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Abstract

A classical conjecture of El-Zahar states that if H is a graph consisting of r vertex disjoint cycles of
length n1, n2, . . . , nr satisfying n1 + n2 + . . . + nr = n, and G is a graph on n vertices with minimum
degree at least

∑r
i=1⌈ni/2⌉, then G contains H as a subgraph. A proof of this conjecture for graphs

with n ≥ n0 was announced by Abbasi using the Regularity Lemma-Blow-up Lemma method. In this
paper we give a new, “deregularized” proof of the conjecture for large graphs that avoids the use of the
Regularity Lemma, and thus the resulting n0 is much smaller.

1 Introduction

The vertex-set and the edge-set of the graph G is denoted by V (G) and E(G). Kn is the complete graph on n
vertices, Kr+1(t) is the complete (r+1)-partite graph where each class contains t vertices and K2(t) = K(t, t)
is the complete bipartite graph between two vertex classes of size t. Cl (Pl) denotes the cycle (path) on l
vertices. We denote by (A,B,E) a bipartite graph G = (V,E), where V = A + B, and E ⊂ A × B. For a
graph G and a subset U of its vertices, G|U is the restriction of G to U . The set of neighbors of v ∈ V is
N(v). Hence the size of N(v) is |N(v)| = deg(v) = degG(v), the degree of v. The minimum degree is denoted
by δ(G) and the maximum degree by ∆(G) in a graph G. When A,B are subsets of V (G), we denote by
e(A,B) the number of edges of G with one endpoint in A and the other in B and d(A,B) = e(A,B)/|A||B|.
In particular, we write deg(v, U) = e({v}, U) for the number of edges from v to U . For a graph G = (V,E)
on n vertices d(G) = |E|/

(
n
2

)
and G is γ-dense if d(G) ≥ γ. A bipartite graph G = (A,B) is γ-dense if

d(A,B) ≥ γ. If a graph is not γ-dense, then it is γ-sparse. Throughout the paper log denotes the base 2
logarithm.

A classical conjecture of El-Zahar states the following.

Conjecture 1 (El-Zahar conjecture). Let H be a graph consisting of r vertex disjoint cycles of length
n1, n2, . . . , nr satisfying n1+n2+ . . .+nr = n, and G be a graph on n vertices with minimum degree at least∑r

i=1⌈ni/2⌉, then G contains H as a subgraph.
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Note that the graph Kk−1+K(⌈n−k+1
2 ⌉, ⌈n−k+1

2 ⌉) (where the + operation indicates a complete bipartite
graph between the two graphs) has minimum degree (n+k−1)/2 but contains no k vertex disjoint odd length
cycles. Thus, the conjecture is best possible. This beautiful conjecture has generated a lot of attention. El-
Zahar proved the conjecture for r = 2 in [11]. The case that each ni = 3 (i.e. we only have triangles) follows
from a result of Corrádi and Hajnal [9]. Wang [27] verified the conjecture for arbitrary n1 and ni = 3, i ≥ 2.
The case that each ni = 4 (i.e. we only have 4-cycles) is an old conjecture of Erdős and Faudree [13] (see [4],
[17], [20], [24] and [28] for results related to this special case). For the case of triangles and quadrilaterals
see [29]. In general it was proved in [2] and in [3] that δ(G) ≥ 2n/3 implies the desired conclusion; note
that this is a special case of the Bollobás-Eldridge conjecture (see [6]). In [16] Johansson has shown that an
El-Zahar type condition implies path factors.

Finally Abbasi announced a proof of Conjecture 1 for graphs with n ≥ n0 in [1]. The proof used the
Regularity Lemma-Blow-up Lemma method ([26], [19]) and thus the resulting n0 was quite large (a tower
function).

The main purpose of this paper is to give a new, “deregularized” proof of the El-Zahar conjecture for
large graphs that avoids the use of the Regularity Lemma and thus we obtain a much smaller n0 (although
we do not compute the actual n0, it is exponential instead of a tower function). We prove the theorem in
the following more convenient form.

Theorem 1. There exists an n0 such that the following holds. Let H be a graph consisting of r vertex
disjoint cycles of length n1, n2, . . . , nr satisfying n1+n2+ . . .+nr = n ≥ n0, where the number of odd cycles
is denoted by k. If G is a graph on n vertices with

δ(G) ≥ n+ k

2
, (1)

then G contains H as a subgraph.

2 Tools

2.1 Complete bipartite and tripartite subgraphs

In [1] Abbasi used the Regularity Lemma [26], however, here we use a more elementary approach using
only the Kővári-Sós-Turán bound [21]. This is part of a new direction to “deregularize” this type of proofs,
namely to replace the Regularity Lemma with more elementary classical extremal graph theoretic results
such as the Kővári-Sós-Turán bound while maintaining some other elements of the proof (see e.g. [15], [22]).

An easy consequence of the Kovari-Sos-Turan theorem [21] is the following lemma.

Lemma 2. For every η > 0 there is a constant c1 > 0 such that if G is a graph on n vertices with
|E(G)| ≥ ηn2, then G contains a K2(c1

√
log n).

The following lemma follows by a standard argument from a result of Erdős [12].

Lemma 3. For every η > 0 there is a constant c2 > 0 such that if G is a graph on n vertices containing
ηn3 triangles, then G contains a K3(c2

√
log n).

Let us remark that Bollobás, Erdős and Simonovits [7] proved a much stronger result of this kind, but
we will not use it, as Lemma 3 is good enough for our purposes.

In the proof we are going to deal with 3 different types of graphs, the Extremal Case 1, Extremal Case
2 and α-non-extremal graphs, (see the definitions below):

Extremal Case 1 (EC1) with parameter α: There exists an A ⊂ V (G) such that
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� |A| ≥ n−k
2 − αn, and

� d(A) < α.

Extremal Case 2 (EC2) with parameter α: There exists an A ⊂ V (G) such that for B = V (G) \A
we have

�
n
2 ≥ |A| ≥ n

2 − αn, and

� d(A,B) < α.

We say that a graph G is α-extremal, if one of these two cases holds, otherwise it is α-non-extremal. In
the non-extremal case, one of the key tool is the following lemma on embedding cycles into almost balanced
complete tripartite graphs.

Lemma 4 (Embedding into complete tripartite graphs). Let G be a complete tripartite graph with vertex
sets V1, V2, V3, where |Vi| = mi, m1 ≤ m2 ≤ m3 and m1 ≥ 9

10m3. If C1, C2, . . . , Cs is a collection of cycles,
where |Ci| ≥ 4 and

∑s
i=1 |Ci| = m1 +m2 +m3, then C1, C2, . . . , Cs can be embedded into G.

Proof. First we want to map C1, C2, . . . , Cs in such a way that after having mapped them, the size of the
remaining vertex sets V ′

1 ⊂ V1 and V ′
2 ⊂ V2 differs only by at most 1. The balancing is done in the following

way: First we map the cycles between V1 and V2 and also between V1 and V3. Of course we may have to
map 1 point into the third vertex set. Once we have ||V1|′ − |V ′

2 || ≤ 1 we continue the balancing. This time
we map the cycles between V1 and V3 also between V 2 and V3. Because m1 ≥ 9

10m3 it is easy to see that we
get a balancing (||V ′

i | − |V ′
j || ≤ 1), 1 ≤ i, j ≤ 3. Then we are done because in the later mappings we easily

can keep the balance, and if for the last cycle Cs, |Cs| = 3r + 2 then the three remaining sets must have a
size r + 1, r + 1, r. So we can map C3 if |Cs| = 3r + 1 then the sizes are r, r, r + 1 and again we can easily
map Cm. If |Cm| = 3r entirely trivial. □

Finally in the extremal case (section 4.1) we will use the following simple simple facts on the sizes of a
maximum set of vertex disjoint paths in G (see [6]).

Lemma 5. In a graph G on n vertices, we have

ν1(G) ≥ max{δ(G), δ(G)
n

4∆(G)
} and ν2(G) ≥ (δ(G)− 1)

n

6∆(G)

where νi(G) denotes the size of maximum set of vertex disjoint paths of length i in G.

3 The non-extremal case

Throughout this section we assume that we have a graph G satisfying (1) such that Extremal Cases 1 and
2 do not hold for G. We shall assume that n is sufficiently large and use the following main parameters

0 < η ≪ α ≪ 1, (2)

where a ≪ b means that a is sufficiently small compared to b.
Let γ = k/n, then we have δ(G) ≥ (1 + γ)n/2. For technical reasons we work with a slightly weaker

minimum degree condition, we assume that

δ(G) ≥
(
1 + γ

2
− η

)
n. (3)
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In the non-extremal case this slightly smaller value of minimum degree is sufficient.
From Lemma 4 if G is an almost balanced complete tripartite graph then we can embed the cycles into

G. Similarly if our graph G contains a union of ‘big’ complete tripartite graphs which cover almost all
vertices of G then we can almost embed into G the cycles in H. But unfortunately this is not the situation
in general, so we have to come up with a structure which is somewhat close to the tripartite graphs cover.
For that purpose we are going to define the notion of a cover denoted by {T ,M, I} where T is a collection
of complete balanced tripartite graphs, M is a collection of balanced complete bipartite graphs with color
classes of size t = c

√
log n and I is an almost independent vertex set (e(I) < √

ηn2).

3.1 The Optimal Cover

Let {T ,M, I} be a cover, we denote by V (T ) the vertices in the tripartite graphs in T and V (M) denotes
the vertices in the bipartite graphs. We define the weight of the cover as follows:

2(
1
η )2 · |V (T )| · 2

1
η |V (M)| · c

√
logn

Let {T ,M, I} be a cover of maximal weight, T = {T1, T2, . . . , Tp} and M = {M1,M2, . . . ,Mq}. Let
Ti = (V i

1 , V
i
2 , V

i
3 ) and Mi = (U i

1, U
i
2). In the following we remark about some properties of such a maximal

cover.

Claim 6. |V (T )| ≥ α4n.

This follows from Lemma 3 using (3) and the fact that we are not in Extremal Case 1. □

Claim 7. The number of triangles in V (M) ∪ I is at most η2n3.

Indeed, otherwise in V (M) ∪ I, by Lemma 3 we could find some complete balanced tripartite graphs of
size c

√
log n, which results in a cover of larger weight. Note that an easy consequence of Claim 7 is that for

most of the edges e = (x, y) ∈ E(V (M) ∪ I), we have |N(x, V (M) ∪ I) ∩N(y, V (M) ∪ I)| ≤ ηn. □

Next we show that almost all vertices in V (M) ∪ I are densely connected to at most two color classes
of almost all tripartite graphs in T . Indeed, let X ⊂ V (M) ∪ I be set of those vertices that are densely
connected to all three color classes of many tripartite graphs in T . More precisely,

X = {v ∈ V (M) ∪ I ; there are at least ηp Tj ’s in T , such that |N(v, V j
i )| ≥ η|V j

i |, 1 ≤ i ≤ 3}

Claim 8. |X| < ηn

Proof. Assume that |X| ≥ ηn, then clearly there exist at least η2p/2 tripartite graphs Tj such that for each

such Tj there is a set X∗
j ⊂ X, such that |X∗

j | ≥ η2n/2 and for each v ∈ X∗
j we have |N(v, V j

i )| ≥ η|V j
i | for

1 ≤ i ≤ 3. We will show that using vertices of X∗
j we can make some new tripartite graphs. We note that

this type of argument will appear several times later, and at those places we will not go into the details again.
Since |V j

1 | = c
√
logn, where c is a small constant, the number of subsets of V (Tj) of size 3η|V j

1 | are at most

23c
√
logn <

√
n. Hence there are at least ηc

√
log n vertices in X∗

j that have the same neighborhoods in all
three color classes of Tj . Those vertices together with their neighborhoods in Tj make a complete 4-partite
graph, which can be broken into four equal complete balanced tripartite graphs, while the remaining part of
Tj is still a complete balanced tripartite graph. Therefore if we repeat the same process for all such Tj ’s, we
increase the weight of the cover. Note that after this process we make all the tripartite and bipartite graphs

of the same size, in the obvious way, hence all the color classes are still of the same size (ηc
√
logn
3 ) □
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Now we argue that almost all vertices in V (M) ∪ I are densely connected to at most one color class of
almost all bipartite graphs in M.

Claim 9. There are at most ηn vertices x ∈ V (M) ∪ I such that N(x, V (M) ∪ I) contains more than ηn2

edges.

This is any easy consequence of Claim 7, as otherwise there will be more triangles in V (M) ∪ I. Note
that this imply that for at most ηq bipartite graphs in (U j

1 , U
j
2 ) ∈ M, there are more than ηn vertices

x ∈ V (M) ∪ I such that |N(x, U j
i )| ≥ η|U j

i |, (1 ≤ i ≤ 2). □

3.2 The Structure of the Optimal Cover

After the above observations about the optimal cover, let us collect the structural information that we have
about this optimal cover. Denote by τ = |V (T )|/3n, µ = |V (M)|/2n, β = |I|/n and recall that γ = k/n,
where k is the number of odd cycles to be embedded.

From the fact that we are not in Extremal Case 1 we derive our main lemma of the non-extremal case.

Lemma 10. τ ≥ min(γ + β + α2

2 , 1
3 − 2η).

Proof. We may assume that τ < 1/3 − 2η, since otherwise we are done. Assume for contradiction that
τ < γ+β+α2/2, then either µ ≥ η or β ≥ η (or maybe both). We distinguish two cases to prove this lemma
based on the size of the independent set I.

3.2.1 Case 1: There is an independent set (β ≥ α2

2 )

Let I ′ = {x ∈ I : N(x, I) ≥ η3|I| or |N(x, V (M))| ≥ (µ + η)n or |N(x, V (T ))| ≥ (2τ + η)n}. By defi-
nition of I, Claim 9 and Claim 8, we have |I ′| < 2ηn. We show that almost all vertices in I are almost
completely connected to exactly two color classes of almost all tripartite graphs. Indeed, by (3) for every

vertex x ∈ I \ I ′ we have |N(x, V (T ))| ≥
(

3τ+β+γ
2 − η

)
n. Hence by the definition of I ′ and the assump-

tion that τ < γ+β+α2/2 for at least (1−α2)t tripartite graphs Tj ∈ T , we have that |N(x, Tj)| ≥ (2−η)|V j
1 |.

Next we show that almost all vertices in I \ I ′ have the almost the same neighborhood in V (T ). To see
that for a tripartite graph Tj , let I1 = {x ∈ I \I ′ : |N(x, Tj)| ≥ (2−η)|V j

1 | and |N(x, V j
1 )| ≤ η|V j

1 |}. I2 and
I3 are defined similarly. Now assume that two of these sets are large (say |I1| ≥ ηn and |I2| ≥ ηn). But then
by similar argument as above, we can make a complete tripartite graph of size η|V j

1 |, where the vertex sets

are subsets of V j
2 , V

j
3 and I1 respectively. Also, we can make another disjoint complete tripartite graph from

the vertex sets V j
1 , V

j
3 and I2. Note that the remaining part of Tj still has a complete tripartite graph of size

|V j
1 |−2η|V j

1 | and a disjoint complete bipartite graph of size η|V j
1 | (between arbitrary subsets of this size from

V j
1 and V j

2 ). In total the number of vertices in tripartite graphs remains the same but we get an additional
bipartite graph. Therefore, if we have an ηp such Tj ’s then we can get another cover of larger weight. So

we can assume that for almost all x ∈ I \ I ′ we have |N(x, Tj)| ≥ (2− η)|V j
1 | and |N(x, V j

1 )| ≤ η|V j
1 | for at

least (1− α2)t Tj ’s. Hence we have that d(I,
⋃t

j=1 V
j
1 ) < η .

Furthermore we must have that d(
⋃t

j=1 V
j
1 ) < η. Indeed otherwise by Lemma 2 we can make a collection

of bipartite graphs in
⋃t

j=1 V
j
1 (covering ≥ η3n vertices) and the vertices of those bipartite graphs can be

replaced by some vertices of I \ I ′ (as they are just the same as
⋃t

j=1 V
j
1 ). This way again the size of
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tripartite graph cover remains the same but we have a larger bipartite graph cover hence larger weight.

With a very similar but simpler argument one can show that for almost all vertices x ∈ I and almost
all Mj ∈ M we have |N(x, U j

2 )| ≥ (1 − η)|U j
2 | and |N(x, U j

1 )| ≤ η|U j
1 |. Furthermore we can show that

d(
⋃q

j=1 U
j
1 ) < η and d(

⋃q
j=1 U

j
1 ,
⋃p

j=1 V
j
1 ) < η.

But then the set of vertices (I ∪
⋃p

j=1 V
j
1 ∪

⋃q
j=1 U

j
1 ) is almost empty, while using the assumption

τ < γ + β + α2/2, its size is more than ( 1−γ−α
2 )n, hence G is in Extremal Case 1, a contradiction.

3.2.2 Case 2: There is no independent set (β < α2

2 but µ > α2)

First by Claim 8 we have that for almost all vertices x ∈ V (M) we have that |N(x, V (T ))| ≤ (2τ + η)n.
This together with (3) and the assumption that τ < γ + α2 implies that |N(x, V (M))| ≥ (µ− α2)n.

But by Claim 9 it is clear that almost all vertices in V (M) are densely connected to at most one vertex
class of almost all bipartite graphs in M. Therefore by re-arranging we can assume that both U1 =

⋃q
j=1 U

j
1 )

and U2 =
⋃q

j=1 U
j
2 ) are almost empty and (U1, U2) is an almost complete bipartite graph (with density at

least (1− α2)). Note that this also implies that |N(x, V (T ))| ≥ (2τ − α2)n.
Next we show that from almost all tripartite graphs in T at most one class is densely connected to both

U1 and U2. More precisely, for Tj ∈ T let V̂ j
1 = {x ∈ V j

1 : x makes at least ηn2 triangles with E(U1, U2)}.
V̂ j
2 and V̂ j

3 are defined similarly. Let W1 =
⋃p

j=1 V̂
j
1 , again W2 and W3 are similarly defined.

Now assume that two of these sets (say W2 and W3) are at least ηn. But then by Lemma 3 we can make
complete tripartite graphs between in (W2, U1, U2) and (W3, U1, U2) that covers at least η3n vertices. In
these tripartite we just have to make sure that we use the same number of vertices from each V j

2 and V j
3 .

But then discarding some vertices from corresponding V j
1 we get a cover with larger weight, a contra-

diction. Therefore we must have that at least two of the sets (say W1 and W2) are empty. But then by
the above density information, we may assume that (U1, V2), (U2, V1), (U1, V3) and (U2, V3) are all almost
complete bipartite graphs, where Vi =

⋃p
j=1 V

j
1 , (1 ≤ i ≤ 3).

It is easy to see that we must have that d(U1 ∪ V1) < η. Indeed otherwise the graph induced by
(U1 ∪ V1 ∪ U2) will have many triangles and hence tripartite graphs. Taking those tripartite graphs and
replacing the vertices of V1 in those by appropriate vertices of U1, results in a cover of larger weight.

But with the assumption that τ < γ + α2 we have that |U1 ∪ V1| ≥ 1+γ
2 − α and it have very few edges,

hence G is in extremal case 1, a contradiction. This finishes the proof of Lemma 10.

3.3 The embedding algorithm

Given the optimal cover we are ready to describe the embedding procedure. Let us assume first that in
Lemma 10 we have

τ ≥ γ + β + α2/2. (4)

The other case when τ ≥ 1/3− η in Lemma 10 (the case of almost all triangles) is postponed until Section
3.4.

For notational convenience we assume that all color classes in the complete tripartite and bipartite graphs
are of the same size l, where l = O(

√
log n). Furthermore, we will assume in this section that in the cycle

system H, all cycles are of length at most η2l, i.e. all cycles are small compared to the size of the color
classes. We will give the embedding procedure for the case when some cycles are of length more than η2l in
Section 3.5.
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After some preliminary embeddings in T we will embed cycles in such a way that we use up most of M
and I. The set of leftover vertices in M and I will be denoted by V0 and we will call these exceptional
vertices. We will embed cycles into the exceptional vertices as well, but for this purpose we might have to
reembed a small portion of the cycles embedded earlier. We divide the embedding algorithm into phases
according to this outline.

3.3.1 Phase 1: Preparatory embeddings in T

In this phase we will embed some cycles in the complete tripartite graphs in T . We start with some cycle
embeddings that are called exceptional (as opposed to typical); these are the cycles that will help to embed
the exceptional vertices. Given a complete tripartite graphKt

i = (V t,i
1 , V t,i

2 , V t,i
3 ) in T first we choose random

subsets U t,i
j ⊂ V t,i

j , j = 1, 2, 3 of size (η)1/3l.
Let us take the next unembedded cycle Cj in H of length at least 4 ((4) guarantees that there are still

many such cycles). If |Cj | is even, then we embed |Cj |/2 vertices arbitrarily into U t,i
1 and |Cj |/2 vertices

into U t,i
2 (recall that we have complete bipartite graphs between the color classes). If |Cj | is odd, then we

embed (|Cj | − 1)/2 vertices into U t,i
1 , (|Cj | − 1)/2 vertices into U t,i

2 and one vertex into U t,i
3 . For later cycles

we embed them into the pairs (U t,i
2 , U t,i

3 ) and (U t,i
1 , U t,i

3 ) to make sure that we fill up the random subsets in
the color classes in a balanced way. We continue the embedding of these exceptional cycles until most of the
vertices are used up in these random subsets for all the complete tripartite graphs in T .

Next we embed the triangles of H into T such that we embed almost the same number of vertices into
each of the color classes in T . Note that (4) implies that when we are done with Phase 1 we still have many
unembedded cycles of length at least 4.

3.3.2 Phase 2: Handling atypical vertices

At this point first we will handle certain atypical vertices from M∪I. A vertex v ∈ M∪I is called atypical
if one (or more) of the following holds:

1. For a large portion (≥ η-portion) of the complete tripartite graphs Kt
i = (V t,i

1 , V t,i
2 , V t,i

3 ) we have

deg(v, V t,i
j ) ≥ ηl, j = 1, 2, 3. (5)

2. For a large portion (≥ η-portion) of the complete bipartite graphs Kb
i = (V b,i

1 , V b,i
2 ) we have

deg(v, V b,i
j ) ≥ ηl, j = 1, 2. (6)

3. v ∈ I and we have
deg(v, I) ≥ √

η|I|. (7)

Note that the number of atypical vertices is small (≤ ηn), since otherwise we could either increase the size
of T or M by applying Lemma 10.

First we will handle the atypical vertices by embedding cycles into them. First we remove each atypical
vertex v ∈ M from its complete bipartite graph. Then we remove some additional typical vertices to
guarantee that we have the same number of typical vertices left in each complete bipartite graph. These
vertices are added to I. Furthermore, if we removed at least half of the vertices from a complete bipartite
graph then we add all remaining typical vertices to I.

7



Assume first that 1. holds for a v ∈ M ∪ I. Take a complete tripartite graph Kt
i = (V t,i

1 , V t,i
2 , V t,i

3 )
satisfying (5). Note that in this case by the Chernoff bound we may assume

deg(v, U t,i
j ) ≥ η

2
|U t,i

j |, j = 1, 2, 3, (8)

i.e. we have large neighborhoods in the random subsets as well. As suggested earlier we will “free up” the
exceptional cycles embedded into Kt

i and we will reembed them in such a way that we use v. For this purpose
first we reembed arbitrarily one exceptional cycle C in such a way that we use v and all other vertices come
from ∪3

j=1U
t,i
j ((8) guarantees that this is possible). Then we reembed the other exceptional cycles using

Lemma 4. Indeed, we take the embedded vertices (in the earlier embedding) of the exceptional cycles other
than C in ∪3

j=1U
t,i
j , we remove the vertices used in the reembedding of C and we add a few more vertices

arbitrarily from Kt
i to make sure that the number of vertices available is the same as the sum of the lengths

of the exceptional cycles other than C. Then by applying Lemma 4 we can reembed the other exceptional
cycles since the difference in the sizes of the color classes is still small.

Assume next that 2. holds for a v ∈ M∪I. Take a complete bipartite graph Kb
i = (V b,i

1 , V b,i
2 ) satisfying

(6). We embed a cycle C in such a way that we use v and all other vertices are from ∪2
j=1V

b,i
j . If we still

have odd cycles then we select an odd cycle C, and thus we use the same number of vertices from the two
color classes. If we have only even cycles left then from one of the color classes (select always the larger one)
we use one more vertex. Thus at the end we have a discrepancy of size at most one between the sizes of the
color classes so by removing at most one more typical vertex we can make the color classes equal in every
complete bipartite graph.

Finally assume that 3. holds for a v ∈ I (note that these might be vertices added to I from M). Let us
take two typical vertices x and y in N(v, I) (i.e. x and y do not satisfy 1., 2. or 3.; (7) guarantees that this
is possible assuming |I| ≥ √

ηn). Then using the fact that x and y are typical, (3) and 3τ + 2µ+ β = 1 the
pair (x, y) satisfies

deg(x, T ) + deg(y, T ) ≥
(
2

(
3τ + 2µ+ β + γ

2

)
− 2µ− β −√

η

)
n = (3τ + γ −√

η)n. (9)

Thus we can select a complete tripartite graph Kt
i = (V t,i

1 , V t,i
2 , V t,i

3 ) and an exceptional cycle C embedded

into Kt
i such that we can reembed C by extending the path (x, v, y) inside ∪3

j=1U
t,i
j . The reembedding of the

other exceptional cycles embedded into this Kt
i is similar to the case when 1. holds. Thus we may assume

in the rest of the embedding algorithm that all remaining vertices are typical (i.e. they do not satisfy 1., 2.
or 3.). For simplicity we still use the notation M and I. This is the end of Phase 2.

3.3.3 Phase 3: Embedding into M

If µ < η, then we add the vertices in M to I. Thus we may assume µ ≥ η. In this phase we will embed
cycles into most of the vertices of M. First we will embed the odd cycles and if we have no more odd cycles
we move to the even cycles. Just as in Phase 1 first we will embed some exceptional cycles, the rest of the
cycles will be called typical. As above, since all remaining vertices are typical, for every edge e = (x, y) in
the complete bipartite graphs in M we have (9).

Given a complete bipartite graph Kb
i = (V b,i

1 , V b,i
2 ) in M again we choose random subsets U b,i

j ⊂ V b,i
j , j =

1, 2 of size (η)1/3l. We embed the exceptional cycles in the following way. Let us take the next unembedded

cycle Cj in H of length at least 4. If |Cj | is even, then we embed |Cj |/2 vertices arbitrarily into U b,i
1 and

|Cj |/2 vertices into U b,i
2 . If |Cj | is odd, first we select a random free edge (x, y) in (U b,i

1 , U b,i
2 ) and a common

8



free neighbor z of x and y in T . It follows from (9) that z always exists. Furthermore, we may clearly select
a z such that z is good for many edges (≥ η-portion) (x, y) of Kb

i (a fact that will be important later). Then
Cj is embedded in the following way: one vertex is embedded into z, its two neighbors are embedded into x

and y, half of the remaining |Cj |− 3 vertices are embedded arbitrarily into available free vertices in U b,i
1 and

the other half into U b,i
2 (see Figure 1). We continue the embedding of these exceptional cycles until most of

the vertices are used up in these random subsets for all the complete bipartite graphs in M.

A1

Kt B1

A1

Kt B1

Figure 1: Embedding exceptional cycles in Phase 2 (on 5 vertices, where the rectangles indicate complete bipartite graphs)

Next we embed the typical cycles into M. We start with the odd cycles. The embedding is similar to
the exceptional odd cycles except we embed one vertex into each cluster of a complete tripartite graph to
make sure that we fill up the clusters in T in a balanced way. So if |Cj | is odd, first we select a random

free edge (x, y) in a complete bipartite graph Kb
i1

= (V b,i1
1 , V b,i1

2 ) in M, a free neighbor z1 of x in a

cluster (say V t,i2
1 ) and a free neighbor z2 of y in another cluster (say V t,i2

2 ) of a complete tripartite graph

Kt
i2

= (V t,i2
1 , V t,i2

2 , V t,i2
3 ) in T . Again it follows from (9) that z1 and z2 always exist. Furthermore, we may

select z1 and z2 such that they are good for many edges (x, y) of Kb
i1
. Then Cj is embedded in the following

way: 5 vertices of Cj are embedded into x, y, z1, z2 and an arbitrary z3 ∈ V t,i2
3 , half of the remaining |Cj |−5

vertices (if there are any) are embedded arbitrarily into available free vertices in V b,i1
1 and the other half into

V b,i1
2 (see Figure 2). When we run out of odd cycles we continue with the even cycles. For an even cycle

Cj we just embed half of the vertices arbitrarily into available free vertices in V b,i1
1 and the other half into

V b,i1
2 . We continue with the embedding process until most of the vertices are used up in M.

A1

Kt B1

A1

Kt B1

Figure 2: Embedding typical cycles in Phase 2 (on 5 vertices)

To show that we never get stuck, consider a situation when so far we embedded 3 vertices for ki odd cycles
(triangles in Phase 1 or typical cycles in this phase) into the complete tripartite graphs Kt

i , 1 ≤ i ≤ |T |,
where

|T |∑
i=1

ki < (γ − 2
√
η)n

(i.e. we still have many unembedded odd cycles left). We will show that in this case we can embed one more
odd cycle as above. Take a random edge (x, y) as in the above process. We will show that there must exist
a complete tripartite graph Kt

i such that ki ≤ (1− η)l (call this Kt
i not full) and

deg(x,Kt
i ) + deg(y,Kt

i ) ≥ 3l + ki + ηl. (10)

9



Indeed, then we can select z1 and z2 from Kt
i as above since from each cluster in Kt

i we used ki ≤ (1− η)l
vertices so far and thus we can embed one more odd cycle into Kt

i . Assume indirectly that (10) does not
hold for any of the complete tripartite graphs Kt

i that are not full. Then using this and the fact that x and
y are typical we have

deg(x, T ) + deg(y, T ) < (3τ +
√
η)n+

|T |∑
i=1

ki < (3τ + γ −√
η)n,

in contradiction with (9).
Thus either we use up most of M or we may continue with odd cycles until we have at most 2

√
ηn

unembedded odd cycles. If at this point we still have room in M then we continue with even cycles (note
that in this case we have more than necessary even cycles from (4)). Thus either way we may use up all but
η-portion of the vertices in M. This is the end of Phase 3.

3.3.4 Phase 4: Embedding into I

First we will embed cycles into most of I. Since all the remaining vertices in I are typical we have the
following for every v ∈ I using (3), (4) and 3τ + 2µ+ β = 1

deg(v, T ) ≥
(
3τ + 2µ+ β + γ

2
− µ−√

η

)
n =

(
τ +

τ

2
+

γ + β

2
−√

η

)
n ≥

(
τ + γ + β +

α2

4

)
n. (11)

Thus using (2) for many (≥ η-portion) complete tripartite graphs Kt
i = (V t,i

1 , V t,i
2 , V t,i

3 ) we have

deg(v,Kt
i ) ≥ l +

(
γ + β +

α2

5

)
n

|T |
. (12)

This in turn implies that there are many (≥ η/2-portion) complete tripartite graphs Kt
i that are “good”

for many (≥ η/2-portion) v ∈ I (i.e. v and Kt
i satisfy (12)). Let us take one such a complete tripartite

graph Kt
i = (V t,i

1 , V t,i
2 , V t,i

3 ) and the set of the v ∈ I that are good for it.
Let us consider the next unembedded cycle C, where |C| = q, q ≥ 4. We distinguish the following cases

depending on q.
Case 1: q = 4r, for some r ≥ 1.

We select r vertices v1, . . . , vr ∈ I that are good for Kt
i . Furthermore, using (12) we may select vertex

disjoint paths Pi of length 2 centered at vi, where the endpoints are free vertices from two different color
classes of Kt

i . In fact we may assume that the endpoints always come from V t,i
1 and V t,i

2 . Indeed, we may
select 3r vertices and take the most common pair out of the three pairs. Put Ir = {v1, . . . , vr}. In order to
embed C we think of V t,i

1 , Ir, V t,i
2 , V t,i

3 as a cycle of length 4 and we embed C by going around the cycle r

times, where the embedded cycle contains all the Pi’s as subpaths and the vertices from V t,i
3 are arbitrary

free vertices (see Figure 3).
Case 2: q = 4r + 2, for some r ≥ 1.

Here we select r+1 vertices v1, . . . , vr+1 ∈ I that are good for Kt
i . For v1, . . . , vr again we find vertex disjoint

paths Pi of length 2 centered at vi and going to V t,i
1 and V t,i

2 . For vr and vr+1 we find two common free

neighbors u1 and u2 from a common color class (say V t,i
2 ) of Kt

i (again (12) makes this possible). To embed

C we go around the cycle r times as in Case 1, but in the last cycle we “double up” on the (Ir, V t,i
2 ) edge,

so embedding this part of the cycle to the subpath (vr, u1, vr+1, u2) and thus indeed using 4r + 2 vertices.

10



A1

Kt B1

A1

Kt B1

Figure 3: Embedding C in Case 1 for r = 1

Then for the next cycle C ′ with |C ′| = 4r′+2 we double up on the other edge (i.e. (V t,i
1 , V t,i

3 )) to make sure
that we use up the vertices evenly from the color classes in Kt

i (see Figure 4).

A1

Kt B1

A1

Kt B1

A1

Kt B1

A1

Kt B1

Figure 4: Embedding C and C′ in Case 2 for r = 1

Case 3: q = 4r + 1, for some r ≥ 1.
As above we select r vertices v1, . . . , vr ∈ I that are good for Kt

i . For v1, . . . , vr−1 (if r > 1) again we find

vertex disjoint paths Pi of length 2 centered at vi and going to V t,i
1 and V t,i

2 . However, here for vr we find
a path Pr of length 2 (vertex disjoint from all the other paths) centered at vr, where both endpoints come
from V t,i

2 (clearly this can be done from (12)). Then to embed C we go around the cycle r times but in the

last cycle from V t,i
1 instead of returning to Ir we double up in V t,i

2 so we go to V t,i
2 first and then close the

cycle with the subpath Pr and thus indeed using 4r+1 vertices. To eliminate the discrepancy caused by the
doubling in V t,i

2 , in the next such cycle we go around the cycle r − 1 times (for r > 1) and then in the last

cycle we skip Ir and double up in (V t,i
1 , V t,i

3 ) (see Figure 5).

A1

Kt B1

A1

Kt B1

A1

Kt B1

A1

Kt B1

Figure 5: Embedding C and C′ in Case 3 for r = 1

Case 4: q = 4r + 3, for some r ≥ 1.
Similar to Case 3 but in the last cycle we double up in V t,i

2 (as in Case 3) and in (V t,i
1 , V t,i

3 ) at the same
time to result in 4r + 3 vertices and thus finishing all the cases (see Figure 6).

A1

Kt B1

A1

Kt B1

Figure 6: Embedding C in Case 4 for r = 1

To show again that we never get stuck, consider a situation when so far we embedded ti vertices from I
and ki odd cycles (counting triangles in Phase 1, typical odd cycles in Phase 3 and odd cycles in this phase)
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with the help of a complete tripartite graph Kt
i = (V t,i

1 , V t,i
2 , V t,i

3 ). Thus we have

|T |∑
i=1

ki ≤ γn and

|T |∑
i=1

ti ≤ βn,

and we used up ti + ki vertices from each cluster V t,i
j , j = 1, 2, 3. Take the next v ∈ I in the above process.

We will show that there must exist many (≥ η-portion) complete tripartite graphs Kt
i that are not full (so

ti + ki ≤ (1− η)l) and

deg(v,Kt
i ) ≥ l + ti + ki +

α2

10
l. (13)

Indeed, otherwise using the fact that v is typical

deg(v, T ) <

(
τ +

α2

5

)
n+

|T |∑
i=1

ti +

|T |∑
i=1

ki ≤
(
τ + γ + β +

α2

5

)
n,

in contradiction with (11).
Then similarly as above we have many (≥ η/2-portion) complete tripartite graphs Kt

i that are not full
and good for many v ∈ I. Let us consider one such a complete tripartite graph Kt

i , the set of the v ∈ I that
are good for it and the next unembedded cycle C, where |C| = q, q ≥ 4. (13) implies that the above process
goes through since for each cluster in Kt

i we used ti + ki vertices so far, so indeed we can select the paths Pi

as above.
We stop when we have exactly

√
ηn vertices (assume for simplicity that this is an integer) left in I. If I

is smaller than this to begin with then we add arbitrary vertices from T (unfortunately these might not be
typical). Let us denote the set of these few remaining vertices by V0. Thus we may assume that either all
v ∈ V0 are typical (so they do not satisfy 1., 2. or 3. above in Phase 2) or I is small. Furthermore, at the
end of the procedure there are still only minor discrepancies in the sizes of the color classes in the complete
tripartite graphs.

3.3.5 Phase 5: Handling vertices in V0

We have
√
ηn vertices v ∈ V0. For a vertex v ∈ V0 we define Rv to be the set of vertices that may replace v,

i.e. if a cycle is embedded using a vertex x ∈ Rv then we can reembed the cycle using v and freeing up x
and thus x may play indeed the role of v from now on. We will need the following claim.

Claim 11. For every v ∈ V0 we have

|Rv| ≥
1− γ + α2

4

2
n.

For this purpose first we will show that

|Rv ∩ T | ≥ |N(v, T )| − ηn, (14)

and
|Rv ∩M| ≥ |N(v,M)| − ηn. (15)
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In order, to prove (14) consider a complete tripartite graphKt
i = (V t,i

1 , V t,i
2 , V t,i

3 ) such that for some 1 ≤ j ≤ 3
(say j = 1) we have

deg(v, V t,i
j ) ≥ ηl. (16)

Then again

deg(v, U t,i
j ) ≥ η

2
|U t,i

j |.

Consider an arbitrary x ∈ V t,i
2 , we will show that x ∈ Rv. Similarly as in Phase 2 we will reembed the

exceptional cycles so that we will use v and free up x (if it is already used). For this purpose first we
reembed an exceptional cycle assigned to the pair (V t,i

1 , V t,i
2 ) such that we use v (and do not use x) and

all other vertices come from ∪3
j=1U

t,i
j . Now if x is already used in an embedding of a cycle (exceptional, or

cycles used for M and I), then we can clearly replace x with a vertex from U t,i
2 and reembed the cycle using

the fact that U t,i
2 is a random subset of V t,i

2 so if a vertex has many neighbors in V t,i
2 then it also has many

neighbors in U t,i
2 . The remaining exceptional cycles can be reembedded by using Lemma 4 as in Phase 3

such that we do not use x. Thus v plays the role of a vertex from V t,i
2 , x is freed up and may play the role

of v. Similarly, we can show that for any x ∈ V t,i
3 we have x ∈ Rv. Finally by Lemma 4 if we can bring out

any vertex of V t,i
2 to play the role of v, then instead we can bring out any vertex of V t,i

1 ; this should not
make a difference since the overall number of remaining vertices is the same. Thus if we have (16) for v and
a Kt

i , then Kt
i ⊂ Rv and this clearly implies (14).

To prove (15) consider a complete bipartite graph Kb
i = (V b,i

1 , V b,i
2 ) such that for some 1 ≤ j ≤ 2 (say

j = 1) we have

deg(v, V b,i
j ) ≥ ηl. (17)

Then again

deg(v, U b,i
j ) ≥ η

2
|U b,i

j |.

Consider an arbitrary x ∈ V b,i
2 , we will show that for most of these vertices we have x ∈ Rv. Similarly

as above we will reembed the exceptional cycles so that we will use v and free up x. First we reembed an
exceptional cycle C such that we use v and all other vertices (except the bridge vertex z defined in Phase

2) come from ∪2
j=1U

b,i
j . For this purpose we consider a bridge and a non-bridge neighbor of v (these exist)

along with the bridge and extend it to a reembedding of C. Next consider the cycle C ′ whose embedding
is using x. In this embedding of C ′ we replace x with a vertex x′ from U b,i

2 . The only difficulty is when
x is a bridge vertex. Assume thus that x is bridge vertex. Since the bridges were chosen so that z (in the
exceptional case) and z1, z2 (in the typical case, see Phase 3) are good not just for this edge but for many

other edges as well in (V b,i
1 , V b,i

2 ), thus z or z2 has many neighbors in U b,i
2 and we can pick one of them as

x′. The remaining exceptional cycles can easily be reembedded. Thus if we have (17) for v and a Kb
i then

all vertices of V b,i
2 can be put in Rv and this clearly implies (15).

We also have
|N(v, I)| ≤ √

ηn, (18)

since by the above either all v ∈ V0 are typical or I is small (|I| ≤ √
ηn). Then (14), (15) and (18) imply

together that

|Rv| ≥ deg(v)− 2
√
ηn ≥

1 + γ − 4
√
η

2
n.

13



This indeed implies Claim 11 if γ ≥ α2

4 . Assume γ < α2

4 . Consider N(Rv) = ∪x∈Rv
N(x). If

|N(Rv)| ≥
1− γ + α2

2

2
n,

then again we have Claim 11 as above, since any vertex x ∈ Rv may play the role of v. Thus we may assume

1− γ − 4
√
η

2
n ≤ |Rv|, |N(Rv)| ≤

1− γ + α2

2

2
n,

where γ < α2

4 . Then considering A = Rv and B = (Rv \N(Rv)) ∪ (V (G) \ (Rv ∪N(Rv)), we have no edges
between A and B by definiton. This is in contradiction with the fact that we are not in Extremal Case 1 (if
A and B are roughly the same) and we are not in Extremal Case 2 (if A and B are almost disjoint). Note
that the intermediate case gives a contradiction immediately as the neighbors of Rv \N(Rv) can only go to
N(Rv) \Rv. Thus we may assume that Claim 11 is true.

Now we are ready to finish the embedding algorithm. We assign unembedded cycles to the remainder of
Kt

1 = (V t,1
1 , V t,1

2 , V t,1
3 ) until we run out of room, i.e. r > 0 vertices are missing for the next cycle. To make

up for this deficiency we assign r vertices from V0 to Kt
1. Claim 11 and (3) guarantee that we can replace

these r vertices with r vertices that all have large degree to V t,1
1 . By reembedding exceptional cycles we can

use up these added vertices. In the remainder of Kt
1 the assignment is perfect, i.e. the number of remaining

vertices is equal to the sum of the lengths of the remaining assigned cycles, the difference between the sizes
of the color classes is still small, and thus Lemma 4 finishes the embedding.

We continue in this fashion for all the complete tripartite graphs. Finally we assign all remaining vertices
of V0 to the last complete tripartite graph Kt

|T |. Since overall the sum of the cycle lengths is equal to the

total number of vertices, the assignment will be perfect in Kt
|T |. This finishes the embedding algorithm. Note

the new way how we handled the remaining few vertices in V0, essentially they could be placed anywhere,
making a usually difficult task easy. This construction could be interesting on its own.

3.4 The case of almost all triangles

Note that this case might be interesting on its own as it can be viewed as a generalization of the Corrádi-
Hajnal theorem [9]. We have τ ≥ 1/3 − η in Lemma 10 so the cover consists almost entirely of complete
tripartite graphs. If there are not too many odd cycles in the cycle system H, say γ < 1/3 − 4η − α2/2,
then considering the set of vertices that are not covered by the tripartite graphs as our independent set I,
so β ≤ 3η, the other inequality in Lemma 10 is also satisfied, since τ ≥ 1/3 − η ≥ γ + β + α2/2, hence we
can apply the previous embedding procedure. Therefore, we may assume that there are many odd cycles,
γ ≥ 1/3−4η−α2/2, which together with (3) and (2) imply that δ(G) ≥ (2/3−α2)n. Furthermore, it follows
that the H contains at least (1/3−3α2)n triangles. Indeed, otherwise the total number of vertices is at least

3(1/3− 3α2)n+ 5(2α2)n = n+ α2n > n,

a contradiction.
In the optimal cover we have at most 3ηn points outside the complete tripartite graphs T . By greedily

embedding the non-triangles into the complete tripartite graphs (such that we do not embed too many
vertices into each complete tripartite graph and that we keep the balance inside each tripartite graph) we
may assume that we have only triangles left in H and thus the number of vertices outside the complete
tripartite graphs is divisible by three. We will consider only three vertices outside T and extend the cover
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by one or more triangles to include these three vertices, such that the cover remains a balanced one. By
repeating this procedure we eliminate all the vertices outside the complete tripartite graphs and then the
remaining triangles of H can be embedded inside the complete tripartite graphs. Therefore, we consider
only three vertices a, b and c outside T which do not make a triangle.

For i ∈ {1, 2, 3} we say that a vertex v is i-sided to a tripartite graph Kt = (V1, V2, V3) if we have
d(v,Kt) ≥ ((i− 1)/3 + η), i.e. v has a large degree to at least i color classes. Denote by s(v,Kt) the largest
i for which v is i-sided to Kt.

Following a similar approach as in Phase 5 above, if v is two-sided to Kt (say to the pair (V2, V3)) then
we say that the vertices in V1 may replace v, i.e. any of the vertices in V1 can be exchanged with v while
keeping the cover balanced. Similarly, if v is three-sided to Kt then the vertices of all three color classes may
replace v. For a vertex v, define Rv to be the set of vertices that may replace v over all tripartite graphs.
By the minimum degree condition, for any vertex v we have |Rv| ≥ (1/3 − α)n. Furthermore, whenever a
vertex v is exchanged with a vertex of a complete tripartite graph Kt, then we immediately cover it with a
triangle in Kt to maintain the property that we still have a balanced complete tripartite graph. Note also
that if there exists a Kt ∈ T such that a, b and c are two-sided to 3 different pairs of color classes in Kt

(this happens for example if a, b and c are all three-sided to Kt), then we can easily expand the cover by
three triangles such that we eliminate a, b and c and we keep the balance inside Kt (see Figure 7) so we may
assume that this is never the case.

A1

Kt B1

A1

Kt B1

Figure 7: a, b and c are 2-sided to different pairs

If s(v,Ki) ≤ 1 for an α-fraction of the Ki’s in T , then there is at least an α
2 -fraction of the other Kj ’s in

T such that s(v,Kj) = 3. However, then from each such Kj all three color classes are exchangeable with
v, hence |Rv| > (1 + α)n/3. So Rv is small (smaller than (1 + α)n/3) only if v is two-sided to most of the
tripartite graphs. Furthermore, since any vertex in Rv may play the role of v, Rv is small only if every
x ∈ Rv is two-sided to the same pair of clusters in most of the tripartite graphs. This implies that we have
an almost complete bipartite graph between Rv and its complement and this extremal case can be handled
the same way as Extremal Case 1.

Thus we may assume that for any vertex v (in particular for a, b and c) we have |Rv| > (1 + α)n/3.
This implies that for two of the vertices a, b and c (say for a and b) we have |Ra ∩ Rb| ≥ αn/3. In this
case we say that a and b collapse. Indeed, let Ra ∩ Rb = {x1, . . . , xt}, where t ≥ αn/3. Then there is a set
Ra,b ⊂ ∪xiRxi , such that |Ra,b| ≥ (1 + α

2 )n/3 and for all v ∈ Ra,b, we have v ∈ Rxi for at least two vertices
xi. We call this process the expansion process. Then any two vertices of Ra,b may play the role of a and b.

Thus we may assume

|Ra,b|, |Rc| ≥
(
1 +

α

2

) n

3
.

Then the minimum degree condition implies that for any vertex v

deg(v,Ra,b), deg(v,Rc) ≥
α

7
n.

From this it follows using Fact ?? that for any color class V of any complete tripartite graph there exist at
least αn/14 vertices in Ra,b (and in Rc) with at least α|V |/14 neighbors in V , a fact that will be important
later.
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We will show that either a, b and c collapse or we can extend the cover to include a, b and c, as desired.
Thus assume first that a, b and c cannot be collapsed.

Consider a vertex x ∈ Rc and a Kt ∈ T . There is at most one vertex y ∈ Ra,b such that d(x,Kt) +
d(y,Kt) ≥ (4/3+η), because otherwise either a, b and c collapse or we have three vertices that are two-sided
to three different pairs. This and the minimum degree condition imply that for most (≥ (1 − α2)-fraction)
of the tripartite graphs Kt (call these typical) for most (≥ (1−α2)-fraction) of the vertices y ∈ Ra,b we have
the following density condition

(4/3− α2) ≤ d(x,Kt) + d(y,Kt) ≤ (4/3 + η). (19)

Classify these typical complete tripartite graphs Kt in the following way: Kt is type j if s(x,Kt) = j, 1 ≤
j ≤ 3.

Assume first that a type 2 typical Kt exists. Since s(x,Kt) = 2, we have d(x,Kt) <
(
2
3 + η

)
, and thus

from (19) for most vertices y ∈ Ra,b we get d(y,Kt) ≥
(
2
3 − 2α2

)
. This implies that most (≥ (1 − 2α2)-

fraction) vertices y ∈ Ra,b are two-sided to the same pair of clusters (say (V1, V2)) in Kt and this pair is
different from the pair of clusters to which x is two-sided, say (V1, V3). But then by the above remark we
have many (≥ αn/15) vertices y ∈ Ra,b which have many neighbors in V3 as well, and thus these vertices
are three-sided to Kt, and thus we can extend the cover by three triangles, as desired.

Thus we may assume that we have no type 2 Kt, i.e. all typical complete tripartite graphs are of type
1 or 3. Consider a type 3 Kt ∈ T . We can have at most one vertex y ∈ Ra,b that is at least two-sided to
Kt, since otherwise again a, b and c collapse or we have three vertices to three different pairs. This and (19)
imply that x is almost complete to Kt and most vertices y ∈ Ra,b are almost complete to one color class
in Kt. Similarly, this is true symmetrically for a type 1 Kt, x is almost complete to one color class of Kt

and most vertices y ∈ Ra,b are almost complete to Kt. In particular, this implies that the number of type
1 Kt’s is roughly the same as the number of type 3 Kt’s. Furthermore, this implies that all other vertices
x′ ∈ Rc are almost complete to one color class of a type 1 Kt (otherwise we are done again) and almost
complete to a type 3 Kt. Hence the union of type 1 Kt’s is Ra,b, the union of type 3 Kt’s is Rc, Ra,b and Rc

are almost complete and roughly they have the same size. Then consider an arbitrary x ∈ Rc and an edge
(y1, y2) within the set N(x,Ra,b) (this must exist as Ra,b is almost complete and any x ∈ Rc is connected
to about one third of Ra,b), this forms a triangle (y1, y2, x) replacing a, b and c and this extends our triangle
cover, as desired.

Finally, let us assume that a, b and c collapse, i.e. Rc and Rab are not disjoint.
As above, using the expansion process we may assume |Ra,b,c| > (1 + α

2 )n/3. We will show that actually
|Ra,b,c| ≥ (1−α)2n/3. Indeed, otherwise there is an α-fraction of tripartite graphs, T ′ ⊂ T , where only one
color class (say V3) is part of Ra,b,c. Then most of the vertices in Ra,b,c must be two-sided to (V1, V2) in most
of the tripartite graphs in T ′ (since otherwise we would get three vertices that are three-sided to the same
Kt). But then again by the above remark we have many vertices y ∈ Ra,b,c which have many neighbors in V3

as well, and thus these vertices are three-sided to Kt, and thus we can extend the cover by three triangles,
as desired. Now if |Ra,b,c| ≥ (1 − α)2n/3, then for any vertex x ∈ Ra,b,c, |N(x) ∩ Ra,b,c)| ≥ (1 − α)n/3.
By non-extremality there are edges inside N(x) ∩Ra,b,c which form triangles with x. We are done since we
found a triangle in Ra,b,c and those three vertices can replace a, b and c. This finishes the proof of the case
of almost all triangles.

3.5 Embedding Long Cycles

In this case we have some cycles longer than η2l = c
√
log n. It is not hard to see that all the arguments in

the previous section in the non-extremal case work even when the minimum degree is slightly less, i.e if we
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have δ(G) ≥ ( 1+γ
2 − η)n.

We use the following standard lemma for randomly splitting a graph into two subgraphs such that the
relative minimum degree and non-extremality in the two subgraphs is roughly the same as in the original
graph.

Lemma 12. For any 0 < ε < 1, there exists an n0, such that if H is an α-non-extremal graph on n ≥ n0

vertices with δ(H) ≥ λn then for any random subset A of V (H), with εn ≤ |A| ≤ (1−ε)n, (let B = V (G)\A)

we have with high probability that δ(H|A) ≥ (λ− n− 1
3 )|A| , δ(H|B) ≥ (λ− n− 1

3 )|B| and both H|A and H|B
are (α− n− 1

3 )-non-extremal.

The first half of the statement on the minimum degrees can be found in [3] (Lemma 2.3). The second
half of the statement on the non-extremality can also be proved by a standard argument. Indeed, being
extremal is equivalent to the fact that for most pairs of vertices x, y the size of the common neighborhood
N(x) ∩ N(y) is either around n/2 or 0. Thus if the graph H is non-extremal then we have many pairs for
which this is not true. However, this fact in inherited by the random subgraphs H|A and H|B .

Furthermore we will make use of the following simple fact.

Fact 13 ([10]). Every 2-connected graph H on n vertices has a cycle of length min{n, 2δ(H)}.

Using the fact that our graph G is α-non-extremal we prove the following extensions of Dirac’s theorem
[10] on Hamiltonian graphs and Bondy’s theorem [8] on pancyclic graphs. Both of these are folklore, but for
the sake of completeness we sketch the proofs.

Lemma 14. For every α > 0 there exist constants η, n0 > 0 such that if H is an α-non-extremal graph on
n ≥ n0 vertices with δ(H) ≥ (1/2− η)n, then H is Hamiltonian.

Proof. Using Fact 13 (note that H is clearly 2-connected as it is not in Extremal Case 2) we get a cy-
cle C = u1, . . . , uq; q ≥ (1 − 2η)n. If q < n, we will insert the vertices outside C to extend the cy-
cle. Let a be an outside vertex. If a is connected to ui, ui+1, then we can insert a between ui and
ui+1 to extend C. If not, then by the minimum degree condition, a must be connected to many pairs
ui−1, ui+1. Let Ra = {ui ∈ C : ui−1, ui+1 ∈ N(a)}. Then we have |Ra| ≥ (1/2 − 4η)n. Since G
is not α-extremal, d(Ra) ≥ α. Consider an edge (uj , uk) inside Ra. By definition a is connected to
uj−1, uj+1, uk−1, uk+1. Since there are many such edges we may assume k > j + 5. Then the following
cycle extends C: uj+1, uj+2 . . . , uk−1, uk, uj , uj−1, uj−2, . . . , uk+1, a, uj+1 (see Figure 8). □

A1

Kt B1

A1

Kt B1

Figure 8: The dashed-cycle extends C to include a

We now prove the following stronger statement.

Lemma 15. For every α > 0 there exist constants η, n0 > 0 such that if H is an α-non-extremal graph on
n ≥ n0 vertices with δ(H) ≥ (1/2−η)n, then H is pancyclic, i.e. H has a cycle of length q for all 3 ≤ q ≤ n.
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Proof. For q ≥ εn (0 < ε < η), we randomly choose a subset A ⊂ V (H), |A| = q. By Lemma 12, H|A
satisfies the conditions of Lemma 14, hence we are done. For q < εn, we choose a path, P = v2, . . . , vq−1 on
(q−2) vertices (such a path obviously exits, as H is Hamiltonian). N(v2) and N(vq−1) in V (H)\V (P ) both
have size at least (1/2 − 2η)n. Hence by α-non-extremality there are edges between N(v2) and N(vq−1).
Take one such edge (v1, vq) and v1, v2, . . . , vq−1, vq is a cycle on q vertices. □

Now we prove our main theorem when the cycle system has longer cycles, i.e. at least one cycle is longer
than η2l = c

√
log n = m. We denote by H the given cycle system and by Hs the set of smaller cycles in H

(cycles of length at most m) and let Hl = H \Hs. Let M be the total number of vertices in cycles in Hs.
We consider the following cases depending on M .

Case 1: 0 < M < ηn.
In this case we embed the cycles in Hs one by one using Lemma 15. The remaining graph still has minimum
degree at least ( 1+γ

2 − 2η)(n−M). To embed Hl in the remaining subgraph we get Case 4.
Case 2: ηn ≤ M ≤ (1− η)n.

In this case we randomly partition V (G) into A and B, |A| = M . By Lemma 12 we have δ(G|A) ≥
( 1+γ

2 − n− 1
3 )|A| and δ(G|B) ≥ ( 1+γ

2 − n− 1
3 )|B| and both G|A and G|B are (α − n− 1

3 )-non-extremal. We
embed the cycles in Hs in G|A applying the procedure in the previous section and for embedding Hl in G|B
we get Case 4.

Case 3: M > (1− η)n.
Similarly as in Case 1, we embed the cycles in Hl one by one using Lemma 15. The remaining graph still has
minimum degree at least (1+γ

2 − 2η)M and is (α/2)-non-extremal, so we use the procedure in the previous
section to embed the cycles in Hs in the remaining subgraph as now all cycles are small.

Case 4: M = 0, i.e. all cycles are of length at least m.
So we have a graph G on n vertices that is α-non-extremal, we have δ(G) ≥ (1/2 − η)n and let H be the
given cycle system. Let the cycles be C1, C2, . . . , Cr with length n1 ≥ n2 ≥ . . . ≥ nr, where ni ≥ m for all
1 ≤ i ≤ r. We follow a similar approach as in [3] (Section 5). We consider two cases based on the value of
n1.

Case 4.1: n1 ≥ (1− η)n.
We embed all cycles Ci for i > 1 one by one using Lemma 15. It is easy to see that the remaining graph
satisfies the conditions of Lemma 14, hence there is a Hamiltonian cycle C1 in it.

Case 4.2: ni < (1− η)n for 1 ≤ i ≤ r.
We distribute the cycles into two sets H1 and H2, such that if nA and nB denote the total number of vertices
in cycles in H1 and H2, then we have nA, nB ≤ (1− η)n. We randomly partition V (G) into two sets A and
B such that |A| = nA and |B| = nB . We will embed the cycles in H1 and H2 into G|A and G|B , respectively.

We recursively apply the above splitting procedure until the condition of Case 4.1 is satisfied in all the
parts. We will show that the minimum degree and non-extremality conditions hold until the end of this
process, hence the required cycles can be found in each part as in Case 4.1. Define the normalized degree of

a graph F as D(F ) = δ(F )
|V (F )| . Initially we have D(G) ≥ (1/2− η), therefore by Lemma 12 we have

D(GA) ≥ D(G)− n− 1
3 and D(GB) ≥ D(G)− n− 1

3 .

Since the splitting process terminates with each part of size at least m and each time the number of vertices
is reduced by at least an η-factor, for each final subgraph Gf we get

D(Gf ) ≥ D(G)−m− 1
3

∞∑
i=0

(1− η)i/3 ≥ 1

2
− 2η,
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using the fact that n (and thus m) is sufficiently large. A similar computation shows that each final Gf is
α/2-non-extremal, hence the conditions of Lemma 15 are satisfied so we can apply the procedure of Case 4.1
in each part, finishing the proof in this case.

Let us assume that G = (V (G), E(G)), |V (G) = n|, |E(G)| ≥ 1
4n

2 and G is not α extremal. Notice that
if G is not α extremal, the there are at least αn2 {x, y} pairs, x, y ∈ V (G) such that |N(x)∩N(y)| > αn and
|N(x)∩N(y)− 1

2n| > αn. We call these pairs good pairs. Now we are going to apply the same partiontioning
algorithm. What we have to maintain is the proper number of good pairs. The size of the intersection of the
neiborhoods of good pairs can be controlled the same way as the degree of vertices was controlled. So the
real thing is to control the proper number of good pairs. But that is not difficult either. Form a graph where
the edges are good pairs. We think this graph as a union of ”big” matching. If we partition a graph G with
vertex set A so that we choose a point of A with probability α, where say α > |A|−1/4, then if the size of the
matching is bigger than say |A|7/8, in the matching the right number of edges will be A′ and compliment of
A′, where |A′| = α|A| and |A′| = (1 − α)|A|. (α > |A|−1/4 unless among the cycles which we want to map
in A the largest cycle is > |A| − |A|3/4. But then we use Lemma 19 to embed the cycles.) Here we use that
the matching edges are independent. That is why we consider a graph as a union of matchings.

Take one of the matchings, if we randomly partition the vertices of the graph into almost equal part,
then with exponentially high probabilities that the number of edges of the chosen matching will be 1

4m±m
3
4

where m is the size of the matching. Continuing this way, we can then maintain the proper number of pairs
until the very end of the procedure.

4 The Extremal Cases

In the extremal cases we will repeatedly use the following simple fact.

Fact 16. If G(A,B) is a bipartite graph, with

� deg(a,B) ≥ (1− η)|B| for all a ∈ A,

� deg(b, A) ≥ (1− η)|A| for all b ∈ B,

� B has a matching M of size k and |B| = |A|+ k,

then if H is a set of cycles, such that the sum of the lengths of the cycles is |A|+ |B| and the number of odd
cycles is k, then H can be embedded into G.

The basic idea is to use one edge of M for each odd cycle and all other edges of the cycles will be found

in the almost complete bipartite graph between A and B. We will assign ⌈ |C|
2 ⌉ vertices of B to each cycle

C in H. To the next cycle Ci ∈ H with |Ci| = 2s, we assign s unassigned vertices x1
i , x

2
i , . . . , x

s
i in B

that are disjoint from M . For Ci with |Ci| = 2s + 1, we assign s − 1 unassigned vertices x1
i , x

2
i , . . . , x

s−1
i

disjoint from M and an unassigned edge ei = (y1i , y
2
i ) from M . Next we will define an auxiliary bipartite

graph G′(A,B′) in the following way: B′ has a vertex corresponding to successive pairs of vertices assigned
to Ci, i.e. (x1

i , x
2
i ), (x

2
i , x

3
i ), . . . , (x

s
i , x

1
i ) if |Ci| = 2s. For each odd cycles Ci, B′ has a vertex for pairs

(y1i , x
1
i ), (x

1
i , x

2
i ), (x

2
i , x

3
i ), . . . , (x

s−1
i , y2i ). In G′, every vertex in B′ is connected to common neighbors of the

vertices in the corresponding pair in G.
Clearly we have |A| = |B′| and the minimum degree of a vertex in G′ is at least (1−2η)|A|. Hence by the

König-Hall theorem G′ has a perfect matching. It is easy to see that any perfect matching in G′ corresponds
to an embedding of H in G. □
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4.1 Extremal Case 1

Here our graph G satisfies (1) and we are in Extremal Case 1.
Extremal Case 1 (EC1) with parameter α: There exists an A ⊂ V (G) such that

� |A| ≥ n−k
2 − αn, and

� d(A) < α.

By adding or deleting vertices to or from A we may achieve that |A| = (n−k)/2 and |B| = (n+k)/2 (note
that these are always integers). Furthermore, an easy computation shows that we still have d(A) < 10α (for
simplicity we keep the notation A, B). This and (1) imply that we have

d(A,B) > 1− 10α. (20)

Thus roughly speaking, we have an almost complete bipartite graph between A and B. The basic idea is
to find a matching of size k (using (1) and Lemma 5 as we have δ(G|B) ≥ k) in B and then use Fact 16 to
embed the cycles. However, we have to deal with certain exceptional vertices first.

A vertex v ∈ A (similarly in B) is called exceptional if it is not connected to most of the vertices in the
other set, more precisely if we have

deg(v,B) ≤ (1−
√
10α)|B|.

Let us denote the set of exceptional vertices by EA in A and by EB in B. From (20) we get that we have
few exceptional vertices

|EA| ≤
√
10α|A| and |EB | ≤

√
10α|B|.

Next we further refine the definition of exceptional vertices: an exceptional vertex v ∈ A (similarly in B) is
called strongly exceptional if it is connected to few vertices in the other set, more precisely if we have

deg(v,B) ≤ α1/3|B|.

Denote the set of strongly exceptional vertices by SEA(⊂ EA) in A and by SEB(⊂ EB) in B. From (20)
it is clear that

|SEA| ≤ 20α|A| and |SEB | ≤ 20α|B|.

If we have a u ∈ SEA and a v ∈ SEB , then we can exchange the two vertices and they will not be strongly
exceptional anymore in their new sets. Note that after the exchanges for the vertices that were not strongly
exceptional we still have deg(v,B) ≥ α1/3|B|/2 which is sufficient for our purposes. Thus we may assume that
one of the sets SEA and SEB is empty, since otherwise we may reduce the number of strongly exceptional
vertices in both sets. Then we only have to eliminate the vertices in the non-empty set. For the remainder
of this extremal case we will distinguish three subcases depending on the size of γ = k/n.

Case 1: γ ≤ α1/3.
Without loss of generality we assume that SEB = ∅ and SEA ̸= ∅ (the other case is similar). We may

assume that we have no u ∈ B with deg(u,B) > α1/3|B|, since otherwise we can exchange this vertex with a
vertex v ∈ SEA and thus reducing the size of SEA. Therefore any vertex v ∈ B can be exchanged with any
vertex u ∈ SEA without significantly changing the degree conditions. First for each v ∈ SEA we want to
find a path Pv of length 2 such that the center of Pv is v, the other two vertices are in B and the paths are
vertex disjoint for different v. Consider the graph G′ = G|SEA∪B , from (1) we have δ(G′) ≥ |SEA| (in fact
in this case the minimum degree is at least k + |SEA|, but in the other case when SEB ̸= ∅ the minimum
degree could be |SEB |). From the size of SEA and the fact that no vertex has high degree in B, we have
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∆(G′) ≤ 2α1/3|G′|. Therefore by Lemma 5 there are at least SEA vertex disjoint paths of length 2 in G′.
Since every vertex in B can be exchanged with any vertex in SEA, we can assume that all these paths have
the center vertex in SEA and the two end points in B.

Furthermore since the minimum degree in B is at least k and no vertex has degree more than α1/3|B|,
by Lemma 5 we can find a matching of size k in B. From the fact that SEA is very small, there exists a
matching of size k that is vertex disjoint from all Pv selected above.

Then first we eliminate the paths of length 2 by embedding cycle parts into them. In this case for this
purpose we may use cycles that either have even length at least 4, or odd length at least 7 (if we have to).
Note that every vertex in B (in particular the endpoints of the paths Pv) have high degree to A, so any two
vertices can be connected in one step using a vertex from A. Therefore, by a simple greedy procedure we
can embed cycles in the bipartite graph between A and B, that use all Pv’s and use exactly one edge inside
B for each odd cycle. The remaining exceptional vertices (EA and EB) can also be used similarly, using
the fact that their degree across is much larger than their number. Finally in the leftover almost-complete
bipartite graph we may finish the embedding using Fact 16.

Case 2: α1/3 < γ ≤ ( 13 − α1/3).
In this case we know that SEA = ∅, as for each v ∈ A we have

deg(v,B) ≥ k > α1/3n > α1/3|B|.

Assume SEB ̸= ∅. First again we find a matching M of size k, such that at least one of the endpoints of
each edge is non-exceptional. If we still have vertices left in SEB (for simplicity let SEB still denote the set
of remaining vertices), then similarly as in Case 1, we find |SEB | vertex disjoint paths of length 2 such that
the middle vertices are in SEB and the other two vertices are from A. Then, as in Case 1, we first use the
length-2 paths to embed a few cycles of length at least 4; the edges in M are used for the k odd cycles and
we finish the embedding using Fact 16.

Case 3: γ > ( 13 − α1/3).
In this case most of the cycles are triangles, indeed the number of vertices covered by cycles of length at

least 4 is at most 8α1/3n. Therefore in this case we will use triangles to eliminate the exceptional vertices.
Assume first that the subgraph G|B is α1/4-non-extremal.

Let us consider an exceptional vertex u ∈ A (note that we have SEA = ∅) and its neighborhood in B of
size at least k ≥ ( 13 −α1/3)n. As G|B is non-extremal, we have edges inside this set and thus we can cover u
with a triangle where the other two vertices come from B, as desired. For an exceptional vertex v ∈ (B\SEB)
again we can easily find a triangle where one of the other two vertices comes from A, the other from B.
Finally let us take a vertex v ∈ SEB . We may assume that we have no u ∈ A with deg(u,A) > α1/3|A|,
since otherwise we can exchange this vertex with v and thus reducing the size of SEB . As in Case 1, since
the minimum degree in the graph induced by A ∪ SEB is at least |SEB | we can find |SEB | vertex disjoint
edges going between A and SEB . For each such edge e, since both of its endpoints have very high degree
in B, we find a common neighbor in B for the endpoints to get a vertex disjoint triangle. Using Lemma 14
and the fact that G|B is α1/4-non-extremal, we can find a Hamiltonian cycle and thus a matching of size k′

(the remaining number of odd cycles) in the leftover of B, and then Fact 16 finishes the embedding.
Finally let us assume that G|B satisfies Extremal Case 1 with α1/4 (the other extremal case is similar).

So we have V (G) = A∪B ∪C, |A| = |B| = n−k
2 , |C| = k, so these three sets are roughly the same size with

almost complete bipartite graphs between them. We will have two types of strongly exceptional vertices in
each set; v ∈ A is called strongly exceptional to B if it is connected to few vertices in B, more precisely if we
have

deg(v,B) ≤ α1/3|B|.
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Denote the set of these vertices by SEB
A . SEC

A and the strongly exceptional sets in B and C are defined
similarly. All strongly exceptional vertices can be handled similarly as above except for SEC

A and SEC
B .

Indeed, for example to eliminate SEB
A we can find |SEB

A | vertex disjoint edges going between SEB
A and B

and then we can close these edges to triangles by taking a third vertex from C.
Consider SEC

A . Denote k = n/3 − x where x < α1/3n, then we have |A| = |B| = n/3 + x/2 and
|C| = n/3 − x. The goal is to embed the cycles in such a way that for each odd cycle Ci, one vertex is
embedded to C and (|Ci| − 1)/2 vertices are embedded to A and B; for each even cycle Ci, |Ci|/2 vertices
are embedded into A and B. Then we have at least 3x/2 vertices in A (and symmetrically in B) for which
we do not need any neighbors in C, the two neighbors along the corresponding embedded cycle will be in
B (in A). Hence if |SEC

A | ≤ 3x/2, then we are done. Otherwise, denote |SEC
A | = 3x

2 + y, where y > 0.
Similarly as above by applying Lemma 5 we can find a matching of size at least y from SEC

A to C (since in
G|SEC

A∪C the minimum degree is at least y). These edges can be closed to triangles by taking a third vertex

from B. The remaining at most 3x/2 vertices in SEC
A will be the vertices for which we need no neighbors in

C, as above. This way we eliminate all the strongly exceptional vertices, and then by Fact 16 we can finish
the embedding. This finishes Extremal Case 1.

4.2 Extremal Case 2

Here we have (1) and the following.
Extremal Case 2 (EC2) with parameter α: There exists an A ⊂ V (G) such that for B = V (G) \A

we have

�
n
2 ≥ |A| ≥ n

2 − αn, and

� d(A,B) < α.

Thus roughly speaking, G|A and G|B are almost complete and the bipartite graph between A and B
is sparse (note that k has to be small). By adding vertices to A we may achieve that |A| = ⌊n/2⌋ and
|B| = ⌈n/2⌉. Furthermore, an easy computation shows that we still have d(A,B) < 10α (for simplicity we
keep the notation A, B).

Again we define exceptional vertices v ∈ A (and similarly for B), as

deg(v,A) ≤ (1−
√
10α)|A|.

Note that from the density condition d(A,B) < 10α, the number of exceptional vertices in A is at most√
10α|A| (and similarly for B). Let us denote the set of exceptional vertices by EA in A and by EB in B.

Next again we further refine the definition of exceptional vertices: an exceptional vertex v ∈ A (similarly in
B) is called strongly exceptional if it is connected to few vertices in A, more precisely if we have

deg(v,A) ≤ α1/3|A|.

Denote the set of strongly exceptional vertices by SEA(⊂ EA) in A and by SEB(⊂ EB) in B. If we have a
u ∈ SEA and a v ∈ SEB , then we can exchange the two vertices and they will not be strongly exceptional
anymore in their new sets. Thus we may assume that one of the sets SEA and SEB is empty (say SEB , the
other case is similar). We first handle the vertices of SEA.

We may assume that we have no u ∈ B with deg(u,A) > α1/3|A|, since otherwise we can exchange this
vertex with a vertex v ∈ SEA and thus reducing the size of SEA. We remove the vertices in SEA from A
and add them to B, and denote the resulting sets by A′ and B′. It is easy to see using (1) that in G|A′ apart
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from at most 10
√
α|A′| exceptional vertices all the degrees are at least (1 − 10

√
α)|A′|, and the degrees of

the exceptional vertices are at least α1/3|A′|/2. In G|B′ we have an even stronger degree condition; all the
degrees are at least (1− 2α1/3)|B′|.

Suppose we have our cycles listed in increasing order of size, C1, C2, . . . Cr. We assign cycles to A′ until
we have no room left and denote by Cm the last cycle, i.e. by adding this cycle we have at least |A′| vertices
assigned to |A′|, but without this cycle we have fewer than |A′| assigned vertices. We refer to Cm as the
middle cycle and let nm = |Cm|. Denote

n1
m = |A′| −

m−1∑
i=1

|Ci| and n2
m = nm − n1

m.

Note that part of Cm has to be embedded into A′ (n1
m vertices) while the other part (n2

m vertices) into B′.
We may assume that n2

m > 0, since otherwise we are done. If n1
m, n2

m ≥ 3, then it is easy to embed the
middle cycle Cm. Indeed we can find two bridge edges (ui, vi) with ui ∈ (A \ EA), vi ∈ B for i = 1, 2 since
from (1) we have deg(u,B) ≥ 1 for each u ∈ A and deg(v,A) ≤ α1/3|A| for each v ∈ B. Then we can connect
u1 and u2 with a path of length n1

m − 1 (counting edges) in A and v1 and v2 with a path of length n2
m − 1

in B. Actually this argument works for n1
m = 2, n2

m ≥ 3 as well, since we can have two bridge edges where
(u1, u2) is also an edge in G|A. For n2

m = 2 note that if we can find two vertex disjoint paths of length 2
such that the center vertices are in B and the endpoints are in A \ EA, then we move the center vertices
to A′ and now we have a perfect assignment. These length 2 paths can be used as part of some cycles and
hence we are done. Thus we may assume that we have no two such paths. However, this fact and the degree
conditions imply that we can find two bridges where (u1, u2) and (v1, v2) are both edges taking care of all
cases n1

m, n2
m ≥ 2.

Finally let us assume that n1
m = 1, n2

m ≥ 2 (the other case is symmetric). If we can find a path of length
2 with its center vertex in A′ and endpoints in B′, and then we can move the center vertex to B′ to have
a perfect assignment. Thus we may assume that k = 0 (so n is even, all cycles are even and thus n2

m > 2)
and |A| = |A′| = |B| = |B′| and we have no such path of length 2. Then G|A and G|B are both complete
graphs with a perfect matching M between them and all of our cycles are even. Let nm = 2s, s ≥ 2, we will
find a cycle Ci : i < m, |Ci| = 2p, 2 ≤ p < s or a cycle Cj : j > m, |Cj | = 2q, q > s. In case we have one
such a cycle (say Ci), we embed p vertices of Ci in A as a path while the other p vertices in B as a path,
and then joining the endpoints using two edges from M . Now in the remaining graph and cycle system we
have n1

m = p + 1 ≥ 2, while n2
m = 2s− 1 − p ≥ 2, so Cm can be easily embedded using two edges from M .

Note that we can always find either Cj or Ci, to see this, assume there are no such cycle, then all cycles are
of length 2s, hence n ≡ 0 (mod 2s) while |A| = n/2 ≡ 1 (mod 2s), which is a contradiction for s > 1.

It is easy to see that the other cycles apart from Cm (and possibly Ci or Cj in the last case) assigned
to A′ (and B′) can be embedded in G|A′ (and in G|B′) by eliminating the few exceptional vertices first and
then applying Fact 16. This finishes EC2.
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