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ABSTRACT

In this paper we propose an early termination algorithm for
speeding up the detection phase of the Adaboost based de-
tectors. In the basic algorithm, at a specific search location,
the AdaBoost ensemble response is computed as monotonic
decreasing function of weak learners. As more weak learn-
ers are evaluated, the response either decreases or remains the
same. As soon as the current response becomes lower than
the AdaBoost global threshold, remaining computations may
be skipped without any loss of accuracy. We further extend
the basic algorithm by integrating it with the Non Maxima
Suppression (NMS) process. Any candidate location may be
discarded, as soon as its current response becomes lower than
another candidate location, within the same non-maxima sup-
pression window.

In our experiments, our proposed algorithm has been
found to be an order of magnitude faster than the traditionally
used AdaBoost detector, for the application of edge-corner
detection. Speedup comparisons are also done with other
three well known edge corner detectors. The early terminated
AdaBoost detector has been found to be significantly faster
than all three of these detectors.

Index Terms— Early Termination Algorithms, Ad-
aBoost, Object Detection, Edge-Corner Detection

1. INTRODUCTION

After the seminal work of Viola and Jones on real time
face detection using AdaBoost algorithm [1], [2], the face
detection problem has been well explored by many other
researchers as well [3], [4], [5], [6], [7]. In all of these
techniques, fast speedup have been obtained by exploiting the
fixed pattern of a human face. For example, the most exten-
sively used principle is: if there are no eyes, there is no face.
Unfortunately, such rules cannot be made for objects which
do not possess a fixed orientation or a fixed pattern. The early
termination algorithm proposed in this paper is generic and
applicable to the detection of any type of objects.

In the basic algorithm, each candidate location is ini-
tialized with the total weight of the trained ensemble. If a
weak learner classifies the current location as a non-object,
the weight of that learner is subtracted from the current total
weight. As more learners are processed, the weight of the

candidate location monotonically decreases, and as soon as
the current weight becomes less than the AdaBoost global
threshold, that location can never become a positive instance,
therefore further calculations may be skipped and the location
may be discarded.

In order to suppress multiple responses to the same object,
only local maxima in each locality has to be retained, while
the local non-maxima candidates have to be suppressed to
zero, a process known as Non-Maxima-Suppression (NMS).
We reduce the computations at local-non-maxima candidate
locations by developing the Early Non-Maxima Suppression
(ENMS) algorithm. In ENMS algorithm, we partially com-
pute the AdaBoost detector response at all candidate loca-
tions. In each local NMS window, we choose the candidate
location with the best partial result, and compute the final de-
tector response at that location. If this final response is larger
than the AdaBoost classification threshold, then for the re-
maining candidate locations in that NMS window, the early
termination threshold is raised to the final value of the local
maxima. That is, in a specific NMS window, a candidate lo-
cation will be discarded as soon as the detector response falls
below the local maxima or below the AdaBoost classifica-
tion threshold, which ever is larger. The ENMS algorithm is
helpful in reducing the redundant computations done at local
non-maxima candidate locations.

The proposed early termination algorithm is incorporated
within our previous implementation of the AdaBoost based
edge-corner detector [8]. The quality of the detected edge-
corners has remained exactly the same, while the speedup
over the original algorithm is more than an order of magni-
tude. We have also compared the quality and speedup of the
edge-corners detected by the Adaboost detector with three
other detectors including KLT detector, Harris detector [9]
and Xaio’s detector [10]. We find that the edge-corners de-
tected by AdaBoost detector are of comparable quality as
the KLT, Harris and Xaio detectors while the execution time
speedup is 2.72 times over KLT, 10.52 times over Harris and
44.88 times over Xaio’s detector.

2. RELATED WORK

The details of the AdaBoost algorithm may be found in any
text on machine learning and the details of edge-corner de-
tection using AdaBoost algorithm may be found in our earlier
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The Selection Numbers

Fig. 1. The weights of weak learners are not always in de-
creasing order with respect to the selection number. There-
fore, after training phase, the ensemble should be sorted in
decreasing order of weights.

work [8]. For completeness, the detection phase of AdaBoost
algorithm is briefly described as used in [2].

Suppose the trained ensemble of weak learners consists
of m learners, {f1, f2, f3, ...fm}, ordered in the descending
order of weights: {α1 ≥ α2 ≥ α3 ≥ ... ≥ αm} (Figure
1). At a specific candidate location rio,jo , where (io, jo) are
the coordinates of first pixel of the search window, AdaBoost
detector response is given by:

Λ(rio,jo) =
m∑

k=1

αklk(riojo), (1)

where lk(rio,jo) is the label of rio,jo as predicted by the
learner fk. lk(rio,jo) may have only two values:

lk(rio,jo) =

{
1 if prediction is Object,
0 otherwise.

(2)

After evaluating Λ(rio,jo) in the whole search space, the la-
beling process starts: the search locations where Λ(rio,jo)
is larger than the AdaBoost global threshold Gt, are labeled
as objects, while the remaining locations are labeled as non-
objects.

Lm(rio,jo) =

{
1 if Λ(rio,jo) ≥ Gt,

0 otherwise,
(3)

where Lm(·) is the final label of a search location. The Ad-
aBoost global threshold Gt, is defined as:

Gt = Tα

m∑

k=1

αk, (4)

where 1.0 ≥ Tα ≥ 0.0.
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Fig. 2. Monotonic decreasing ensemble response at a non-
object location. As more and more weak learners are evalu-
ated, the response decreases accordingly. Once the response
is below the AdaBoost global threshold, it can never move up.

Once labeling process is complete, the Non Maxima Sup-
pression (NMS) process has been followed to suppress multi-
ple responses to the same object.

3. ADABOOST GLOBAL THRESHOLD BASED
EARLY TERMINATION ALGORITHM

In our proposed algorithm, the current candidate search lo-
cation is initially assigned the maximum possible AdaBoost
detector response, wm:

wm =
m∑

k=1

αk, (5)

then starting with the weak learner f1, with maximum weight
α1, in the trained ensemble, we keep on evaluating learners
in the order of decreasing weights: {α1 ≥ α2 ≥ α3 ≥ ... ≥
αm}. If a learner predicts the current search location as ob-
ject, we take no action; however if the predicted label is 0, we
subtract the weight of that learner from the current value of
response. Therefore, the detector response, after processing
i < m learners is given by:

Λi(rio,jo) = wm −
i∑

k=1

αk(1− Lk(rio,jo)), (6)

In this form, the AdaBoost detector response has become
monotonic decreasing function over the number of processed
learners. After processing each learner, either the response
remains same or decreases (Figure 2). As soon as the cur-
rent response, Λi(rio,jo), falls below the global threshold Gt,
computation of the remaining learners becomes redundant
and may be skipped without any loss of accuracy.



              

           

                                                            

Fig. 3. Image dataset consisting of still images of varying
details, is used for detection speedup comparison. The size of
each image is 2304×3072 pixels.

Since most of the ensemble weight is generally concen-
trated in the first few learners, for non-object locations the
detector response rapidly decreases to less than global thresh-
old. Therefore the average number of learners to be evaluated
at any location reduces to a very small number, rendering the
detection speed significantly faster, without any loss of accu-
racy.

4. EARLY NON-MAXIMA SUPPRESSION
ALGORITHM

Non Maxima Suppression (NMS) process has been com-
monly used to suppress multiple detections corresponding
to the same real world object. Assuming that the detector
response surface is smooth and considering an NMS-window
of appropriate size around the current search location, the
non-maxima suppression may be described as: if the detector
response at current location is not maximum within the NMS
window, current location will be labeled as non-object, oth-
erwise it will remain labeled as object. That is, the label of
current location rio,jo is given by:

Lm(rio,jo) =

{
0 if Λ(rio,jo) ≤ Λ(ri′o,j′o),
1 otherwise,

(7)

where Λ(rio,jo) is the detector response at the current location
and Λ(ri′o,j′o) is the maximum detector response at any other
location within the same NMS-window.

The early termination algorithm discussed in the last sec-
tion may be integrated with NMS process to further reduce
redundant computations. If in a locality, the local maxima
Λ(ri′o,j′o) is significantly higher than the global threshold, Gt,
then all search locations in that locality having response less
than Λ(ri′o,j′o) are non-object locations. Therefore computa-
tions at the current location will stop as soon as the detector

       

Fig. 4. View Invariance of early terminated AdaBoost detec-
tor: (a)-(b) Two views of LUMS library building (c)-(d) two
views from hotel sequence. Red crosses show the AdaBoost
detections, yellow dots show missing detections and yellow
circles show the detections out side the viewing area.

response falls below the local maxima, Λ(ri′o,j′o).

Lm(rio,jo) =

{
0 if Λi(rio,jo

) ≤ max(Λ(ri′o,j′o),Gt)
1 otherwise,

(8)

where Λi(rio,jo
) is the detector response at current location

for i < m learners.
In order to find local maxima, we compute AdaBoost de-

tector response over all search locations for first p learners
such that the sum of weight of these first p learners, wp, sat-
isfies the following bound:

wp ≥ (1− Tα)
m∑

k=1

αk, (9)

which means that we−wp ≤ Gt, the global threshold. Partial
response over p learners is given by:

Λp(rio,jo) = we −
p∑

k=1

αk(1− Lk(rio,jo)). (10)

Search locations where Λp(riojo) ≤ Gth are labeled as 0,
while the search locations where Λp(riojo) ≥ Gth are still
undecided.

Lm(rio,jo) =

{
0 if Λp(rio,jo) ≤ Gt,

u otherwise,
(11)

where u means label is yet undecided. Upon these undecided
locations, ENMS algorithm is implemented as follows: if par-
tial response at current search location, ri′o,j′o , is larger than
the partial response at all search locations within the current
NMS window, calculate the complete response over m learn-
ers at the current search location:

Λm(ri′o,j′o) = Λp(ri′o,j′o)−
m∑

k=p+1

αk(1− Lk(ri′o,j′o)). (12)

If Λm(ri′o,j′o) ≥ Gt, all remaining search locations in the
current NMS window having partial response less than



Table 1. Execution time (sec) of AdaBoost, Early-terminated
AdaBoost, KLT, Harris, and Xaio edge-corner detectors.

Img ID AdaBoost EAdaBoost KLT Hrs Xaio
1 48.17 1.73 5.86 22.57 34.44
2 48.12 1.46 5.89 22.86 9.82
3 48.76 2.76 5.89 22.91 244.15
4 48.83 3.96 6.02 22.93 300.16
5 48.22 1.34 5.83 22.96 5.366
6 48.19 1.84 6.00 22.93 60.20
7 48.23 1.77 5.81 22.47 54.60
8 48.35 2.27 5.95 22.90 130.24
9 48.03 1.84 5.81 22.87 48.81

10 48.15 2.69 5.91 22.86 86.23
Mean 48.30 2.16 5.90 22.83 97.40

Λm(ri′o,j′o) will be labeled as non-objects:

Lm(rio,jo
) =

{
0 if Λp(rio,jo) ≤ Λm(ri′o,j′o),
u otherwise,

(13)

where u means label is yet undecided. At each of these un-
decided locations, further learners are evaluated until that lo-
cation is labeled as non-object or final response is computed.
In any locality, as soon as a maxima larger than the previous
known maxima is found, the previous best location is labeled
as non-object. When all locations are exhausted, the last un-
decided location in each locality will be labeled as object.

5. EXPERIMENTS AND RESULTS

The speedup generated by the proposed early termination al-
gorithm is compared with the previous AdaBoost implemen-
tation [8] as well as KLT, Harris and Xaio’s detectors. The
speedup comparison is done on a dataset of ten images shown
in Figure 1, each of size 2304×3072 pixels, having varying
levels of details and different types of contents. Therefore the
number of detected edge corners also largely varies across im-
ages. Processing in Xaio and EAdaBoost detectors increases
if the number of detected edge-corners increase, and there-
fore these algorithms take more execution time, while in Ad-
aBoost, Harris and KLT detectors, the processing remains al-
most same regardless the number of detected edge corners.
The thresholds for each algorithm are set such that the num-
ber of detected edge corners remain approximately same for
a specific image. In case of EAdaBoost detector, number
of learners initially evaluated upon all search locations are
(p + 3), where p was computed from the global threshold.
Three extra learners were evaluated so that the number of lo-
cations requiring non-maxima suppression should be as min-
imum as possible.

The speedup comparison is done on HP Pavilion Note-
book PC with Intel Core 2 Duo CPU 2.0 GHz and 2GB RAM.
On the average, the early terminated AdaBoost detector 2.72

times faster than KLT detector, 10.52 times faster than Harris
detector, is 22.36 times faster than the traditional AdaBoost
detector and 44.89 times faster than Xiao’s detector (Table 1).

Invariance comparison of EAdaBoost based detector with
the three other detectors is made in the presence of view
changes, scale changes, blurring noise, additive Gaussian
noise and rotation (Figure 2). The quality of AdaBoost detec-
tor has been found to be comparable with the other detectors.
Note that the quality of AdaBoost detector with and without
early termination has remained exactly same.

6. CONCLUSION

Early termination algorithms to speedup the AdaBoost based
object detection has been proposed. The proposed algorithms
are incorporated within AdaBoost based edge-corner detector
and the speedup obtained over basic implementation is larger
than one order of magnitude. The early terminated AdaBoost
detector is also compared with some other commonly used
detectors and we find that this detector outperforms these de-
tectors by a significant margin.
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