
ea

di
ng

 (d
eg

)

(b) Heading Response during the Test Drive

0 50 100 150 200
0

20

40

60

80

(c) Variance of Heading during the Test Drive

0 50 100 150 200

Time (s)

0

2

4

6

8

10

V
el

oc
ity

 (m
/s

)

(d) Velocity during the Test Drive

0 50 100 150 200

Time (s)

0

2

4

6

8

S
ys

te
m

 S
ta

te

(e) Evolution of States in State Machine, 0: Going Straight, 1: Starting Slow Lane Change, 2: Performing Slow Lane Change, 3: Finishing Slow Lane Change, 4:
Starting Fast Lane Change, 5: Performing Fast Lane Change, 6: Finishing Slow Lane Change, 7: Performing Slow Turn, 8: Performing Fast Turn

16

0 100 200 300 400 500 600 700

X Coordinates (m)

-30

-20

-10

0

Y
 C

oo
rd

in
at

es
 (m

)

(f) Trajectory of Test Drive and the Surrounding Tracks

0 50 100 150 200

Time (s)

0

10

20

30

40

50

S
af

e
D

is
ta

nc
e

(m
)

(g) Safe Distance kept by the driver during the Test Drive

0 50 100 150 200

Time (s)

0

20

40

60

80

100

D
.I.

(h) Evolution of Driving Index during Test Drive

0 50 100 150 200

Time (s)

-2

-1

0

1

2

E
ye

 P
os

iti
on

(i) Eye Tracking Results during Test Drive - 0: Looking Straight, 1: Looking Left Ahead, 2: Looking in Left Side Mirror, -1: Looking Right Ahead, -2: Looking in
Right Side Mirror

0 50 100 150 200

Time (s)

0

1

C
ol

lis
io

n
A

la
rm

(j) Risk of Accident during Test Drive

Fig. 19: Test Drive

17

Fig. 19a shows the path traveled by the vehicle as recorded
by the high precision GPS. We can see that all lane changes
and other maneuvers are visible in this mapping owing to
the high precision of the GPS. Fig. 19f shows this mapping
converted into vehicle coordinates and the tracking results of
surrounding vehicles are drawn as well. The lane changes are
even more evident here due to shrinking of the vertical scale.

Fig. 19b shows the heading angle response of the vehicle
throughout the drive. It can be seen that the turns cause a
change of almost 90◦ whereas lane changes induce a ripple in
the heading response. The variance of the heading has been
plotted in Fig. 19c and the vehicle speed in Fig. 19d. The
variance exhibits peaks whenever a maneuver is performed.
Using the classifiers learnt by supervised machine learning,
the state machine is operated. The system state at each time
instant is shown in Fig. 19g. It can be seen that the state
sequentially increases from ‘Going Straight’ to ‘Starting Slow
Lane Change’, ‘Starting Fast Lane Change’, ‘Performing Slow
Turn’ and ‘Performing Fast Turn’ if the variance of heading
keeps increasing. If the variance stops increasing then the state
machine enters the branch of that corresponding maneuver.

The driver also manually recorded that 4 slow lane changes,
8 fast lane changes and 3 slow turns were performed during
the drive. Exactly the same was output by the state machine.
Also, 2 false slow lane change alarms were detected at 150s
and 175s. These were due to slight drift of the vehicle, however
the state machine was able to identify them as false alarms
instead of detecting them as a maneuver, showing robustness
of the system to false alarms.

The surrounding traffic tracked by the LIDAR is shown
in Fig. 19f. The graph does not show the traffic w.r.t. time
however the braking distance kept by the vehicle is shown
in Fig. 19g which also shows the minimum braking distance
required according the current speed of the vehicle. We can see
that at 14s, 27s, 60s, 72s and 79s. The evolution of the driving
index throughout the drive is shwon in Fig. 19h. The D.I.
decreases monotonically with time if no dangerous maneuver
is performed however a dangerous maneuver incurrs a penalty
of 20 points. The threshold of rash driving is set at 95 points.
The driver violates the threshold twice during the drive.

The eye tracking results are shown in Fig. 19i and risk
of collision is plotted in Fig. 19j. The collision alarm rings
at three intervals, at 14, 37 and 116s. The first alarm rings
when the vehicle maintains less than the steering distance
from the preceding vehicle as shown in Fig. 20a. The second
alarm rings when the driver is looking in the right side mirror
and slowly drifting the vehicle towards the right whereas this
lane change will put him within 2 seconds of collision with
a vehicle already present in that lane as shown in Fig. 20c.
This scenario clearly signifies the importance of eye tracking
as the collision potential was detected premature to the lane
departure. The third alarm rings again when the distance is
less than the steering distance as shown in Fig. 20b.

V. CONCLUSION

In this paper we have proposed a multi-modal wireless
sensor network which is able to model the driving behavior

(a) Risk Alarm 1 (b) Risk Alarm 2

(c) Risk Alarm 3

Fig. 20: Situations of Collision Warning Alarm

of the driver as well as provide early detection of risk of
accidents. The emphasis has been on using low cost sensors
and developing low complexity algorithms that can be run on
low cost microprocessors. The system uses a low cost IMU in
conjunction with a low cost GPS to determine the maneuvers
performed by the car with the help of machine learning and a
state machine. LIDAR sensors are used to detect motion of the
surrounding traffic and a camera to detect the eye movement
of the driver. The communication protocol is also proposed
which ensures seamless flow of messages between related
nodes. Using the information of the surrounding traffic and
the maneuvers performed, the driving behavior of the driver is
determined, and by using the surrounding traffic information
and driver’s eye tracking, risk of collision is determined.

The system is tested on a real test vehicle. Maneuver
detection accuracy is 100% proving robustness to false alarms.
Surrounding traffic information has been shown to benefit
both driver behavior modeling and accident risk detection.
Eye tracking helps to reduce the prediction time of the
system and benefit in timely intervention of potential accident
situations. All the algorithms ran successfully on low cost
microcontrollers thus completing the objectives of the study.

REFERENCES

[1] NHTSA Press Release. Traffic fatalities fall in 2014, but early estimates
show 2015 trending higher, November 24, 2015.

[2] Jeffrey S Hickman and E Scott Geller. Self-management to increase
safe driving among short-haul truck drivers. Journal of Organizational
Behavior Management, 23(4):1–20, 2005.

[3] How-am-i-driving bumper stickers and online driver
safety training. Available at dmvreportcard.com/
How-Am-I-Driving-Safety-Bumper-Stickers.html.

[4] Derick Johnson, Mohan M Trivedi, et al. Driving style recognition using
a smartphone as a sensor platform. In Intelligent Transportation Systems
(ITSC), 2011 14th International IEEE Conference on, pages 1609–1615.
IEEE, 2011.

[5] Ravi Kumar Satzoda, Sebastien Martin, Minh Van Ly, Pujitha Gunaratne,
and Mohan Manubhai Trivedi. Towards automated drive analysis: A
multimodal synergistic approach. In Intelligent Transportation Systems-
(ITSC), 2013 16th International IEEE Conference on, pages 1912–1916.
IEEE, 2013.

[6] Asher Bender, Gabriel Agamennoni, James R Ward, Stewart Worrall,
and Eduardo M Nebot. An unsupervised approach for inferring driver
behavior from naturalistic driving data.

18

[7] Jiang Liu, Baigen Cai, Jian Wang, and Wei ShangGuan. Gnss/ins-based
vehicle lane-change estimation using imm and lane-level road map. In
Intelligent Transportation Systems-(ITSC), 2013 16th International IEEE
Conference on, pages 148–153. IEEE, 2013.

[8] Rafael Toledo-Moreo, Miguel Zamora-Izquierdo, Antonio F Gómez-
Skarmeta, et al. Multiple model based lane change prediction for road
vehicles with low cost gps/imu. In Intelligent Transportation Systems
Conference, 2007. ITSC 2007. IEEE, pages 473–478. IEEE, 2007.

[9] Haluk Eren, Semiha Makinist, Erhan Akin, and Alper Yilmaz. Estimat-
ing driving behavior by a smartphone. In Intelligent Vehicles Symposium
(IV), 2012 IEEE, pages 234–239. IEEE, 2012.

[10] Johannes Paefgen, Flavius Kehr, Yudan Zhai, and Florian Michahelles.
Driving behavior analysis with smartphones: insights from a controlled
field study. In Proceedings of the 11th International Conference on
mobile and ubiquitous multimedia, page 36. ACM, 2012.

[11] Vygandas Vaitkus, Paulius Lengvenis, and Gediminas Zylius. Driving
style classification using long-term accelerometer information. In
Methods and Models in Automation and Robotics (MMAR), 2014 19th
International Conference On, pages 641–644. IEEE, 2014.

[12] Luis M Bergasa, Daniel Almerı́a, Jon Almazan, J Javier Yebes, and
Roberto Arroyo. Drivesafe: An app for alerting inattentive drivers
and scoring driving behaviors. In Intelligent Vehicles Symposium
Proceedings, 2014 IEEE, pages 240–245. IEEE, 2014.

[13] Minh Van Ly, Sebastien Martin, and Mohan Manubhai Trivedi. Driver
classification and driving style recognition using inertial sensors. In
Intelligent Vehicles Symposium (IV), 2013 IEEE, pages 1040–1045.
IEEE, 2013.

[14] Dejan Mitrović. Reliable method for driving events recognition. In-
telligent Transportation Systems, IEEE Transactions on, 6(2):198–205,
2005.

[15] Jérôme Maye, Rudolph Triebel, Luciano Spinello, and Roland Siegwart.
Bayesian on-line learning of driving behaviors. In Robotics and
Automation (ICRA), 2011 IEEE International Conference on, pages
4341–4346. IEEE, 2011.

[16] Claire D Agostino, Alexandre Saidi, Gilles Scouarnec, and Liming Chen.
Learning-based driving events recognition and its application to digital
roads.

[17] Pranaw Kumar, Mathias Perrollaz, Stéphanie Lefevre, and Christian
Laugier. Learning-based approach for online lane change intention
prediction. In Intelligent Vehicles Symposium (IV), 2013 IEEE, pages
797–802. IEEE, 2013.

[18] Dominik Dorr, David Grabengiesser, and Frank Gauterin. Online driving
style recognition using fuzzy logic. In Intelligent Transportation Systems
(ITSC), 2014 IEEE 17th International Conference on, pages 1021–1026.
IEEE, 2014.

[19] Takashi Bando, Kana Takenaka, Shogo Nagasaka, and Takafumi
Taniguchi. Generating contextual description from driving behavioral
data. In Intelligent Vehicles Symposium Proceedings, 2014 IEEE, pages
183–189. IEEE, 2014.

[20] Anup Doshi, Brendan Morris, and Mohan Trivedi. On-road prediction
of driver’s intent with multimodal sensory cues. IEEE Pervasive
Computing, (3):22–34, 2011.

[21] Massimo Canale and Stefano Malan. Analysis and classification of hu-
man driving behaviour in an urban environment*. Cognition, Technology
& Work, 4(3):197–206, 2002.

[22] Hiren M Mandalia and Mandalia Dario D Salvucci. Using support
vector machines for lane-change detection. In Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, volume 49, pages
1965–1969. SAGE Publications, 2005.

[23] Ryota Terada, Hiroyuki Okuda, Tatsuya Suzuki, Kazuyoshi Isaji, and
Naohiko Tsuru. Multi-scale driving behavior modeling using hierarchi-
cal pwarx model. In Intelligent Transportation Systems (ITSC), 2010
13th International IEEE Conference on, pages 1638–1644. IEEE, 2010.

[24] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In
Robotics-DL tentative, pages 586–606. International Society for Optics
and Photonics, 1992.

[25] Robert Kastner, Tobias Kühnl, Jannik Fritsch, and Christian Goerick.
Detection and motion estimation of moving objects based on 3d-
warping. In Intelligent Vehicles Symposium (IV), 2011 IEEE, pages
48–53. IEEE, 2011.

[26] Chieh-Chih Wang, Charles Thorpe, and Arne Suppe. Ladar-based
detection and tracking of moving objects from a ground vehicle at high
speeds. In Intelligent Vehicles Symposium, 2003. Proceedings. IEEE,
pages 416–421. IEEE, 2003.

[27] Roman Katz, Juan Nieto, and Eduardo Nebot. Probabilistic scheme
for laser based motion detection. In 2008 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 161–166. IEEE,
2008.

[28] Dave Ferguson, Michael Darms, Chris Urmson, and Sascha Kolski.
Detection, prediction, and avoidance of dynamic obstacles in urban
environments. In Intelligent Vehicles Symposium, 2008 IEEE, pages
1149–1154. IEEE, 2008.

[29] Anna Petrovskaya and Sebastian Thrun. Model based vehicle detection
and tracking for autonomous urban driving. Autonomous Robots, 26(2-
3):123–139, 2009.

[30] Christoph Mertz, Luis E Navarro-Serment, Robert MacLachlan, Paul
Rybski, Aaron Steinfeld, Arne Suppe, Christopher Urmson, Nicolas
Vandapel, Martial Hebert, Chuck Thorpe, et al. Moving object detection
with laser scanners. Journal of Field Robotics, 30(1):17–43, 2013.

[31] Michael Bosse and Robert Zlot. Map matching and data association for
large-scale two-dimensional laser scan-based slam. The International
Journal of Robotics Research, 27(6):667–691, 2008.

[32] Takashi Ogawa, Hiroshi Sakai, Yasuhiro Suzuki, Kiyokazu Takagi, and
Katsuhiro Morikawa. Pedestrian detection and tracking using in-vehicle
lidar for automotive application. In Intelligent Vehicles Symposium (IV),
2011 IEEE, pages 734–739. IEEE, 2011.

[33] Kimberly Tuck. Tilt sensing using linear accelerometers. Freescale
Semiconductor Application Note AN3107, 2007.

[34] T Talat Ozyagcilar. Implementing a tilt-compensated ecompass using
accelerometer and magnetometer sensors, freescale semiconductor ap-
plication note,(2012), n. AN4248, rev, 3.

[35] Fawzi Nashashibi and Alexandre Bargeton. Laser-based vehicles
tracking and classification using occlusion reasoning and confidence
estimation. In Intelligent Vehicles Symposium, 2008 IEEE, pages 847–
852. IEEE, 2008.

[36] Fabian Timm and Erhardt Barth. Accurate eye centre localisation by
means of gradients. VISAPP, 11:125–130, 2011.

[37] Paul Viola and Michael Jones. Rapid object detection using a boosted
cascade of simple features. In Computer Vision and Pattern Recognition,
2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference on, volume 1, pages I–511. IEEE, 2001.

[38] Jonas Jansson. Collision avoidance theory: With application to automo-
tive collision mitigation. 2005.

[39] Ethem Alpaydin. Introduction to machine learning. MIT press, 2014.

Hamad Ahmed completed B.Sc. in Electrical En-
gineering from University of Engineering and Tech-
nology, Lahore in 2015 with majors in Telecom-
munication and Electronics Engineering. Currently,
he is working as a research assistant in the Sig-
nal Processing & Navigation Algorithms Group at
the Department of Electrical Engineering, Lahore
University of Management Sciences on the devel-
opment of low cost alternatives to GPS for vehicle
localization. His research interests lie in the areas
of Statistical Signal Processing, Optimal Estimation

Theory, Wireless Sensor Networks and Machine Learning.

PLACE
PHOTO
HERE

Muhammad Tahir Biography text here.

