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Limitations of Distance Based Clustering
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Clustering: Definition

Clustering/cluster analysis/data segmentation

Grouping of objects into clusters such that objects in the same cluster are
more similar and objects in different clusters are less similar

m Intra-cluster distances (between pairs of points in the same cluster)

m Inter-cluster distances (between pairs of points in different clusters)

oo Du
D<—>n‘:‘

smal] intra-cluster distances

large mter—clu%er distances Y
K

clustering hypothesis: Points in same cluster are semantically similar
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Clustering: Definition

Generally, clustering produces a partition [C1, Cp, ..., Ci] of the dataset P

m Each G C P

mFori#j, GNG =10

g P
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Clustering: Definition

Generally, clustering produces a partition [C1, Gy, ..., Ck] of the dataset P

Two broadly different ways of clustering depending on input

Input: Given a dataset (feature vectors) and a proximity measure

Output: Clusters of the dataset into k clusters

Alternatively,

Input: Given pairwise proximity values for a (abstractly described) dataset
(e.g. distance or similarity matrix)
Output: Clusters of the dataset into k clusters

The number of clusters k may or may not be part of the input (fixed)
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Basic Clustering Methods

m Broadly clustering methods are

m Distance Based

Density and grid-based methods
m Generative Model based

m Other methods used for specific data types

m e.g. for graph data we used connectivity based clustering

m It is possible that different clustering methods generate different
clusterings of same data set

Distance measure does not always capture semantic clustering in the data
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Limitation of distance-based clustering

Distance measure does not always capture semantic clustering in the data

Dataset exhibits complex
cluster shapes

= K-means performs very
poorly in this space due bias
toward dense spherical clusters.

B> Relationship vs. Geometry Distance

source: J. Fan, UNC
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Limitation of distance-based clustering

Distance measure does not always capture semantic clustering in the data

source: J. Fan, UNC

Original Points in 2 Clusters Output of k-means (k = 10)
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Limitation of distance-based clustering

Distance measure does not always capture semantic clustering in the data

source: J. Fan, UNC

Original Points in 2 Clusters Output of k-means (k = 2)
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Similarity Graphs
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Similarity Graphs

Graph-based Representation of Data Relationships
Using Graphs to summarize proximity between pairs of Points

Some datasets are already Graphs — Assume adjacency capture
relationships

Web graphs
m Protein-Protein Interaction Networks
m Social Networks

m Coauthorship or Citation Networks
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Similarity Graphs

Pairwise proximity is represented with graphs

Given similarity information

IP:{Xl,...

Represent the data by a weighted graph G = (V, E)

mV="pP

m E : Make an edge b/w vertices with weight = pairwise similarity

,Xn}

m 1 X n proximity matrix: S(i, ) = sim(x;, x;)

Similarity Matrix

IS A B ¢ D E F &
S 13 7 14 3 1 2 0
Al13 o0 14 0 0 0 0 0
Bi[7 14 o 18 0 16 15 18
Clf14 0 18 co 4 15 0 0
D3 0 0 4 oo 5 0 24
E|f1 0 16 15 5 oo 13 22
Fil2 0 15 0 0 13 oo 13
Gllo 0 18 0 24 2 13

IMDAD ULLAH KHAN (LUMS)

> e.g. proximity matrix of abstract objects

> Feature vectors or abstractly described

Spectral Clustering

> Could be distance
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Similarity Graph: e-neighborhood Graph

e-neighborhood graphs: points are vertices and two vertices are adjacent
if there distance is at most ¢

No need for weights, as similarities are thresholded

Similarity Matrix

|s A4 B ¢ D E F G
Sfo 13 7 14 3 1 2 0
Al13 0o 14 0 0 0 0 0
B|7 14 c 18 0 16 15 18
Cllt4 0 18 o 13 15 0 0
D3 0 0 13 0o 12 0 2
E[1 0 16 15 12 oo 13 22
Fll2 0 15 0 0 13 oo 13
Glo o 18 0 24 2 13 «

Similarity Graph thresholded by 9

e-neighborhood graphs are usually constructed from normalized distance

matrix

IMDAD ULLAH KHAN (LUMS)

Spectral Clustering
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Similarity Graph: k-NN Graph

k-NN Graph: (vj,v;) € E if v; € k-NN(v;) OR v; € k-NN(vj)

Similarity Matrix

|s A B ¢ D E F G
S B 7 14 3 1 2 0
A|13 © 14 0 0 0 0 0
B|7 14 cc 18 0 16 15 18
Cl14 0 18 co 4 15 0 0
DI|3 0 0 4 o 5 0 2
E|1 0 16 15 5 oo 12 22
Fl2 0 15 0 0 12 oo 13
GJlo o 18 0 24 22 13

Make edge v; to v;

Make G undirected by ignoring directions

€ k-NN(v;)

Similarity Matrix

s A B ¢ DEF G
S B 7 14 3 1T 2 0
Al13 oo 4 0 0 0 0 0
BI|7 14 o0 18 0 16 15 18
Cf1 0 18 oo 4 15 0 0
D3 0 0 4 ~ 5 0 24
Ef1 0 16 15 5 o 12 22
Fl2 0o 15 0 0 12 « 13
Glo o 18 0 24 2 13

IMDAD ULLAH KHAN (LUMS)

Every vertex has 2 nearest neighbors as outneighbors

> nearest neighbors are not symmetric

> OR of nearest neighbors

A pair is adjacent if either is 2-NN of the other
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Similarity Graph: Mutual k-NN Graph

Mutual k-NN Graph: (v;, v;) € E if v € k-NN(v;) AND v; € k-NN(v;)

Similarity Matrix

|s A B ¢ D E F G
S B 7 14 3 1 2 0
A|13 © 14 0 0 0 0 0
B|7 14 cc 18 0 16 15 18
Cl14 0 18 co 4 15 0 0
DI|3 0 0 4 o 5 0 2
E|1 0 16 15 5 oo 12 22
Fl2 0 15 0 0 12 oo 13
GJlo o 18 0 24 22 13

Make edge v; to v;

Keep only bidirectional edges

€ k-NN(v;)

Similarity Matrix

s A B ¢ DEF G
S B 7 14 3 1T 2 0
Al13 oo 4 0 0 0 0 0
BI|7 14 o0 18 0 16 15 18
Cf1 0 18 oo 4 15 0 0
D3 0 0 4 ~ 5 0 24
Ef1 0 16 15 5 o 12 22
Fl2 0o 15 0 0 12 « 13
Glo o 18 0 24 2 13

IMDAD ULLAH KHAN (LUMS)

Every vertex has 2 nearest neighbors as outneighbors

> nearest neighbors are not symmetric

> AND of nearest neighbors

Two vertices are adjacent if both are each other’s 2-NN

(®)
N
@ 01 22
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Similarity Graph: Advantages

epsilon-graph, epsilon=0.3 kNN graph, k=5 Mutual kNN graph, k =5
1 e M *?M e . &iﬁ; & s,
T *Q i ¥ o R * ) *&%‘ .
*. *
% 3k *
1 - o
* *s e
> + *_y§:,,f oy ﬁ*-iq—w e o
LS SN S [
3t * i WF e
-1 0 1 2 0 1 2 o 1 2

source: J. Fan, UNC

Graphs capture local neighborhoods

Can reliably indicate which points are “similar” or close

Similarity values reliably encode local structure

The similarity matrix doesn't capture global structure
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Similarity Graph: Advantages

m Graphs capture local neighborhoods
m Can reliably indicate which points are “similar” or close
m Similarity values reliably encode local structure

m The similarity matrix doesn’t capture global structure
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Similarity Graph: Advantages

m Graphs capture local neighborhoods

Can reliably indicate which points are “similar” or close

Similarity values reliably encode local structure

The similarity matrix doesn't capture global structure
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Graph Partition Using Cut
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Cuts in Graphs

A cutin G is asubset S C V }

m Denoted as [S, 5]

m S=( and S =V are trivial cuts, we assume that ) £ S # V
m A graph on n vertices has 2" cuts

m An edge (u, v) is crossing the cut [S,S], ifu€SandveS
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The MIN-cUT(G) problem
A cutin G is asubset S C V

m Denoted as [S, 5]
m An edge (u,v) is crossing the cut [S,S], ifucSandveS$S

Size (or cost) of a cut in the number of crossing edges

A min cut of size 2

A cut of size 3
N
o

&
s
a

-

I
<
<

g,

m In weighted graph size of cut is the sum of weights of crossing edges
21/68
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Graph Bi-Partition Using Cut

We can find a minimum-cut in the graph to separate clusters of objects
m Partition V into [S, S], that minimizes
cut(S,S) = > 1
(u,v)EE,ucA,vesS

Attempts to minimize inter-cluster(s) similarity but

m Does not consider maximizing intra-cluster(s) similarity

m May find trivial cut ([{v}, {v}]), i.e. doesn't consider size of clusters

. S optimal cut ini
large intra-cluster similarity P minimum
S

oo O
oo 0p

O
oe—sof

small inter-cluster similarity
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cut
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Graph BiPartition Using Balanced -Cut

To avoid trivial cuts we change the objective function of cut

m Partition V into [S,S], such that |S| = |S| that minimizes

cut(S,S) = 2 1

(u,v)EE,ucA,veS

m Technically, one requires |S| = |S|£1
m More generally, |S|,|S| > an

Balanced Cut
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Graph BiPartition Using Ratio-Cut

A slightly relaxed way for good and balanced cut is to minimize Ratio-Cut

m Partition V into [S, S] that minimizes

cut(S,S) n cut(S,S)
|5 S|

Ratio-Cut(S,S) =
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Graph BiPartition Using Normalized-Cut

For AC V, let vol(A) = >, .4 deg(x)

m Consider connectivity between groups relative to density of each group
m Partition V into [S, S], that minimizes

cut(S,S) N cut(S,S)

normalized-cut(S,S) = Ncut(S,S) := vol(S) 1(5)
vo

m Consider both inter-cluster(s) and intra-cluster similarity

m Generally produces more balanced partitions
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Graph Partition Using Cut

Finding minimum cut is easy (recall max-flow-min-cut theorem and
Karger-Stein Algo)

Finding optimal balanced, ratio and normalized-cut are NP-HARD
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Spectral Graph Theory
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Spectral Graph theory

m Spectral graph theory is using techniques from linear algebra to solve
graph theory problems

m Particularly, what combinatorial properties of the graphs are implied

by the eigenvalues and eigenvectors of the matrices associated with
graphs

IMDAD ULLAH KHAN (LUMS) Spectral Clustering
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Adjacency Matrix of Graphs

Adjacency Matrix

[ 9]
0
(0]

OO OO+ KFHMFEO
coococoroOo~|o
OO+ OOR M
OO OO0OO0OO0OH+|a
OO OO OO
O OKFHKFEFOOO| -
H O OO OO|M
oOrr OO0 O0OcoOoCo| T

0] 0O QO 0 T W

A is symmetric and real = all eigenvectors are real and orthogonal

Let x € R” > coordinates corresponding to vertices (fixed order)

Meaning of Ax = y? > y; is sum of x; of all neighbors of v; € V
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Adjacency Matrix of Graphs

Adjacency Matrix

Suppose G is a d-regular connected graph > every vertex has degree d
Letx=[1,1,...,1] "

Ax = dx

x is an eigenvector of A with eigenvalue d
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Adjacency Matrix of Graphs

Adjacency Matrix

Suppose G is d-regular with 2 components {v1,..., vk}, {Vkt1,---,Va}
[1,1,...,1,0,0,...,0]T
Let x;3 = — g
k n—k
Axy = dxg

[o,o,...,o,1,1,...,1]T
Let X = |[~—— ——
k n—k

Axy = dxo

x1 and xp are eigenvectors of A with eigenvalues d
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Degree Matrix of Graphs

Degree Matrix
D is an n x n diagonal matrix

D = [di]

IMDAD ULLAH KHAN (LUMS)

Spectral Clustering

> d,',' = deg(v,-)

“ a b ¢ d e f g h
a 3 0 0 00O 0 0 O
b 0 2 0 0 0O O 0 O
[¢ 0O 0 4 0 0 0 O0 O
d o 0 0 2 0 0O O0 O
e 0O 0 0 0 2 0 0 O
f 0O 0 0 0 0 3 0 O
g 0O 0 0 0 0o 0 3 O
h 0O 0 0 0 0 0 0 1
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Laplacian Matrix of Graphs

Laplacian Matrix, L = D—A

d; ifi=j
L(i,j) = ¢ =1 ifi~j
0 else

H a b c d e f h

all3 -1 -1 -1 0 o0 0
bl{-1 2 -1 0 0 0 0 0
cl|l-1 -1 4 0o -1 0 -1 o0
L=4q]l1 o o 2 0 -1 0 o0
ello 0o -1 0 2 -1 0 0
fllo o o0 -1 -1 3 -1 0
gllo o -1 0 0 -1 3 -1
hiffo o o o o o0 -1 1
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Laplacian Matrix of Graphs

Laplacian Matrix, L = D —A

d; ifi=j
L(i,j) = ¢ =1 ifi~j
0 else

x is a (trivial) eigenvector
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Laplacian Matrix of Graphs

L=D-A

Laplacian Matrix,
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Laplacian Matrix of Graphs

Laplacian Matrix, L = D—A

d; ifi=j
L(i,j) = ¢ =1 ifi~j
0 else

For e = (u,v) € E, matrix L

1 ifi=j&ie{uv)
Le(i,j) = <=1 if (i,j) = (u,v) or (i,j) = (v, u)
0 else

L, is actually contribution of e = (u,v) to L. So

L:ZLe

ecE
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Graph Laplacian

For edge e = (u,v) Le(i,j) =
Graph Laplacian, L = D-A =
For any vector x € R, xTl.x =

xTIx =x"(Le, + Le, + ..

= Z (x L,d)x

(iJ)eE

IMDAD ULLAH KHAN (LUMS)

1 ifi=j&ie{uv}

—1 if (i,j) = (u,v) or (i,j) =
0 else

> Le

ecE

(xi — xj)?

L= KT Y Ly

(iJ)€E

> (6 —x)

(iJ)eE

Spectral Clustering

(v, u)
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Relation of Graph Laplacian with Balanced Bi-partition

Graph Laplacian, L=D—-A

For any vector x € R”, x"Lx = Y (x —xj)?
(ij)eE

The optimization problem of balanced bipartition

1 ifie$S
Assign labels to vertices x; = I I _
-1 ifieS
Find x € {—1,1}" such that
B Y (x— x)? is minimum
(ij)eE
B Y = > = > x =0
xi=—1 x;=1 i

IMDAD ULLAH KHAN (LUMS) Spectral Clustering

> few cut edges

> Balanced parts
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Graph Laplacian

Graph Laplacian, L=D-A

m L is real & symmetric

mForanyxe R" x"lx = Y (x—x)?
(ij)eE

m L is positive semidefinite Vx € R", x#0 x"[x >0

Theorem (Spectral Theorem)

If M is a real, symmetric and positive semidefinite n X n matrix, then M
has n real, non-negative, orthonormal eigen values and eigen vectors

By Spectral Theorem, L has n real eigen values A1,..., A,

0< << <. <)
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Graph Laplacian and Graph Components
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Relation of Graph Laplacian with Graph partition

Find x € {—1,1}" such that

B Y (x— x)? is minimum > few cut edges
(ij)eE
m ) = = > xi=0 > Balanced
xi=—1 xj=1 i
Since x"Lx = > (x; — x;)?, minimizing x Lx is a continuous
(iJ)EE

relaxation of the discrete optimization problem

In the following we first see connections between graph connectivity and
eigenvalues/vectors of L, which provides the basis of spectral clustering
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Relation of Graph Laplacian with Graph partition

Foranyx € R", x"Ix = Y (x—xj)?
(iJ)eE

0< A< < <\,

xT Lx

> Called quadratic form
xTx

If Ax = Lx, then X\ =

A1 =0, consider x= [1,1,...,1}T€R”

xTlx = Y (xi—x)2 =0
(iJ)EE

orL1=0-1

Thus A\; =0 for any L, and x; = [1, 1,..., 1] T is the eigenvector
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Relation of Graph Laplacian with Graph partition

Let L be the Laplacian of a graph G = (V,E) ,

A1

0 A<l <\,

-
x'Lx
If \sx = Lx, then X\ = +
xT'x

. xTLx ( . lution)

min say Xp is a solution

x£0 XTx yx

xTLx

A2 =

A3

min say X is a solution
x7#0,x L x1 xTx ( y )

x T Lx

min T
x7#0,xLxy,xg X' X

(yield x3 and so on)

IMDAD ULLAH KHAN (LUMS) Spectral Clustering
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Relation of Graph Laplacian with Graph partition

Let L be the the Laplacian of a graph G = (V,E) , |V|=n

0SS <\,

A =0, andx; = [1,1,...,1] T € R is the corresponding eigenvector

Observe it for a few graphs, at least the following
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Relation of Graph Laplacian with Graph partition

If G is connected, then \» > 0 I

X] = [1,...,1}7-, xIlxg = x"1 =0 = Y x,=0

i=1
 xTix ) x T Lx
X =  min - Ay = min 7
n X' X
x#A0xlx; X' X x#0,>" x;=0
i=1
— 1 / / 2
A2 = min (i j)ee(Xi — X))
x#0,3° xi=0
i=1
Xp = argmin 0 Z (Xi_XJ')2
X Xi=
7 Z (l )EE
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Relation of Graph Laplacian with Graph partition

If G is connected, then A > 0 I

X#O,Z x;=0
i=1
m for all edges (u,v) € E we have x, = x,

m Xx;'s must be equal across any path
m G is connected, there is a path b/w all v and v
m x; should be equal for all vertices

x = a-[1,1,...,1]"

m Xx is not orthogonal to x3, or x =0
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Relation of Graph Laplacian with Graph partition

If G is connected if and only if Xy >0 I

=0 = mnin Z(i,j)EE(Xi — XJ)2 =0
X#O,Z x;=0
i=1

Suppose G has two components, S, S, then

T T
1,1,...,1,0,0,...,0 0,0,...,0,1,1,...,1
X1 = and  xp = — -

icS i€S i

are clearly eigen vectors with eigen values 0

This very easy to verify by reasoning very similar to the above
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Relation of Graph Laplacian with Graph partition

If G is connected if and only if X >0 I

The multiplicity k of the O eigen values of L(G) is equal to the number of
connected components of G

This can be proved with the same reasoning as above

We want to see how robust these results are.
If A, =0, graph has 2 components

If Ao = 0.00001, graph has 2 sparsely connected parts
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Relation of Graph Laplacian with Graph partition

The multiplicity k of the O eigen values of L(G) is equal to the number of
connected components of G

We want to see how robust these results are.
If Ao =0, graph has 2 components
If A2 = 0.00001, graph has 2 sparsely connected parts

Lets observe the above theorem with the few examples
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Relation of Graph Laplacian with Graph partition

IMDAD ULLAH KH/

Spectral Clusteri

A1 A2 A3
1.78E-15 9.79E-02 9.79E-02
X1 X2 X3
-0.2236068 0.3162278 0
-0.2236068 0.3007505 0.09771975
-0.2236068 0.2558336 0.185874
-0.2236068 0.185874 0.2558336
-0.2236068 0.09771975 0.3007505
-0.2236068 1.143599E-14 0.3162278
-0.2236068 -0.09771975 0.3007505
-0.2236068 -0.185874 0.2558336
-0.2236068 -0.2558336 0.185874
-0.2236068 -0.3007505 0.09771975
-0.2236068 -0.3162278 4.664828E-16
-0.2236068 -0.3007505 -0.09771975
-0.2236068 -0.2558336 -0.185874
-0.2236068 -0.185874 -0.2558336
-0.2236068 -0.09771975 -0.3007505
-0.2236068 1.104329E-14 -0.3162278
-0.2236068 0.09771975 -0.3007505
-0.2236068 0.185874 -0.2558336
-0.2236068 0.2558336 -0.185874
-0.2236068 0.3007505 -0.09771975



Relation of Graph Laplacian with Graph partition

1 Knan (LUMS)

Spectral Clustering

A1 Az A3

0 20 20
X1 X2 X3
-0.2236068 -0.020559652 0
-0.2236068 0.108807659 0.04273661
-0.2236068 -0.803711507 0.0115485
-0.2236068 -0.191901761 -0.10229988
-0.2236068 -0.222135891 0.06658875
-0.2236068 -0.123007583 -0.15801353
-0.2236068 -0.084541146 0.45265136
-0.2236068 -0.041279066 0.10869576
-0.2236068 0.006026719 -0.39124179
-0.2236068 0.006026719 0.23205375
-0.2236068 0.045614464 0.02944336
-0.2236068 0.045614464 -0.56047404
-0.2236068 0.102436277 -0.29818941
-0.2236068 0.095619485 0.1104163
-0.2236068 0.095619485 0.1104163
-0.2236068 0.132014323 0.1210102
-0.2236068 0.201951467 0.27869041
-0.2236068 0.201951467 0.05981768
-0.2236068 0.208431342 -0.01290196
-0.2236068 0.237022732 -0.10094836




Relation of Graph Laplacian with Graph partition

IMDAD ULLAH KHAN (LUMS)

Spectral Clustering

At A2 Az
-3.55E-15 -3.55E-15 1.00E+01
X1 X2 X3
-0.3162278 0 0
-0.3162278 0 -0.07607884
-0.3162278 0 0.08239587
-0.3162278 0 0.10999263
-0.3162278 0 0.23285916
-0.3162278 0 0.42651362
-0.3162278 0 0.1775714
-0.3162278 0 -0.83645416
-0.3162278 0 -0.0826799
-0.3162278 0 -0.03411978
0 -0.3162278 0
0 -0.3162278 0
0 -0.3162278 0
0 -0.3162278 0
0 -0.3162278 0
0 -0.3162278 0
0 -0.3162278 0
0 -0.3162278 0
0 -0.3162278 0
0 -0.3162278 0



Relation of Graph Laplacian with Graph partition

IMDAD ULLAH KHAN

(LUMS)

Spectral Clusteri

A1 Az A3
1.24E-14 1.69E-01 1.00E+01
X1 Xz X3
0.2236068 -0.2271498 0
0.2236068 -0.2271498 -0.187336735
0.2236068 -0.1887505 0.180331703
0.2236068 -0.2271498 0.026000794
0.2236068 -0.2271498 0.240657356
0.2236068 -0.2271498 -0.081758805
0.2236068 -0.2271498 0.109554976
0.2236068 -0.2271498 0.481534166
0.2236068 -0.2271498 -0.764973527
0.2236068 -0.2271498 -0.004009928
0.2236068 0.2271498 -0.047287728
0.2236068 0.2271498 -0.014797013
0.2236068 0.2271498 -0.042955103
0.2236068 0.2271498 -0.004581612
0.2236068 0.2271498 -0.008986301
0.2236068 0.2271498 -0.004581612
0.2236068 0.1887505 0.180331703
0.2236068 0.2271498 -0.019047445
0.2236068 0.2271498 -0.019047445
0.2236068 0.2271498 -0.019047445



Relation of Graph Laplacian with Graph partition

IMDAD ULLAH KHAN

(LUMS)

Spectral Clusteri

A1 Az A3
-1.78E-15 3.43E-01 1.00E+01
X1 X2 X3
0.2236068 -0.2309699 0
0.2236068 -0.2309699 -0.257554654
0.2236068 -0.1913417 0.417497079
0.2236068 -0.2309699 -0.196918966
0.2236068 -0.2309699 0.229066071
0.2236068 -0.2309699 0.339796713
0.2236068 -0.1913417 -0.207932922
0.2236068 -0.2309699 0.252674051
0.2236068 -0.2309699 -0.450305694
0.2236068 -0.2309699 -0.126321678
0.2236068 0.2309699 -0.052770238
0.2236068 0.1913417 -0.207932922
0.2236068 0.2309699 -0.029543845
0.2236068 0.2309699 -0.010168603
0.2236068 0.2309699 -0.005308371
0.2236068 0.2309699 -0.005308371
0.2236068 0.1913417 0.417497079
0.2236068 0.2309699 -0.052770238
0.2236068 0.2309699 -0.001792058
0.2236068 0.2309699 -0.051902431



Relation of Graph Laplacian with Graph partition

IMDAD ULLAH KHAN

(LUMS)

Spectral Clusteri

A A2 A3
1.42E-14 LG66E+00  1.OOE+01
X1 X2 X3
-0.2236068 -0.1460852 -0.08215129
-0.2236068 -0.2639678 -0.1809219
-0.2236068 -0.1784494 -0.08215129
-0.2236068 -0.2639678 -0.16323835
-0.2236068 -0.1777733 -0.08215129
-0.2236068 -0.2129005 -0.19414333
-0.2236068 -0.2129005 0.4683991
-0.2236068 -0.2639678 0.5743843
-0.2236068 -0.2169969 -0.08215129
-0.2236068 -0.2639678 -0.17587465
-0.2236068 0.1815737 -0.08215129
-0.2236068 0.2129005 0.4683991
-0.2236068 0.2639678 0.10115772
-0.2236068 0.2639678 -0.03308852
-0.2236068 0.1815737 -0.08215129
-0.2236068 0.2129005 -0.19414333
-0.2236068 0.1815083 -0.08215129
-0.2236068 0.2639678 0.0026285
-0.2236068 0.2639678 -0.01634829
-0.2236068 0.174649 -0.08215129



Relation of Graph Laplacian with Graph partition

IMDAD U

1 KHan (LUMS)

Spectral Clustering

At A2 A3
4.44E-15 4.44E-15 4.44E-15
X1 X2 X3
-0.3779645 0 0
-0.3779645 0 0
-0.3779645 0 0
-0.3779645 0 0
-0.3779645 0 0
-0.3779645 0 0
-0.3779645 0 0
0 -0.3779645 0
0 -0.3779645 0
0 -0.3779645 0
0 -0.3779645 0
0 -0.3779645 0
0 -0.3779645 0
0 -0.3779645 0
0 0 -0.3779645
0 0 -0.3779645
0 0 -0.3779645
0 0 -0.3779645
0 0 -0.3779645
0 0 -0.3779645
0 0 -0.3779645




Relation of Graph Laplacian with Graph partition

IMDAD ULLAH KHAN

(LUMS)

Spectral Clusteri

At A2 A3

1.78E-15 6.39E-01 7.34E-01
X1 X2 X3
-0.2182179 -0.12384629 -0.20165418
-0.2182179 -0.2208987 -0.17027215
-0.2182179 -0.2208987 -0.17027215
-0.2182179 -0.2395617 -0.23928643
-0.2182179 -0.2395617 -0.23928643
-0.2182179 -0.2395617 -0.23928643
-0.2182179 -0.2395617 -0.23928643
-0.2182179 0.22602667 -0.06051003
-0.2182179 0.27444989 -0.0407094
-0.2182179 0.2623651 -0.10699853
-0.2182179 0.32307908 -0.09189205
-0.2182179 0.32307908 -0.09189205
-0.2182179 0.32307908 -0.09189205
-0.2182179 0.32307908 -0.09189205
-0.2182179 -0.0414664 0.27727069
-0.2182179 -0.10218038 0.26216421
-0.2182179 -0.08351738 0.33117848
-0.2182179 -0.08351738 0.33117848
-0.2182179 -0.03488819 0.27999583
-0.2182179 -0.10218038 0.26216421
-0.2182179 -0.08351738 0.33117848



Spectral Clustering
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Spectral Clustering

Three Steps in Spectral Bi-Partition

Pre-processing
m Build Graph Data Representation
m Compute the Graph Laplacian, L e

X2
-0.2271498
-0.2271498
-0.1887505
-0.2271498
-0.2271498

Decomposition
-0.2271498

m Find eigenpair (A2, x2) of L
m Map vertices to coordinates of x; DI

. . . -0.2271498
m x> is 1d representation of vertices oariiss
0:2271498
0.2271498
0.2271498

0.2271498
0.2271498
0.1887505
0.2271498
0.2271498
0.2271498

Grouping
m Split vertices based on values in x»
m e.g. split by positive/negative, or
m split at mean or median or
m split by k-means on this 1d data

IMDAD ULLAH KHAN (LUMS) Spectral Clustering 59 /68



Spectral Clustering into 2 clusters

Three Steps in Spectral Bi-Partition

Pre-processing
m Build Graph Data Representation
m Compute the Graph Laplacian, L R

Decomposition
m Find eigenpair (A2, x2) of L
m Map vertices to coordinates of x;
m X, is 1d representation of vertices

-0.2639678
-0.2169969
-0.2639678
0.1815737

0.2129005

0.2639678

0.2639678

0.1815737
0.2129005

0.1815083
0.2639678
0.2639678
0.174649

Grouping
m Split vertices based on values in x»
m e.g. split by positive/negative, or
m split at mean or median or
m split by k-means on this 1d data
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Spectral Clustering into k clusters

Three Steps in Spectral Partitioning into k clusters

Pre-processing

m Build Graph Data Representation
m Compute the Graph Laplacian, L

Decomposition

m Find k eigenvectors x1, X2, ..., Xk
of L

m Map v; to [x1(i)x2(7) ... xk(i)]

m [x2(i) ... x(i)] is kd
representation of v;

Grouping
m Cluster the vectors in R¥
B e.g. using k-means algorithm

IMDAD ULLAH KHAN (LUMS) Spectral Clustering

Az

-0.06051003
. 27444989 -0.0407094
623651 -0.10699853

2507908 | -0.09189205 |

2307008 | 0.00189205
0114661 027727069
~0.10218038 | 026216421

HH

-0.03488819 | 0.27999583
-0.10218038 [ 0.26216421
-0.08351738 T 0.33117848
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Spectral Clustering into k clusters

Three Steps in Spectral Partitioning into k clusters

Pre-processing

m Build Graph Data Representation
m Compute the Graph Laplacian, L

Decomposition
m Find k eigenvectors x1, X2, ..., Xk
of L
m Map v; to [x1(i)x2(7) ... xk(i)]
m [x2(i) ... x(i)] is kd
representation of v;

Grouping
m Cluster the vectors in R¥
B e.g. using k-means algorithm

IMDAD ULLAH KHAN (LUMS) Spectral Clustering

A2 A3
6.39E-01  7.34E-01
N m
CO0.TZ 1620 [ 0I0MG5 1S |
-0.2208987 -0.17027215
-0.2208987 -0.17027215
-0.2395617 -0.23928643
0.22602667 -0.06051003
(0.27TH30 [ 00107001 ]

02623651 ] -0.10609853
032307008 | -0.00189205
032307908 ] -0.00180205
032307008 ] -0.00180205
032307908 | -0.09189205
~0.0111661_ 0.27727069

~0.10218038 | 0.26216421

[=0.08351738 T 0.33117848 ]
[-0.08351738 | 0.33117848 ]
[-0.03488819 | 0.27999583 ]
[-0.10218038 T 0.26216421 ]

=
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Naive Spectral Clustering

Dataset exhibits complex
cluster shapes

= K-means performs very
poorly in this space due bias
toward dense spherical clusters.

E» Relationship vs. Geometry Distance

source: J. Fan, UNC

source: J. Fan, UNC

In the embedded space
given by two leading
eigenvectors, clusters are
trivial to separate.
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Normalized Graph Laplacians

We saw that spectral properties of Laplacian L = D — A coincides with
Ratio-Cut objectives

We define a Laplacian with similar spectral properties as L and coinciding
with the Normalized-Cut

Symmetric Normalized Laplacian

Loym = D™2LD™? = 1— D72AD2

Assumes graph has no isolated vertices, all degree > 1
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Normalized Graph Laplacians

Symmetric Normalized Laplacian

Loym = D™2LD™? = 1— D7?AD2

Assumes graph has no isolated vertices, all degree > 1

a
b A D

0100 1000

1011 0300

0101 0020

d 0110 0002
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Normalized Graph Laplacians

Symmetric Normalized Laplacian

Loym = D™2LD™? = 1— D7?AD2

Assumes graph has no isolated vertices, all degree > 1

b a D-12 A D~
1 0 0 07[0100][t 0 0 O
0oy 0 oljto11|loys 0 o0
00 Yz 0|flo101|l0 0 v 0
d 00 0 Ysll0110/[0 0 0 Y
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Normalized Graph Laplacians

Symmetric Normalized Laplacian

Loym = DV2LD™2 = 1— D72AD2

Assumes graph has no isolated vertices, all degree > 1

b a Loym =1-D 2 AD "2
1 —-Yv3 0 0
_1/\/5 1 _1/\/5 _1/\@
0 -6 1 =1
d 0 - =2 1
C
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Normalized Graph Laplacians

The Algorithm based on Unnormalized Laplaian is due to Shi and Malick

The algorithm based on normalized Laplacian is due to Ng, Jordan, and
Weiss

All spectral algorithms work for weighted graphs too, with weighted
degree of a vertex defined as sum of weights of all edges incident on it
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