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Vector

Arrows in n-dim space Rn

Objects with length and directions

Technically, they are called free vectors

v1 v2

v3

v4

v5
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Vector

A coordinate system ▷ Origin and unit length defined

Look at vectors with tails fixed at the origin

Displacement in coordinates from the origin

v1

v2

v3

v4

v5

x

y

O
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Vector

A sequence of n numbers, array (ordered list) of numbers

Bijection: n-length real sequences ↔ fixed-tail arrows

v1

v2

v3

v4

v5

x

y

[
8
1.3

]

[
8.5
−4

]

[
4.8
5.5

]

[
−3
9

]

[
1.2
−8.3

]

O
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Vector

n-dimensional objects

Pairwise addition, well defined

Scalar multiplication (multiplication with real number)


a1
a2
...
an

 +


b1
b2
...
bn

 =


a1 + b1
a2 + b2

...
an + bn

 x


a1
a2
...
an

 =


xa1
xa2
...

xan


A B A +B A xA
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Vector Operations: Addition

Vectors addition defined numerically

[ u1
...
un

]
+

[ v1
...
vn

]
=

[
u1+v1
...

un+vn

]
Geometrically it is the cumulative displacement from origin in each
dimension by following the vectors with tip-to-tail joining

u

v

v

[
3
2

]

[
4
6

]
[
1
4

]

1 3 4

2

4

6

u
+
v
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Vector Operations: Scaling

Vector scaling defined numerically x

[ u1
...
un

]
=

[ xu1
...

xun

]
Geometrically it is the arrow scaled by a factor of x

v

x

y

[
3
2

]4

6

2v

2

[
3
2

]
=

[
6
4

]

v

x

y

[
3
2

]4

6

−.5
[
3
2

]
=

[
−1.5
−1

]
−.5v

Vectors subtraction is just combining scaling and addition
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Vector Operations: Linear Combination

Algebraically and geometrically a combination of scaling & addition

x

[
u1
...
un

]
+ y

[
v1
...
vn

]
=

[
xu1+yv1

...
xun+yvn

]
linear combination ∵ for fixed x and changing y , xu+ yv gives a line

1u

1v
(1u + 1v)

Imdad ullah Khan (LUMS) Linear Algebra Review 8 / 114



Vector Operations: Linear Combination

Algebraically and geometrically a combination of scaling & addition

x

[
u1
...
un

]
+ y

[
v1
...
vn

]
=

[
xu1+yv1

...
xun+yvn

]
linear combination ∵ for fixed x and changing y , xu+ yv gives a line

1u

2v

(1u + 2v)
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Vector Operations: Linear Combination

Algebraically and geometrically a combination of scaling & addition

x

[
u1
...
un

]
+ y

[
v1
...
vn

]
=

[
xu1+yv1

...
xun+yvn

]
linear combination ∵ for fixed x and changing y , xu+ yv gives a line

1u

1.5v

(1u + 1.5v)
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Vector Operations: Linear Combination

Algebraically and geometrically a combination of scaling & addition

x

[
u1
...
un

]
+ y

[
v1
...
vn

]
=

[
xu1+yv1

...
xun+yvn

]
linear combination ∵ for fixed x and changing y , xu+ yv gives a line

1u

−.8v
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Vector Operations: Linear Combination

Algebraically and geometrically a combination of scaling & addition

x

[
u1
...
un

]
+ y

[
v1
...
vn

]
=

[
xu1+yv1

...
xun+yvn

]
linear combination ∵ for fixed x and changing y , xu+ yv gives a line

1u
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Vector Operations: Linear Combination

Algebraically and geometrically a combination of scaling & addition

x

[
u1
...
un

]
+ y

[
v1
...
vn

]
=

[
xu1+yv1

...
xun+yvn

]
linear combination ∵ for fixed x and changing y , xu+ yv gives a line

1.5u

1v
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Vector Operations: Linear Combination

Algebraically and geometrically a combination of scaling & addition

x

[
u1
...
un

]
+ y

[
v1
...
vn

]
=

[
xu1+yv1

...
xun+yvn

]
linear combination ∵ for fixed x and changing y , xu+ yv gives a line

1.5u

Imdad ullah Khan (LUMS) Linear Algebra Review 14 / 114



Vector: Standard Bases

e1 = î =

[
1
0

]
and e2 = ĵ =

[
0
1

]
are standard basis vectors in R2

A vector v =

[
x
y

]
is two scalars expressing how much this vector

scales the standard basis vectors v =

[
x
y

]
= x î+ y ĵ

Each vector in R2 is a linear combination of î and ĵ

v

x

y

(4, 5) = 4

[
1
0

]
+ 5

[
0
1

]

y = 5

x = 4
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Vector: Standard Bases

In Rn, e1 =


1
0
0
...
0

, e2 =


0
1
0
...
0

 , e3 =


0
0
1
...
0

 , . . . , en =


0
0
0
...
1


The standard bases are unit vectors along the axes

A vector v =


v1
v2
...
vn

 ∈ Rn is v = v1e1 + v2e2 + . . .+ vnen
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Vector: Different Bases

Take two different vectors u and v ( ̸= î, ĵ)

Consider all linear combinations of u and v

Try all combinations of scalars x and y , and check xu+ yv

Which vectors can you get? In most cases, you get all vectors in R2

1.5u
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Vector: Span, Bases and linear independence

Take two different vectors u and v ( ̸= î, ĵ)

Span: space of vectors we get as linear combination of u and v

Generally it is R2, or u and v line up =⇒ it is a 1-dim subspace of R2

u and v are linearly dependent, otherwise linearly independent

Or when u = v = 0, then we get 0-dim subspace

v

x

y
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Vector: Span, Bases and linear independence

Span of a vector v ∈ R2 (actually any space) is a line (unless v = 0)

Span of 2 vectors in R3 is a plane (unless they line up)

Span of 3 vectors in R3 is the whole R3 (unless one vector is in the
plane spanned by the other two)

Technically given k vectors if a vector can be removed without
reducing the span, then they are linearly dependent

That is if one vector can be expressed as linear combination of the
others, then they are linearly dependent

Otherwise, they are linearly independent, every vector really add
another dimension

Basis of a vector space (or a space) is a set of linearly independent
vectors that spans the whole space
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Vector: Length of vectors

Length of u, denoted by ∥u∥, comes from the Pythagoras theorem

‖u
‖

x

y [
u1
u2

]

u2

u1

c
b

a = +c2 a2 b2

u =

[
u1
u2

]
, then ∥u∥2 = u21 + u22

∥u∥ =
√
u21 + u22

For u ∈ Rn, ∥u∥ =
√
u21 + u22 + . . .+ u2n =

√∑n
i=1 u

2
i

By inductively applying the Pythagoras theorem n − 1 times
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Vector: Length of vectors

u =
[
x y z

]T
is diagonal of the cube

u′ =
[
x y 0

]T
is a vector in the x − y plane

length of base and perpendicular is u1 and u2, so ∥u∥ =
√
x2 + y2

u makes a right triangle u′ (base) and
[
0 0 z

]
(perpendicular)

So ∥u∥ =
√

∥u′∥2 + z2 =
√
x2 + y2 + y2

by a second application of the Pythagoras theorem
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Vector: Unit Vector

A vector u is called a unit vector, if ∥u∥ = 1

For any vector u we can get the unit vector in the direction of u by
scaling it to have length 1

û =
u

∥u∥

Verify that û has length 1
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Vector: Dot Product

⟨u, v⟩ = u · v = utv =
[
u1 . . . un

]

v1
v2
...
vn

 = u1v1 + . . .+ unvn =
n∑

i=1

uivi

It takes two vectors and returns a scalar (function)

Also called inner product, scalar product, projection product

Many names because it is a really fundamental operation

Many concepts can be expressed in terms of dot-product

Note that ⟨u,u⟩ = u · u = ∥u∥2 (length of vectors from dot-product)
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Angle between vectors

Angle θ between vectors u and v is related to their dot-product

Let u and v make angles θu and θv resp. with e1 or x-axis

From △OAU

sin θu =
u2
∥u∥

and cos θu =
u1
∥u∥

From △OBV

sin θv =
v2
∥v∥

and cos θv =
v1
∥v∥

‖u
‖

x

y

‖v‖

u

v

θv

θu

θ

O A B

cos θ = cos(θu − θv ) = cos θv cos θu + sin θv sin θu

cos θ =
u1
∥u∥

v1
∥v∥

+
u2
∥u∥

v2
∥v∥

=
u1v1 + u2v2
∥u∥∥v∥

=
u · v

∥u∥∥v∥

What happens if we (negatively) scale one or both vectors
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Projection

Let v be a unit vector, let ℓ be a line in the direction of v

Find the point p on ℓ that is closest to a vector u

The line connecting u to p is perpendicular to v

Otherwise p will not be the closest point (Pythagoras theorem)

The point (vector) p is called the the projection of u on v

x

y

p = (p1, p2)

u
`

v
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Projection

Let v be a unit vector, let ℓ be a line in the direction of v

Find the point p on ℓ that is closest to a vector u

The point (vector) p is called the the projection of u on v

The line connecting u to p is perpendicular to v

Finding projection of v on the standard basis vectors is easy

x

y

p = (p1, p2)

u
`

v

x

y

u = (u1, u2)

u1

u1

(u1, 0)

(0, u1)
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Dot product and Projection

Find the projection p of u on v

For general vectors we derive it from dot product

p is just scaled vector v, p = av, find that scalar a

u− p = u− av is perpendicular on v
v · v − av = 0

Hence v ·u− v · av = v ·u− av · v = 0

Which means av · v = v · u

a =
v · u
v · v

=
v · u
∥v∥ x

y

p = (p1, p2)

u
`

v

= αv
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Orthogonal Vectors, Orthonormal Basis

u and v are called orthogonal, if u · v = 0

They are perpendicular to each other, angle θ between them is 90°

u · v = ∥u∥∥v∥ cos θ = ∥u∥∥v∥ cos 90° = 0

If u and v are orthogonal, then they are linearly independent

If u1,u2, . . . ,uk are pairwise orthogonal, they are all linearly
independent

If bases of a space are all pairwise orthogonal, then they are called
orthogonal bases

If they are unit vectors, they are called orthonormal basis

Verify that the standard bases make orthonormal bases of Rn
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Linear Functions

A function f : R 7→ R is called linear if

1 f (cx) = c f (x)

2 f (x + y) = f (x) + f (y)

x f(u)

c

f(cx) = cf(x)cx

c

f
x,y f(x), f(y)

+

f(x+ y) = f(x) + f(y)x+ y

+

f

f

f
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Linear Functions

A function f : R 7→ R is called linear if

1 f (cx) = cf (x)

2 f (x + y) = f (x) + f (y)

A shorter version:
A function f : R 7→ R is linear if

1 f (ax + by) = af (x) + bf (x)

These imply that f (0) = 0

Generally, functions of the form g(x) = ax + b are called linear,
which doesn’t necessarily imply g(0) = 0

Functions like g(·) are technically and correctly called affine
functions, which are linear functions followed by a translation
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Dot Product as Linear Functions

For a fixed vector a ∈ Rn, define fa : Rn 7→ R1 as follows

fa(x) := ⟨a, x⟩ = a · x

fa is a linear function from Rn to R1

In fact, it can be shown that these are the only functions that are linear

a =

[
3
4

]
, x =

[
2
3

]
, y =

[
1
2

]

fa(4x+ 5y) =

[
3
4

]
·
([

4 ∗ 2
4 ∗ 3

]
+

[
5 ∗ 1
5 ∗ 2

])
=

[
3
4

]
·
[
13
22

]
= 39 + 88 = 127

4fa(x) + 5fa(y) = 4 ∗
[
3
4

]
·
[
2
3

]
︸ ︷︷ ︸

18

+5 ∗
[
3
4

]
·
[
1
2

]
︸ ︷︷ ︸

11

= 4 ∗ 18 + 5 ∗ 11 = 127
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Linear Functions on Euclidean Space

For linear functions of the form Rn 7→ Rm, for m > 1

▷ vector functions - functions that output vectors in Rm

Extend the notion of dot product as linear function as follows:

For m fixed vectors a1, a2, . . . am ∈ Rn, define fa1,a2,...,am : Rn 7→ Rm as:

fa1,a2,...,am(x) :=
[
a1 · x a2 · x . . . am · x

]T
fa1,a2,...,am is a linear function from Rn to Rm

Again it can be shown that these are the only functions that are linear

fa1,a2,...,am is represented by m × n matrix Tf =

[ a1
a2
...
am

]
Evaluated by matrix-vector product fa1,a2,...,am(x) = Tf x

▷ Tf x is n × 1 vector
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Linear Functions on Euclidean Spaces

For m fixed vectors a1, a2, . . . am ∈ Rn, define fa1,a2,...,am : Rn 7→ Rm as:

fa1,a2,...,am(x) :=
[
a1 · x a2 · x . . . am · x

]T
fa1,a2,...,am is a linear function from Rn to Rm

fa1,a2,...,am is represented by m × n matrix Tf =

[ a1
a2
...
am

]
Evaluated by matrix-vector multiplication fa1,a2,...,am(x) = Tf x

...

T x

... ...

a11 a12 a1n. . .
a21 a22 a2n. . .
a31 a32 a3n. . .

. . .am1 am2 amn

=

Dot Product

...

m× n n× 1 m× 1

y=Tx

...

x1
x2

x3

xn
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Linear Functions on Euclidean Spaces

For m fixed vectors a1, a2, . . . am ∈ Rn, define fa1,a2,...,am : Rn 7→ Rm as:

fa1,a2,...,am(x) :=
[
a1 · x a2 · x . . . am · x

]T
Tf =

[ a1
a2
...
am

]
fa1,a2,...,am(x) = Tf x

a1 =

[
3
4

]
, a2 =

[
2
1

]
, x =

[
2
3

]
, y =

[
1
2

]
, T =

[
3 4
2 1

]

T (4x+ 5y) =

[
3 4
2 1

]([
8
12

]
+

[
5
10

])
=

[
3 4
2 1

] [
13
22

]
=

[
127
48

]

4Tx+ 5Ty = 4

[
3 4
2 1

] [
2
3

]
+ 5

[
3 4
2 1

] [
1
2

]
=

[
72
28

]
+

[
55
20

]
=

[
127
48

]
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Linear Functions on Euclidean Spaces

Geometrically, linear functions (matrix-vector multiplications)

maps the 0 vector (origin) to 0

maps any straight line to a straight lines

maps any set of parallel lines to a set of parallel lines

T

[
1 −1
1 1

]
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Matrices as Linear Transform

Linear functions, multiplications of m× n matrices with n× 1 vectors output
m × 1 vectors

For any m × n matrix T , y = Tx is a linear function Rn 7→ Rm

Generally called linear transformation, because we are interested in

how it transforms the whole space (Rn)

and not in evaluating output on specific inputs

or its properties as a function (injective, surjective, bijective etc.)

Just a few quick terminology (while we still call it functions)

Linear functions on Euclidean space are also called linear maps

When m = n (same Rn 7→ Rn), they are called linear operators

When the function is bijective (the corresponding matrix is invertible), they
are called linear isomorphisms
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Matrices as Linear Transform

Meaning of rows of a matrix A as a linear transform

Recall standard bases of Rn (unit vectors along the axes)

e1 =

 1
0
0
...
0

 , e2 =

 0
1
0
...
0

 , . . . , en =

 0
0
0
...
1


They help write awkward and wordy things concisely and precisely
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Matrices as Linear Transform: Rows

Meaning of rows of a matrix A as a linear transform

They help write awkward and wordy things concisely and precisely

ei
TA is the i th row of A

[
0 1 0

] 1 2 3
4 5 6
7 8 9

 =

45
6


ei

TA is ai in the definition of the function fa1,a2,...,am corresponding to A

ei
TA describes how to compute the i th coordinate of result, y = Ax

▷ y(i) = ei
TA · x
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Matrices as Linear Transform

Meaning of columns of a matrix A as a linear transform

Aei is the i th column of A

1 2 3
4 5 6
7 8 9

01
0

 =

25
8


Aei is the vector in Rn where ei maps to

So the columns of A are the locations in the range space (Rm), where
the standard bases map to by the transform A

This is the most important concept to understand
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Matrices as Linear Transform

Meaning of columns of a matrix A as a linear transform

The columns of A are the locations in the range space (Rm), where
the standard bases map to by the transform A

A linear transform is completely described by knowing where it maps
the basis vectors

Follows from linearity, as u = [ u1u2 ] is actually u = u1e1 + u2e2

Au =
[
a b
c d

]
[ u1u2 ] =

[
au1+bu2
cu1+du2

]
, By linearity

Au = A(u1e1+u2e2) = u1Ae1+u2Ae2 = u1 [
a
c ]+u2

[
b
d

]
=

[
au1+bu2
cu1+du2

]
Under A, the image of u = [ u1 ... un ]T is a linear combination of
images of basis vectors (Ae1, . . . ,Aen) with coefficients u1, . . . , un
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Common Linear Transformation

We discuss some common transformation to master the concepts

They are fundamental to computer graphics, image processing, computer
vision and other CS disciplines

In these fields, they mostly need affine transformation, which, as mentioned
earlier, is linear transformation followed by translation

We mainly focus on linear operators (Rn 7→ Rn) with n = 2, but will
mention some others to highlight certain concepts

We discussed that a linear transformation (matrix) is completely described
by its columns - images of standard bases vectors

We will mainly just show the transformed bases vectors and the image of
the 1× 1 square in the first quadrant
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Linear Transformation: Identity

A = I =

[
1 0
0 1

]
does not change any vectors

e′1 = Ae1 = e1 and e′2 = Ae2 = e2

For u =

[
x
y

]
= xe1 + ye2, Au = xe′1 + ye′2 = u

The space does not change, the unit square remains the same

[
1 0
0 1

]
e1

e2

e′1

e′2

u u′
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Linear Transformation: Horizontal Scaling

A =

[
2 0
0 1

]
stretches each vector by a factor of 2 horizontally

e′1 = Ae1 = 2e1 and e′2 = Ae2 = e2

For u =

[
x
y

]
= xe1 + ye2, Au = xe′1 + ye′2 =

[
2x
y

]
grid changes, unit square becomes 2× 1 rectangle

[
2 0
0 1

]
e1

e2 e′2

e′1

u u′
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Linear Transformation: Vertical Scaling

A =

[
1 0
0 2

]
stretches each vector by a factor of 2 vertically

e′1 = Ae1 = e1 and e′2 = Ae2 = 2e2

For u =

[
x
y

]
= xe1 + ye2, Au = xe′1 + ye′2 =

[
x
2y

]
grid changes, unit square becomes 1× 2 rectangle

e′2

= e′1

u′

e1

e2

u

[
1 0
0 2

]
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Linear Transformation: Uniform Scaling

A =

[
2 0
0 2

]
stretches each vector by a factor of 2 in both directions

e′1 = Ae1 = 2e1 and e′2 = Ae2 = 2e2

For u =

[
x
y

]
= xe1 + ye2, Au = xe′1 + ye′2 =

[
2x
2y

]
grid changes, unit square is uniformly stretched by a factor of 2

e′2

e′1

u′

e1

e2

u

[
2 0
0 2

]

Imdad ullah Khan (LUMS) Linear Algebra Review 45 / 114



Linear Transformation: Uniform Scaling

Uniform Scaling Application

Steve Marschner @ Cornell
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Linear Transformation: Non-Uniform Scaling

A =

[
3 0
0 2

]
stretches vectors by factors 3 and 2

e′1 = Ae1 = 3e1 and e′2 = Ae2 = 2e2

For u =

[
x
y

]
= xe1 + ye2, Au = xe′1 + ye′2 =

[
3x
2y

]
grid changes, unit square becomes a 3× 2 rectangle

e′2

e′1

u′

e1

e2

u

[
3 0
0 2

]
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Linear Transformation: Non-Uniform Scaling

A =

[
2 0
0 .5

]
stretches vectors by factor of 3 and 1/2

e′1 = Ae1 = 2e1 and e′2 = Ae2 = 1/2e2

For u =

[
x
y

]
= xe1 + ye2, Au = xe′1 + ye′2 =

[
2x
y/2

]
grid changes, unit square becomes a 2× 1/2 rectangle

e′2

e′1

u′

e1

e2

u

[
2 0
0 .5

]
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Linear Transformation: Non-Uniform Scaling

Non-Uniform Scaling Application

Steve Marschner @ Cornell
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Linear Transformation: Negative Scaling

A =

[
−1 0
0 2

]
stretches each vector by a factor of −1 horizontally and by a

factor of 2 vertically

e′1 = Ae1 = −1e1 and e′2 = Ae2 = 2e2

For u =

[
x
y

]
= xe1 + ye2, Au = xe′1 + ye′2 =

[
−x
2y

]
grid changes, unit square becomes a 1× 2 rectangle but flipped across

e′2

= e′1

u′

e1

e2

u

[
−1 0
0 2

]
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Linear Transformation: Horizontal Mirror

A =

[
1 0
0 −1

]
reflects each vector across vertical axis

grid stays the same with different orientation, unit square is mirrored
through horizontal axis

e′2
= e′1

u′

e1

e2

u

[
1 0
0 −1

]
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Linear Transformation: Vertical Mirror

A =

[
−1 0
0 1

]
reflects each vector across vertical axis

grid stays the same with different orientation, unit square is mirrored
through horizontal axis

e′1

u′

e1

e2

u

[
−1 0
0 1

]

e′2
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Linear Transformation: Vertical Mirror

Reflection/Mirror Application

Steve Marschner @ Cornell
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Linear Transformation: Diagonal Mirror

A =

[
0 1
1 0

]
reflects each vector across 45° mirror

grid stays the same with different orientation, unit square is mirrored
through 45° mirror

e′1
u′

e1

e2

u

[
0 1
1 0

]

= e′2
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Linear Transformation: Other Diagonal Mirror

A =

[
0 −1
−1 0

]
reflects each vector across 45° mirror

grid changes, unit square is mirrored through the other diagonal mirror

e′1u′

e1

e2

u

[
0 −1
−1 0

]

e′2
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Linear Transformation: Horizontal Shear

A =

[
1 1
0 1

]
leaves horizontal dimension intact and skew each vector in

vertical dimension (horizontal shear)

unit square becomes a parallelogram

= e′1

u′

e1

e2

u

e′2

[
1 1
0 1

]
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Linear Transformation: Horizontal Shear

Horizontal Shear Application

Steve Marschner @ Cornell
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Linear Transformation: Vertical Shear

A =

[
1 0
1 1

]
leaves vertical dimension intact and skew each vector in

horizontal dimension (horizontal shear)

unit square becomes a parallelogram

e′1

u′

e1

e2

u

e′2 =

[
1 0
1 1

]
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Linear Transformation: Vertical Shear

Vertical Shear Application
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Linear Transformation: Shear

A =

[
1 1
0 s

]
vertical shear and A =

[
s 0
1 1

]
horizontal shear

unit square becomes a parallelogram

= e′1

u′

e1

e2

u

e′2

[
1 1
0 1

]

e′1

u′

e1

e2

u

e′2 =

[
1 0
1 1

]
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Linear Transformation: Rotation

A =

[
0 −1
1 0

]
rotates every vector by 90° clockwise

unit square rotates to the adjacent unit square

e′1u′

e1

e2

u

[
0 −1
1 0

]

e′2
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Linear Transformation: Rotation

A =

[
.5253 −.8509
.8509 .5253

]
rotates every vector by 45° clockwise

unit square rotates by 45°

e′1

u′

e1

e2

u

[
.5253 −.8509
.8509 .5253

]

e′2
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Linear Transformation: Rotation

A =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
rotates every vector by θ clockwise

unit square rotates by θ clockwise

e′1

e1

e2

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]

e′2

θ
cos(θ)

1
sin(θ)

θ

cos(θ)

− sin(θ)
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Linear Transformation: Rotation

Rotation Applications

Steve Marschner @ Cornell
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Linear Transformation: Projection

Let v be a vector, let ℓ be a line in the direction of v

Projection of u on ℓ (or on v) is the point p on ℓ that is closest to u

p is scaled vector hat(v) p = av̂

▷ a : scalar projection or projection length

u− p = u− av̂ is perpendicular on v̂

v · v − av = 0

Hence v · u− v · av = v · u− av · v = 0

Which means av · v = v · u

a =
v · u
v · v

=
v · u
∥v∥

x

y

p = (p1, p2)

u
`

v

= αv

The vector projection, p is given by p =
v · u
∥v∥

v̂ =
v · u
∥v∥

v

∥v∥
=

v · u
∥v∥2

v
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Linear Transformation: Projection

The vector projection, p is given by p =
v · u
∥v∥

v̂ =
v · u
∥v∥

v

∥v∥
=

v · u
∥v∥2

v

For unit vector v̂, the vector projection, p of u on v̂ is p = (u · v̂)v̂

p = (u · v̂)v̂ =

([
x
y

]
·
[
a
b

])[
a
b

]
= (xa+ yb)

[
a
b

]

=

[
xa2 + yab
xab + yb2

]
=

[
a2 ab
ab b2

] [
x
y

]

A =

[
a2 ab
ab b2

]
projects every vector onto the unit vector

[
a
b

]
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Composition of Linear Transformation

Any image processing operation (linear) can be described as combination
of the above elementary transformation

Composing transformations

Want to transform an object, then transform it some more

u 7→ g(u) 7→ f (g(u)) := (f ◦ g)(u)

Represent (f ◦ g)(·) using same representation as for f and g (matrix)

▷ (“f compose g”)

Let S and T be the corresponding matrices for f and g , resp.

f (u) = Su and g(u) = Tu

f ◦ g(u) = STu
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Composition of Linear Transformation

90° rotation followed by horizontal shear

S =

[
1 1
0 1

]
︸ ︷︷ ︸

shear

T =

[
0 −1
1 0

]
︸ ︷︷ ︸

rotation

e′1 = Te1 =

[
0
1

]
and e′2 = Te2 =

[
−1
0

]
Se′1 =

[
1 1
0 1

] [
0
1

]
=

[
1
1

]
Se′2 =

[
1 1
0 1

] [
−1
0

]
=

[
−1
0

]

ST =

[
1 1
0 1

] [
0 −1
1 0

]
=

[
1 −1
1 0

]
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Composition of Linear Transformation

e′1

e1

e2

e′2

S =

[
0 −1
1 0

]

= e′1e1

e2
e′2

T =

[
1 1
0 1

]

e′′2

[
1 1
0 1

] [
0 −1
1 0

]
=

[
1 −1
1 0

]

e′′1

e1

e2e′1

e′′2 = e′2

Te′1 =

[
1 1
0 1

] [
0
1

]
=

[
1
1

]

Te′2 =

[
1 1
0 1

] [
−1
0

]
=

[
−1
0

]
e′′1
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Composition of Linear Transformation

Transforming first by T then by S is the same as transforming by ST

In general, composition is not commutative

Generally, ST ̸= TS

Note that S ◦ T , is applying T first and S second

We can compose many transformation S ◦ T ◦ R
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Simultaneous Equations: Solving Ax = b

Consider the following scenario

ISB metro has 3 bridges, 4 stations, 20km length and cost is 20b

Lahore metro has 2 bridges, 6 stations, 27km length and cost is 27b

Multan metro has 3 bridges, 5 stations, 22km length and cost is 24b

You want another metor with 4 bridges, 5 stations and 25km length,
what will be the cost?

If we have cost per bridge, per station, per km then we can solve it

3b + 4s + 20ℓ = 20
2b + 6s + 27ℓ = 27
3b + 5s + 22ℓ = 24

=⇒

3 4 20
2 6 27
3 5 22

bs
ℓ

 =

2027
24

 := Ax = b

Which vector x the transformation A maps to b? (the reverse question)
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Simultaneous Equations: Solving Ax = b

Solving Ax = b

For a matrix A, let A−1 be a matrix such that

A−1A = I

Composing A−1 with A gives solution to Ax = b

A−1Ax = A−1b =⇒ Ix = A−1b

A−1 is called the inverse of A, if we can find it then we can solve Ax = b
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Linear Transformation: Determinant and Inverse

[
1
0

]
[
0
1

]

[
0
−d

]

[
−a
0

]

[
−a 0
0 −d

][
a b
c d

]

[
1
0

]
[
0
1

]

[
b
d

]

[
a
c

][
0
1

]
[
0
d

]

[
1
0

] [
a
0

]

[
a 0
0 d

]

[
1
0

] [
a
0

]
[
0
1

]

[
b
d

][
a b
0 d

]

The area of this new parallelogram (the transformed unit square) ad − bc
in 2d is called the determinant of the matrix A, det(A)

[
1
0

]
[
0
1

] [
1
1

]
[
2
2

]
det

([
1 2
1 2

])
= 0

Columns of A are linearly dependent =⇒ determinant is 0

This matrix is not invertible
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Change of Bases

If B = {b1,b2, . . . ,bn} is a basis for Rn, then any vector x ∈ Rn

can be expressed uniquely as x = β1b1 + β2b2 + . . .+ βnbn

the scalars β1, β2, . . . , βn are the coordinates of x w.r.t the basis B

x is denoted by xB =
[
β1, β2, . . . , βn

]T
B

Let A be the standard basis, A = {e1, e2, . . . , en}

Let xA :=
[
α1 α2 . . . αn

]T
A

To find coordinates of x w.r.t B, i.e. xB =
[
β1 β2 . . . βn

]T
B

Solve the linear system of equations x = β1b1 + β2b2 + . . .+ βnbn
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Change of Bases

Let xA :=
[
α1 α2 . . . αn

]T
A

To find coordinates of x w.r.t B, i.e. xB =
[
β1 β2 . . . βn

]T
B

Solve the linear system of equations x = β1b1 + β2b2 + . . .+ βnbn

B: the matrix with basis vectors as columns, =⇒ B is invertibleb1 b2 . . . bn


β1...
βn


B

=

α1
...
αn


A[

2 3
]
B
means go 2 and 3 steps in directions b1 and b2. We need to know b1 and b2 in

coordinate system of A. Because in B’s coordinates they are
[
1 0

]T
B
and

[
0 1

]T
Bb1 b2 . . . bn

−1
α1

...
αn


A

=

β1...
βn


B
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Change of Bases

b1 =

[
3
1

]
, b2 =

[
−2
1

]
[
3 −2
1 1

][
2
1

]
=

[
4
3

]
[
3 −2
1 1

]−1[
4
3

]

=

[
.2 .4
−.2 .6

][
4
3

]
=

[
2
1

]

[
4
3

][
2
1

]

b1 =

[
3
1

]
b2 =

[
−2
1

]
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Change of Bases

b1 =

[
3
1

]
, b2 =

[
−2
1

]
[
3 −2
1 1

][
2
1

]
=

[
4
3

]
[
3 −2
1 1

]−1[
4
3

]

=

[
.2 .4
−.2 .6

][
4
3

]
=

[
2
1

]

[
4
3

][
2
1

]

b1 =

[
3
1

]
b2 =

[
−2
1

]
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Change of Bases

b1 =

[
3
1

]
, b2 =

[
−2
1

]
[
3 −2
1 1

][
2
1

]
=

[
4
3

]
[
3 −2
1 1

]−1[
4
3

]

=

[
.2 .4
−.2 .6

][
4
3

]
=

[
2
1

]
b1 =

[
3
1

]
b2 =

[
−2
1

]

[
4
3

][
2
1

]
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Transformation in different Bases

Apply transformation T to vector xB

T is given in coordinate system of A, we cannot do TxB

Previously we translated vector from one coordinates system to other

Now we need to do it for transformation

B−1 T B xB︸ ︷︷ ︸
xA︸ ︷︷ ︸

x′A︸ ︷︷ ︸
x′B

Let TB be the transformation in B coordinate system then

TB = B−1TB

By the same reasoning

T = BTBB
−1
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Transformation in different Bases

B−1 T B xB︸ ︷︷ ︸
xA︸ ︷︷ ︸

x′A︸ ︷︷ ︸
x′B

[
.2 .4
−.2 .6

][
0 −1
1 0

]
︸ ︷︷ ︸
90° rotation

[
3 −2
1 1

][
2
1

]
=

[
1
3

]

b1 =

[
3
1

]
b2 =

[
−2
1

]

[
−3
4

][
1
3

]
[
4
3

][
2
1

]
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Transformation in different Bases

Translation of vectors and linear transformation between standard
bases and another basis B

Vectors in B are bases vectors (linearly independent) i.e. B is
invertible

B =

b1 b2 . . . bn


x x′

B

x′BxB

B−1

T

TB

B−1B

TB = B−1TB T = BTBB
−1
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Eigenvalue and Eigenvectors

Eigenvalue/eigenvectors are extremely important concepts related to
linear transformation

Has fundamental applications in large graph analysis

Google’s pagerank algorithm and Ask’s HITS algorithm

Spectral clustering

Matrix decomposition

Recommender systems

Diffusion Processes and Immunization

Dynamic systems and many more
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Eigenvalue and Eigenvectors: Definition

Identity

Horizontal Shear 45◦ rotation

Vertical Scale
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Eigenvalue and Eigenvectors: Definition

Identity

Horizontal Shear 45◦ rotation

Vertical Scale

Recall matrices as linear transformation and our view of how the whole
space is transformed

We visualize transformation of the space by observing transformation of the
“unit square” (2× 2 square centered at the origin)

Notice some vectors do not change their directions with transformation
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Eigenvalue and Eigenvectors: Definition

Vertical Scale[
1 0
0 2

] [
1
0

]
does not change direction or size[

0
1

]
does not change direction, size is

doubled[
1
1

]
changes direction and size

The horizontal and vertical vectors are special, they are called eigenvectors

Horizontal vector size does not change so the corresponding eigenvalue is 1

Vertical vector’s size is doubled so the corresponding eigenvalue is 2
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Eigenvalue and Eigenvectors: Definition

Horizontal Shear[
1 1
0 1

] [
1
0

]
does not change direction or size[

0
1

]
changes direction and size[

−.6
1

]
changes direction and size

The horizontal vector is special called eigenvector

Horizontal vector size does not change so the corresponding eigenvalue is 1
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Eigenvalue and Eigenvectors: Definition

45◦ rotation[
.5253 −.8509
.8509 .5253

] [
1
0

]
rotates by 45°[

0
1

]
rotates by 45°[

−.6
1

]
rotates by 45°

All vectors change their span
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Eigenvalue and Eigenvectors: Definition

Uniform Scaling[
2 0
0 2

] [
1
0

]
does not change span and size is

doubled[
0
1

]
does not change span and size is

doubled[
1
1

]
does not change span and size is

doubled

All vectors stay on their spans and sizes are doubled
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Eigenvalue and Eigenvectors: Definition

180◦ Rotation[
−1 0
0 −1

] [
1
0

]
does not change span and size is

scaled by −1[
0
1

]
does not change span and size is

scaled by −1[
1
1

]
does not change span and size is

scaled by −1

All vectors stay on their spans and sizes are doubled

Imdad ullah Khan (LUMS) Linear Algebra Review 89 / 114



Eigenvalue and Eigenvectors: Definition

Horizontal Shear
and Vertical Scaling[

1 1
0 3

] [
1
0

]
does not change span and size[

0
1

]
changes its span and size[

.4472

.8944

]
does not change span and

size is increased

All other vectors change their span
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Eigenvalue and Eigenvectors: Computation

eigen (German) means “self”’ or “characteristic”

eigenvectors := “self vectors” or “characteristic vectors”

Transform the space

Find vectors that remain on the same span (these are eigenvectors)

Measure how their lengths have changed (corresponding eigenvalues)

Clearly, cannot do it geometrically, think of higher dimensions

For a square matrix A, solve Ax = λx for x

x is a vector that stays on its span, just scales by a factor of λ

There is no change of direction (span) of x

Solutions x’s are called eigenvectors of A

λ is called the eigenvalue corresponding to x
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Eigenvalue and Eigenvectors: Definition

[
1 1
0 3

]

By linearity, vectors on a line map to a line, all vectors on the span of
an eigenvectors are also eigenvectors
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Eigenvalue and Eigenvectors: Definition

“Rotate”

images source: Imperial College London course on Linear Algebra

In 2d rotation all vectors change their spans (except 180° rotation)

In 3d x-axis and y -axis change their spans but z-axis does not

These are eigenvectors of this rotation

Physically, this is the axis of rotation
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Eigenvalue and Eigenvectors: Computation

[x, λ] is an eigen pair ⇔ Ax = λx

LHS is matrix-vector product, RHS is scalar-vector product

Convert RHS to λIx (λI is the uniform scaling matrix)

This makes the math work but does not change the meaning

[x, λ] is an eigen pair ⇔ Ax− λIx = 0 ⇔ (A− λI)x = 0

x = 0 is a trivial solution (no length or direction)

We want x that is mapped to 0 by the linear transform (A− λI)

A transformation maps a non-zero vector to 0 only if it’s determinant is 0

∴ we find λ such that det(A− λI) = 0

Once we get the transformation, solve the system of linear equation to
(A− λI)x = 0 to find x
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Eigenvalue and Eigenvectors: Computation

det

([
1− λ 0
0 2− λ

])
= (1− λ)(2− λ)

(1− λ)(2− λ) = 0 =⇒ λ = 1 or λ = 2

Vertical Scale[
1 0
0 2

]

[
1− 1 0
0 2− 1

] [
x1
x2

]
=

[
0
0

]
︸ ︷︷ ︸

@λ=1:

=⇒
[
0 0
0 1

] [
x1
x2

]
=

[
0
0

]

=⇒
[
0
x2

]
=

[
0
0

]
=⇒ x =

[
t
0

]

[1,

[
t
0

]
] is an eigenpair

[
1− 2 0
0 2− 2

] [
x1
x2

]
=

[
0
0

]
︸ ︷︷ ︸

@λ=2:

=⇒
[
−1 0
0 0

] [
x1
x2

]
=

[
0
0

]

=⇒
[
−x1
0

]
=

[
0
0

]
=⇒ x =

[
0
t

]

[2,

[
0
t

]
] is an eigenpair

Imdad ullah Khan (LUMS) Linear Algebra Review 95 / 114



Eigenvalue and Eigenvectors: Computation

det

([
1− λ 1
0 1− λ

])
= (1− λ)2

(1− λ)2 = 0 =⇒ λ = 1

Horizontal Shear[
1 1
0 1

]

[
1− 1 1
0 1− 1

] [
x1
x2

]
=

[
0
0

]
︸ ︷︷ ︸

@λ=1:

=⇒
[
0 1
0 0

] [
x1
x2

]
=

[
0
0

]
=⇒

[
x2
0

]
=

[
0
0

]
=⇒ x =

[
t
0

]

[1,

[
t
0

]
] is an eigenpair
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Eigenvalue and Eigenvectors: Computation

det

([
0− λ −1
1 0− λ

])
= (0− λ)2 -(1)(-1)

(−λ)2 + 1 = 0 =⇒ λ2 = −1

No real λ as solution

90◦ Rotation[
0 −1
1 0

]

Hence no real eigenvectors
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Eigenvalue and Eigenvectors: Computation

det

([
2− λ 0
0 2− λ

])
= (2− λ)2

(2− λ)2 = 0 =⇒ λ = 2

Uniform Scaling[
2 0
0 2

]

[
2− 2 0
0 2− 2

] [
x1
x2

]
=

[
0
0

]
︸ ︷︷ ︸

@λ=2:

=⇒
[
0 0
0 0

] [
x1
x2

]
=

[
0
0

]
=⇒

[
0
0

]
=

[
0
0

]
=⇒ x =

[
t1
t2

]
All vectors are eigenvectors with eigenvalue 2

Imdad ullah Khan (LUMS) Linear Algebra Review 98 / 114



Transformation in different Bases

Translation of vectors and linear transformation between standard
bases and another bases B

Vectors in B are basis vectors (linearly independent) B is invertible

B =

b1 b2 . . . bn


x x′

B

x′BxB

B−1

T

TB

B−1B

TB = B−1TB T = BTBB
−1
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Eigenbases: Diagonalization

Let T be a n × n linear transformation

Let B = {b1, . . . ,bn} be bases - vectors in B are eigenvectors of T

For 1 ≤ i ≤ n, Tbi = λibi

Note there must be n vectors in B

B =

b1 b2 . . . bn


x x′

B

x′BxB

B−1

T

TB

B−1B

TB = B−1TB T = BTBB
−1

How does Tx looks like in eigenbasis?
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Eigenbases: Diagonalization

Let T be a n × n linear transformation

Let B = {b1, . . . ,bn} be bases - vectors in b are eigenvectors of T

For 1 ≤ i ≤ n, Tbi = λibi

TB = B−1TB T = BTBB
−1

x x′

B

x′BxB

B−1

T

TB

B−1B

How does Tx looks like in eigenbasis?

Tx = T (α1e1 + . . .+ αnen) = T (β1b1 + . . .+ βnbn)

= β1Tb1 + . . .+ βnTbn = β1λ1b1 + . . .+ βnλnbn

=

b1 b2 . . . bn


λ1

. . .

λn


β1...
βn

 = BDxB = BDB−1x
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Eigenbases: Diagonalization

Let T be a n × n linear transformation

Let B = {b1, . . . ,bn} be bases - vectors in b are eigenvectors of T

For 1 ≤ i ≤ n, Tbi = λibi

B =

b1 b2 . . . bn

 D =

λ1

. . .

λn


Tx = BDB−1x

Very easy to take T to a higher power (compose it many times)

T = BDB−1

T 2 = BDB−1BDB−1 = BDDB−1 = BD2B−1

T 3 = BD2B−1BDB−1 = BD2DB−1 = BD3B−1

T 4 = BD3B−1BDB−1 = BD3DB−1 = BD4B−1

T k = . . . = BDkB−1
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Eigenbases: Diagonalization

Let T be a n × n linear transformation

Let B = {b1, . . . ,bn} be bases - vectors in b are eigenvectors of T

For 1 ≤ i ≤ n, Tbi = λibi

B =

b1 b2 . . . bn

 D =

λ1

. . .

λn


Tx = BDB−1x

T k = BDkB−1 Dk =

λ
k
1

. . .

λk
n
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Powers of Matrices:

Suppose T represents the change in location of a particle per second

T =

[
.8 .9
−1 .4

]v1 = Tv0

v1 = Tv0

v2 = Tv1 = T 2v0

vk = T kv0

...

v1 =

[
1.7
−.6

]
v0 =

[
1
1

]

Find location of the particle after two weeks
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Powers of Matrices:

Fibonacci numbers Fn, 0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

Fn =


0 if n = 0

1 if n = 1

Fn−2 + Fn−1 if n ≥ 2

Let T =

[
1 1
1 0

]
[ 1 1
1 0 ] [

1
0 ] = [ 21 ] [ 1 1

1 0 ] [
2
1 ] = [ 32 ] [ 1 1

1 0 ] [
3
2 ] = [ 53 ] [ 1 1

1 0 ] [
5
3 ] = [ 85 ] [ 1 1

1 0 ] [
8
5 ] = [ 138 ][

Fk+2

Fk+1

]
=

[
1 1
1 0

] [
Fk+1

Fk

] [
Fk+2

Fk+1

]
= T k

[
1
0

]

Fk =
λk
1 − λk

2

λ1 − λ2
=

(1 +
√
5)k − (1−

√
5)k

2k
√
5
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Powers of Matrices:

First order linear recurrence relation
xt+1 = axt
x0 = 3

Coupled system of recurrence relations

xt+1 = 3xt + 5yt
yt+1 = 4xt − 2yt
x0 = 2, y0 = 3

Model many practical scenarios in population dynamics, economics,
epidemiology, computing, signal processing

Let ut =

[
xt
yt

]
u0 =

[
2
3

]

T =

[
3 5
4 −2

]

u1 = Tu0

u2 = Tu1 = TTu0 = T 2u0

u3 = Tu2 = TT 2v0 = T 3u0
...

uk = T ku0
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Random Walk

0 1 2 3 4 5−1−2−3−4−5

Suppose the blue dot starts at 0

At every step if it is at number i , then with probability 1/2 it goes i + 1 and
and with probability 1/2 it goes to i − 1

How many steps would it take to reach 6 or −8?

What is root mean squared distance the • covers in n steps?

Many possible extensions

Lazy walks: with prob. 1/2 stay at i , move to i ± 1 each prob 1/4

Biased walks: with prob. 3/4 move to i + 1 and 1/4 move to i − 1

Biased walks: with prob. 1/2 move to i + b and 1/2 move to i − 1

Models many things: stock prices fluctuations, gambling outcomes, team
results in a game’s season, molecules movements
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Random Walk Generalizations

At every step • goes {Up,Down, Left, Right} with probability 1/4

Random walk on grid

Random walk in space, often called Brownian motion

Model movements of particles in liquid or gas. The particle undertake
random walk caused by momentum imparted to it by molecules in
random directions
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Random Walk on Graphs

Let G = (V ,E ) be a graph or digraph

Let d(u) be the degree of u ∈ v

A random walker starts at some vertex v0 ∈ V

At every step if the walker is at vertex u, it picks randomly moves to
a random (out) neighbor of u

The probability that current vertex is u and next vertex is v ∈ N(u) is
1/d(u) or 1/d+(u) (for digraphs)
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Markov Chain

A Markov chain is a stochastic process defined on finite number of states

The changes of state of system are called transition

Transitions probabilities b/w states are given in transition matrix T

Let Xn be the state of the system at time n

T (i , j) := Pr [Xn+1 = i |Xn = j ] : prob. that system goes from state j to i

0 ≤ T (i , j) ≤ 1 and columns sum to 1 ▷ column-stochastic

Memoryless process: T (i , j) does not depend on the history of transitions
▷ Markovian property

Given present state, the past and future states are independent

A B

C

0.1

0.1

0.5

0.9 0.9

0.5

0.0 0.1 0.5
0.1 0.0 0.5
0.9 0.9 0.0
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Markov Chain

Bounded Random Walk on integers {−3, . . . , 3}

0 1−3 −2 −1 2 3
.5.5.5.5

.5 .5 .5 .5 .5

.5 1

1

0 1 2 3−1−2−3

The • begins at 0

If • is at ±3, then with prob. 1 it goes to ±2

If • is at i 6= ±3, then with prob. .5 it goes to i± 1



0 .5 0 0 0 0 0
1 0 .5 0 0 0 0
0 .5 0 .5 0 0 0
0 0 .5 0 .5 0 0
0 0 0 .5 0 .5 0
0 0 0 0 .5 0 1
0 0 0 0 0 .5 0



−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
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Language Recognition System

Smartphones next words suggestions use language generation

The first i words are typed, what will be the (i + 1)st word?

Model language generation as a Markov chain ▷ not realistic

States correspond to last used words (say vocabulary has 1000 words)

Transition probabilities pwiwj := Pr [wj |wi ] :=
freq(wiwj)

freq(wi )

Estimate the 1000× 1000 probabilities from a large text corpus

Probability of generating a text w1w2w3w4w5 is
pw1pw1w2pw2w3pw3w4pw4w5

pwi is (empirical prob) frequency of wi as first word in the corpus

Can extend it by estimating pwiwjwk
:= Pr [wk |wiwj ]
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Markov Chain

A B

C

0.1

0.1

0.5

0.9 0.9

0.5

0.0 0.1 0.5
0.1 0.0 0.5
0.9 0.9 0.0



Instead of thinking that the system is in a given state at time t, consider

a vector x specifying probability distribution of system being in all states

x(t) is probability distribution at time t, xti ≥ 0,
∑

i x
t
i = 1

x(t+1) = Tx(t)

By Markovian property, probability of going from j to i in two steps is∑
k T (k, j)T (i , k) = T 2(i , j)

probability of going from j to i in s steps is T s(i , j)
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Markov Chain

x(t) : prob. distribution at time t

x(t+1) = Tx(t)

A B

C

0.1

0.1

0.5

0.9 0.9

0.5

0.0 0.1 0.5
0.1 0.0 0.5
0.9 0.9 0.0



A distribution π is a stationary distribution for Markov chain T , if

Tπ = π ▷ eigenvector of T with eigenvalue 1

The largest eigenvalue of a column stochastic real matrix is real
(λ1 = 1)

A markov chain is ergodic if there is a unique stationary distribution π and
for any initial distribution x we have

limt→∞M tx = π ▷ always converges to π
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