Big Data Analytics

Linear Algebra Review

- Vector
- Vector Operations
- Linear Combination
- Span, Bases, Linear Independence
- Length of Vectors
- Dot Product
- Angle between Vectors
- Projection
- Linear Functions
- Linear Transformation
- Scaling, Mirror, Shear, Rotation, Projection
- Composition of Linear Transformations

■ Determinent and Inverse

- Change of Bases
- Transformation in Different Bases
- Eigenvalue and Eigenvectors
- Eigenbases and Diagnoalization
- Power of Matrices
- Random Walk and Markov Chain

Imdad ullah Khan

Vector

- Arrows in n-dim space \mathbb{R}^{n}
- Objects with length and directions
- Technically, they are called free vectors

Vector

- A coordinate system
\triangleright Origin and unit length defined
■ Look at vectors with tails fixed at the origin
- Displacement in coordinates from the origin

Vector

- A sequence of n numbers, array (ordered list) of numbers
- Bijection: n-length real sequences \leftrightarrow fixed-tail arrows

Vector

- n-dimensional objects

■ Pairwise addition, well defined
■ Scalar multiplication (multiplication with real number)

$$
\begin{gathered}
\mathbf{A} \\
\left.\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]+\left[\begin{array}{c}
\mathbf{B}
\end{array} \begin{array}{c}
\mathbf{A}+\mathbf{B} \\
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]=\begin{array}{c}
\mathbf{A} \\
{\left[\begin{array}{c}
a_{1}+b_{1} \\
a_{2}+b_{2} \\
\vdots \\
a_{n}+b_{n}
\end{array}\right]}
\end{array} \begin{array}{c}
x \\
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
x a_{1} \\
x a_{2} \\
\vdots \\
x a_{n}
\end{array}\right]
\end{gathered}
$$

Vector Operations: Addition

- Vectors addition defined numerically $\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]+\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]=\left[\begin{array}{c}u_{1}+v_{1} \\ \vdots \\ u_{n}+v_{n}\end{array}\right]$

■ Geometrically it is the cumulative displacement from origin in each dimension by following the vectors with tip-to-tail joining

Vector Operations: Scaling

■ Vector scaling defined numerically $x\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]=\left[\begin{array}{c}x u_{1} \\ \vdots \\ x u_{n}\end{array}\right]$
■ Geometrically it is the arrow scaled by a factor of x

■ Vectors subtraction is just combining scaling and addition

Vector Operations: Linear Combination

- Algebraically and geometrically a combination of scaling \& addition

■ $x\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]+y\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]=\left[\begin{array}{c}x u_{1}+y v_{1} \\ \vdots \\ x u_{n}+y v_{n}\end{array}\right]$

- linear combination \because for fixed x and changing $y, x \mathbf{u}+y \mathbf{v}$ gives a line

Vector Operations: Linear Combination

■ Algebraically and geometrically a combination of scaling \& addition
■ $x\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]+y\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]=\left[\begin{array}{c}x u_{1}+y v_{1} \\ \vdots \\ x u_{n}+y v_{n}\end{array}\right]$

- linear combination \because for fixed x and changing $y, x \mathbf{u}+y \mathbf{v}$ gives a line

Vector Operations: Linear Combination

■ Algebraically and geometrically a combination of scaling \& addition
■ $x\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]+y\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]=\left[\begin{array}{c}x u_{1}+y v_{1} \\ \vdots \\ x u_{n}+y v_{n}\end{array}\right]$

- linear combination \because for fixed x and changing $y, x \mathbf{u}+y \mathbf{v}$ gives a line

Vector Operations: Linear Combination

■ Algebraically and geometrically a combination of scaling \& addition
■ $x\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]+y\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]=\left[\begin{array}{c}x u_{1}+y v_{1} \\ \vdots \\ x u_{n}+y v_{n}\end{array}\right]$
■ linear combination \because for fixed x and changing $y, x \mathbf{u}+y \mathbf{v}$ gives a line

Vector Operations: Linear Combination

■ Algebraically and geometrically a combination of scaling \& addition
■ $x\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]+y\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]=\left[\begin{array}{c}x u_{1}+y v_{1} \\ \vdots \\ x u_{n}+y v_{n}\end{array}\right]$
■ linear combination \because for fixed x and changing $y, x \mathbf{u}+y \mathbf{v}$ gives a line

Vector Operations: Linear Combination

■ Algebraically and geometrically a combination of scaling \& addition
■ $x\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]+y\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]=\left[\begin{array}{c}x u_{1}+y v_{1} \\ \vdots \\ x u_{n}+y v_{n}\end{array}\right]$

- linear combination \because for fixed x and changing $y, x \mathbf{u}+y \mathbf{v}$ gives a line

Vector Operations: Linear Combination

■ Algebraically and geometrically a combination of scaling \& addition
■ $x\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]+y\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]=\left[\begin{array}{c}x u_{1}+y v_{1} \\ \vdots \\ x u_{n}+y v_{n}\end{array}\right]$
■ linear combination \because for fixed x and changing $y, x \mathbf{u}+y \mathbf{v}$ gives a line

Vector: Standard Bases

- $\mathbf{e}_{1}=\hat{\mathbf{i}}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{e}_{2}=\hat{\mathbf{j}}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ are standard basis vectors in \mathbb{R}^{2}
- A vector $\mathbf{v}=\left[\begin{array}{l}x \\ y\end{array}\right]$ is two scalars expressing how much this vector scales the standard basis vectors $\mathbf{v}=\left[\begin{array}{l}x \\ y\end{array}\right]=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}$
- Each vector in \mathbb{R}^{2} is a linear combination of $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$

Vector: Standard Bases

■ In $\mathbb{R}^{n}, \mathbf{e}_{\mathbf{1}}=\left[\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right], \mathbf{e}_{\mathbf{2}}=\left[\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right], \mathbf{e}_{\mathbf{3}}=\left[\begin{array}{c}0 \\ 0 \\ 1 \\ \vdots \\ 0\end{array}\right], \ldots, \mathbf{e}_{\mathbf{n}}=\left[\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 1\end{array}\right]$

- The standard bases are unit vectors along the axes
- A vector $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right] \in \mathbb{R}^{n}$ is $\mathbf{v}=v_{1} \mathbf{e}_{\mathbf{1}}+v_{2} \mathbf{e}_{2}+\ldots+v_{n} \mathbf{e}_{\mathbf{n}}$

Vector: Different Bases

- Take two different vectors \mathbf{u} and $\mathbf{v}(\neq \hat{\mathbf{i}}, \hat{\mathbf{j}})$
- Consider all linear combinations of \mathbf{u} and \mathbf{v}
- Try all combinations of scalars x and y, and check $x \mathbf{u}+y \mathbf{v}$

■ Which vectors can you get? In most cases, you get all vectors in \mathbb{R}^{2}

Vector: Span, Bases and linear independence

- Take two different vectors \mathbf{u} and $\mathbf{v}(\neq \hat{\mathbf{i}}, \hat{\mathbf{j}})$
- Span: space of vectors we get as linear combination of \mathbf{u} and \mathbf{v}
- Generally it is \mathbb{R}^{2}, or \mathbf{u} and \mathbf{v} line $u p \Longrightarrow$ it is a 1-dim subspace of \mathbb{R}^{2}
- u and vare linearly dependent, otherwise linearly independent
- Or when $\mathbf{u}=\mathbf{v}=\mathbf{0}$, then we get 0 -dim subspace

Vector: Span, Bases and linear independence

- Span of a vector $\mathbf{v} \in \mathbb{R}^{2}$ (actually any space) is a line (unless $\mathbf{v}=\mathbf{0}$)
- Span of 2 vectors in \mathbb{R}^{3} is a plane (unless they line up)
- Span of 3 vectors in \mathbb{R}^{3} is the whole \mathbb{R}^{3} (unless one vector is in the plane spanned by the other two)
- Technically given k vectors if a vector can be removed without reducing the span, then they are linearly dependent
- That is if one vector can be expressed as linear combination of the others, then they are linearly dependent

■ Otherwise, they are linearly independent, every vector really add another dimension

- Basis of a vector space (or a space) is a set of linearly independent vectors that spans the whole space

Vector: Length of vectors

■ Length of \mathbf{u}, denoted by $\|\mathbf{u}\|$, comes from the Pythagoras theorem

- $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$, then $\|\mathbf{u}\|^{2}=u_{1}^{2}+u_{2}^{2}$
- $\|\mathbf{u}\|=\sqrt{u_{1}^{2}+u_{2}^{2}}$

■ For $\mathbf{u} \in \mathbb{R}^{n},\|\mathbf{u}\|=\sqrt{u_{1}^{2}+u_{2}^{2}+\ldots+u_{n}^{2}}=\sqrt{\sum_{i=1}^{n} u_{i}^{2}}$
■ By inductively applying the Pythagoras theorem $n-1$ times

Vector: Length of vectors

- $\mathbf{u}=\left[\begin{array}{lll}x y z\end{array}\right]^{T}$ is diagonal of the cube
- $\mathbf{u}^{\prime}=\left[\begin{array}{lll}x & y & 0\end{array}\right]^{T}$ is a vector in the $x-y$ plane
- length of base and perpendicular is u_{1} and u_{2}, so $\|\mathbf{u}\|=\sqrt{x^{2}+y^{2}}$

■ u makes a right triangle \mathbf{u}^{\prime} (base) and $\left[\begin{array}{lll}0 & 0 & z\end{array}\right]$ (perpendicular)

- So $\|\mathbf{u}\|=\sqrt{\left\|\mathbf{u}^{\prime}\right\|^{2}+z^{2}}=\sqrt{x^{2}+y^{2}+y^{2}}$

■ by a second application of the Pythagoras theorem

Vector: Unit Vector

- A vector \mathbf{u} is called a unit vector, if $\|\mathbf{u}\|=1$
- For any vector \mathbf{u} we can get the unit vector in the direction of \mathbf{u} by scaling it to have length 1

$$
\hat{\mathbf{u}}=\frac{\mathbf{u}}{\|\mathbf{u}\|}
$$

■ Verify that $\hat{\mathbf{u}}$ has length 1

Vector: Dot Product

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{t} \mathbf{v}=\left[\begin{array}{lll}
u_{1} & \ldots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=u_{1} v_{1}+\ldots+u_{n} v_{n}=\sum_{i=1}^{n} u_{i} v_{i}
$$

- It takes two vectors and returns a scalar (function)
- Also called inner product, scalar product, projection product
- Many names because it is a really fundamental operation
- Many concepts can be expressed in terms of dot-product

■ Note that $\langle\mathbf{u}, \mathbf{u}\rangle=\mathbf{u} \cdot \mathbf{u}=\|\mathbf{u}\|^{2}$ (length of vectors from dot-product)

Angle between vectors

- Angle θ between vectors \mathbf{u} and \mathbf{v} is related to their dot-product

■ Let \mathbf{u} and \mathbf{v} make angles θ_{u} and θ_{v} resp. with $\mathbf{e}_{\mathbf{1}}$ or x-axis

- From $\triangle O A U$
- $\sin \theta_{u}=\frac{u_{2}}{\|\mathbf{u}\|}$ and $\cos \theta_{u}=\frac{u_{1}}{\|\mathbf{u}\|}$
- From $\triangle O B V$
- $\sin \theta_{v}=\frac{v_{2}}{\|\mathbf{v}\|}$ and $\cos \theta_{v}=\frac{v_{1}}{\|\mathbf{v}\|}$

■ $\cos \theta=\cos \left(\theta_{u}-\theta_{v}\right)=\cos \theta_{v} \cos \theta_{u}+\sin \theta_{v} \sin \theta_{u}$

- $\cos \theta=\frac{u_{1}}{\|\mathbf{u}\|} \frac{v_{1}}{\|\mathbf{v}\|}+\frac{u_{2}}{\|\mathbf{u}\|} \frac{v_{2}}{\|\mathbf{v}\|}=\frac{u_{1} v_{1}+u_{2} v_{2}}{\|\mathbf{u}\|\|\mathbf{v}\|}=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}$

■ What happens if we (negatively) scale one or both vectors

Projection

- Let \mathbf{v} be a unit vector, let ℓ be a line in the direction of \mathbf{v}

■ Find the point \mathbf{p} on ℓ that is closest to a vector \mathbf{u}

- The line connecting \mathbf{u} to \mathbf{p} is perpendicular to \mathbf{v}

■ Otherwise \mathbf{p} will not be the closest point (Pythagoras theorem)

- The point (vector) \mathbf{p} is called the the projection of \mathbf{u} on \mathbf{v}

Projection

- Let \mathbf{v} be a unit vector, let ℓ be a line in the direction of \mathbf{v}

■ Find the point \mathbf{p} on ℓ that is closest to a vector \mathbf{u}

- The point (vector) \mathbf{p} is called the the projection of \mathbf{u} on \mathbf{v}
- The line connecting \mathbf{u} to \mathbf{p} is perpendicular to \mathbf{v}

■ Finding projection of \mathbf{v} on the standard basis vectors is easy

Dot product and Projection

- Find the projection \mathbf{p} of \mathbf{u} on \mathbf{v}

■ For general vectors we derive it from dot product
■ \mathbf{p} is just scaled vector $\mathbf{v}, p=a \mathbf{v}$, find that scalar a

- $\mathbf{u}-p=\mathbf{u}-a \mathbf{v}$ is perpendicular on \mathbf{v}
- $\mathbf{v} \cdot \mathbf{v}-\boldsymbol{a} \mathbf{v}=0$

■ Hence $\mathbf{v} \cdot \mathbf{u}-\mathbf{v} \cdot \boldsymbol{a} \mathbf{v}=\mathbf{v} \cdot \mathbf{u}-a \mathbf{v} \cdot \mathbf{v}=0$

- Which means $\mathbf{a v} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
- $\mathbf{a}=\frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{v} \cdot \mathbf{v}}=\frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{v}\|}$

Orthogonal Vectors, Orthonormal Basis

■ u and \mathbf{v} are called orthogonal, if $\mathbf{u} \cdot \mathbf{v}=0$

- They are perpendicular to each other, angle θ between them is 90°

■ u $\cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta=\|\mathbf{u}\|\|\mathbf{v}\| \cos 90^{\circ}=0$

- If \mathbf{u} and \mathbf{v} are orthogonal, then they are linearly independent

■ If $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}$ are pairwise orthogonal, they are all linearly independent

■ If bases of a space are all pairwise orthogonal, then they are called orthogonal bases

■ If they are unit vectors, they are called orthonormal basis
■ Verify that the standard bases make orthonormal bases of \mathbb{R}^{n}

Linear Functions

A function $f: \mathbb{R} \mapsto \mathbb{R}$ is called linear if

$$
\begin{aligned}
& 1 f(c x)=c f(x) \\
& 2 f(x+y)=f(x)+f(y)
\end{aligned}
$$

Linear Functions

A function $f: \mathbb{R} \mapsto \mathbb{R}$ is called linear if
$1 f(c x)=c f(x)$
$2 f(x+y)=f(x)+f(y)$

A function $f: \mathbb{R} \mapsto \mathbb{R}$ is linear if
A shorter version:

$$
1 f(a x+b y)=a f(x)+b f(x)
$$

- These imply that $f(0)=0$

■ Generally, functions of the form $g(x)=a x+b$ are called linear, which doesn't necessarily imply $g(0)=0$

- Functions like $g(\cdot)$ are technically and correctly called affine functions, which are linear functions followed by a translation

Dot Product as Linear Functions

For a fixed vector $\mathbf{a} \in \mathbb{R}^{n}$, define $f_{\mathrm{a}}: \mathbb{R}^{n} \mapsto \mathbb{R}^{1}$ as follows

$$
f_{\mathbf{a}}(\mathbf{x}):=\langle\mathbf{a}, \mathbf{x}\rangle=\mathbf{a} \cdot \mathbf{x}
$$

f_{a} is a linear function from \mathbb{R}^{n} to \mathbb{R}^{1}
In fact, it can be shown that these are the only functions that are linear

$$
\begin{gathered}
\mathbf{a}=\left[\begin{array}{l}
3 \\
4
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
2 \\
3
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
f_{\mathbf{a}}(4 \mathbf{x}+5 \mathbf{y})=\left[\begin{array}{l}
3 \\
4
\end{array}\right] \cdot\left(\left[\begin{array}{l}
4 * 2 \\
4 * 3
\end{array}\right]+\left[\begin{array}{l}
5 * 1 \\
5 * 2
\end{array}\right]\right)=\left[\begin{array}{l}
3 \\
4
\end{array}\right] \cdot\left[\begin{array}{l}
13 \\
22
\end{array}\right]=39+88=127 \\
4 f_{\mathbf{a}}(\mathbf{x})+5 f_{\mathbf{a}}(\mathbf{y})=4 * \underbrace{\left[\begin{array}{l}
3 \\
4
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
3
\end{array}\right]}_{18}+5 * \underbrace{\left[\begin{array}{l}
3 \\
4
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
2
\end{array}\right]}_{11}=4 * 18+5 * 11=127
\end{gathered}
$$

Linear Functions on Euclidean Space

■ For linear functions of the form $\mathbb{R}^{n} \mapsto \mathbb{R}^{m}$, for $m>1$
\triangleright vector functions - functions that output vectors in \mathbb{R}^{m}
■ Extend the notion of dot product as linear function as follows:
For m fixed vectors $\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \ldots \mathbf{a}_{\mathbf{m}} \in \mathbb{R}^{n}$, define $f_{\mathbf{a}_{1}, \mathbf{a}_{\mathbf{2}}, \ldots, \mathbf{a}_{\mathbf{m}}}: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ as:

$$
f_{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{m}}}(\mathbf{x}):=\left[\begin{array}{llll}
\mathbf{a}_{\mathbf{1}} \cdot \mathbf{x} & \mathbf{a}_{\mathbf{2}} \cdot \mathbf{x} & \ldots & \mathbf{a}_{\mathbf{m}} \cdot \mathbf{x}
\end{array}\right]^{T}
$$

$f_{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{m}}}$ is a linear function from \mathbb{R}^{n} to \mathbb{R}^{m}

- Again it can be shown that these are the only functions that are linear
- $f_{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{m}}}$ is represented by $m \times n$ matrix $T_{f}=\left[\begin{array}{cc}\overline{-} & a_{1} \\ a_{2} \\ \vdots \\ - & a_{m}\end{array}\right]$

■ Evaluated by matrix-vector product $f_{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{m}}}(\mathbf{x})=T_{f} \mathbf{x}$

$$
\triangleright T_{f} \mathbf{x} \text { is } n \times 1 \text { vector }
$$

Linear Functions on Euclidean Spaces

For m fixed vectors $\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \ldots \mathbf{a}_{\mathbf{m}} \in \mathbb{R}^{n}$, define $f_{\mathbf{a}_{1}, \mathbf{a}_{\mathbf{2}}, \ldots, \mathbf{a}_{\mathbf{m}}}: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ as:

$$
f_{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{m}}}(\mathbf{x}):=\left[\begin{array}{llll}
\mathbf{a}_{\mathbf{1}} \cdot \mathbf{x} & \mathbf{a}_{\mathbf{2}} \cdot \mathbf{x} & \ldots & \mathbf{a}_{\mathbf{m}} \cdot \mathbf{x}
\end{array}\right]^{T}
$$

$f_{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{m}}}$ is a linear function from \mathbb{R}^{n} to \mathbb{R}^{m}

- $f_{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathrm{m}}}$ is represented by $m \times n$ matrix $T_{f}=\left[\begin{array}{c}\overline{-}_{a_{1}} \\ a_{2} \\ \vdots \\ - \\ a_{m}\end{array}\right]$

■ Evaluated by matrix-vector multiplication $f_{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{m}}}(\mathbf{x})=T_{f} \mathbf{x}$

Linear Functions on Euclidean Spaces

For m fixed vectors $\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \ldots \mathbf{a}_{\mathbf{m}} \in \mathbb{R}^{n}$, define $f_{\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \ldots, \mathbf{a}_{\mathbf{m}}}: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ as:

$$
f_{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{m}}}(\mathbf{x}):=\left[\begin{array}{llll}
\mathbf{a}_{\mathbf{1}} \cdot \mathbf{x} & \mathbf{a}_{\mathbf{2}} \cdot \mathbf{x} & \ldots & \mathbf{a}_{\mathbf{m}} \cdot \mathbf{x}
\end{array}\right]^{T}
$$

- $T_{f}=\left[\begin{array}{c}\overline{-} \mathbf{a}_{1} \\ \mathbf{a}_{\mathbf{2}} \\ \vdots \\ \mathbf{a}_{\mathrm{m}}\end{array}\right] \quad \quad f_{\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{m}}}(\mathbf{x})=T_{f} \mathbf{x}$

$$
\mathbf{a}_{\mathbf{1}}=\left[\begin{array}{l}
3 \\
4
\end{array}\right], \quad \mathbf{a}_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
2 \\
3
\end{array}\right], \mathbf{y}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad T=\left[\begin{array}{ll}
3 & 4 \\
2 & 1
\end{array}\right]
$$

$T(4 \mathbf{x}+5 \mathbf{y})=\left[\begin{array}{ll}3 & 4 \\ 2 & 1\end{array}\right]\left(\left[\begin{array}{c}8 \\ 12\end{array}\right]+\left[\begin{array}{c}5 \\ 10\end{array}\right]\right)=\left[\begin{array}{ll}3 & 4 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}13 \\ 22\end{array}\right]=\left[\begin{array}{c}127 \\ 48\end{array}\right]$
$4 T \mathbf{x}+5 T \mathbf{y}=4\left[\begin{array}{ll}3 & 4 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 3\end{array}\right]+5\left[\begin{array}{ll}3 & 4 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}72 \\ 28\end{array}\right]+\left[\begin{array}{l}55 \\ 20\end{array}\right]=\left[\begin{array}{c}127 \\ 48\end{array}\right]$

Linear Functions on Euclidean Spaces

- Geometrically, linear functions (matrix-vector multiplications)
- maps the $\mathbf{0}$ vector (origin) to $\mathbf{0}$
- maps any straight line to a straight lines

■ maps any set of parallel lines to a set of parallel lines

Matrices as Linear Transform

- Linear functions, multiplications of $m \times n$ matrices with $n \times 1$ vectors output $m \times 1$ vectors

■ For any $m \times n$ matrix $T, \mathbf{y}=T \mathbf{x}$ is a linear function $\mathbb{R}^{n} \mapsto \mathbb{R}^{m}$

- Generally called linear transformation, because we are interested in how it transforms the whole space (\mathbb{R}^{n})
- and not in evaluating output on specific inputs
- or its properties as a function (injective, surjective, bijective etc.)
- Just a few quick terminology (while we still call it functions)
- Linear functions on Euclidean space are also called linear maps
- When $m=n$ (same $\mathbb{R}^{n} \mapsto \mathbb{R}^{n}$), they are called linear operators
- When the function is bijective (the corresponding matrix is invertible), they are called linear isomorphisms

Matrices as Linear Transform

Meaning of rows of a matrix A as a linear transform
Recall standard bases of \mathbb{R}^{n} (unit vectors along the axes)

$$
\mathbf{e}_{\mathbf{1}}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right], \mathbf{e}_{\mathbf{2}}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
\vdots
\end{array}\right], \ldots, \mathbf{e}_{\mathbf{n}}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
i
\end{array}\right]
$$

■ They help write awkward and wordy things concisely and precisely

Matrices as Linear Transform: Rows

Meaning of rows of a matrix A as a linear transform

- They help write awkward and wordy things concisely and precisely
- $\mathbf{e}_{\mathbf{i}}{ }^{T} A$ is the $i^{\text {th }}$ row of $A \quad\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$
- $\mathbf{e}_{\mathbf{i}}{ }^{T} A$ is $\mathbf{a}_{\mathbf{i}}$ in the definition of the function $f_{\mathbf{a}_{1}, \mathbf{a}_{\mathbf{2}}, \ldots, \mathbf{a}_{\mathbf{m}}}$ corresponding to A
- $\mathbf{e}_{\mathbf{i}}{ }^{T} A$ describes how to compute the $i^{t h}$ coordinate of result, $\mathbf{y}=A \mathbf{x}$

$$
\triangleright \mathbf{y}(i)=\mathbf{e}_{\mathbf{i}}^{T} A \cdot \mathbf{x}
$$

Matrices as Linear Transform

Meaning of columns of a matrix A as a linear transform

- $A \mathbf{e}_{\mathbf{i}}$ is the $i^{\text {th }}$ column of $A\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}2 \\ 5 \\ 8\end{array}\right]$
- $A \mathbf{e}_{\mathbf{i}}$ is the vector in R^{n} where $\mathbf{e}_{\mathbf{i}}$ maps to

■ So the columns of A are the locations in the range space $\left(\mathbb{R}^{m}\right)$, where the standard bases map to by the transform A

- This is the most important concept to understand

Matrices as Linear Transform

Meaning of columns of a matrix A as a linear transform

- The columns of A are the locations in the range space $\left(\mathbb{R}^{m}\right)$, where the standard bases map to by the transform A
- A linear transform is completely described by knowing where it maps the basis vectors
- Follows from linearity, as $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$ is actually $\mathbf{u}=u_{1} \mathbf{e}_{1}+u_{2} \mathbf{e}_{2}$
- $A \mathbf{u}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]=\left[\begin{array}{l}a u_{1}+b u_{2} \\ c u_{1}+d u_{2}\end{array}\right], \quad$ By linearity
- $A \mathbf{u}=A\left(u_{1} \mathbf{e}_{\mathbf{1}}+u_{2} \mathbf{e}_{2}\right)=u_{1} A \mathbf{e}_{1}+u_{2} A \mathbf{e}_{2}=u_{1}\left[\begin{array}{l}a \\ c\end{array}\right]+u_{2}\left[\begin{array}{l}b \\ d\end{array}\right]=\left[\begin{array}{c}a u_{1}+b u_{2} \\ c u_{1}+d u_{2}\end{array}\right]$
- Under A, the image of $\mathbf{u}=\left[\begin{array}{lll}u_{1} & \ldots & u_{n}\end{array}\right]^{T}$ is a linear combination of images of basis vectors $\left(A \mathbf{e}_{\mathbf{1}}, \ldots, A \mathbf{e}_{\mathbf{n}}\right)$ with coefficients u_{1}, \ldots, u_{n}

Common Linear Transformation

- We discuss some common transformation to master the concepts
- They are fundamental to computer graphics, image processing, computer vision and other CS disciplines
- In these fields, they mostly need affine transformation, which, as mentioned earlier, is linear transformation followed by translation
- We mainly focus on linear operators $\left(\mathbb{R}^{n} \mapsto \mathbb{R}^{n}\right)$ with $n=2$, but will mention some others to highlight certain concepts
- We discussed that a linear transformation (matrix) is completely described by its columns - images of standard bases vectors
- We will mainly just show the transformed bases vectors and the image of the 1×1 square in the first quadrant

Linear Transformation: Identity

- $A=I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ does not change any vectors
- $\mathbf{e}_{1}^{\prime}=A \mathbf{e}_{1}=\mathbf{e}_{1} \quad$ and $\quad \mathbf{e}_{2}^{\prime}=A \mathbf{e}_{2}=\mathbf{e}_{2}$
- For $\mathbf{u}=\left[\begin{array}{l}x \\ y\end{array}\right]=x \mathbf{e}_{1}+y \mathbf{e}_{2}, \quad A \mathbf{u}=x \mathbf{e}_{1}^{\prime}+y \mathbf{e}_{2}^{\prime}=\mathbf{u}$
- The space does not change, the unit square remains the same

Linear Transformation: Horizontal Scaling

■ $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$ stretches each vector by a factor of 2 horizontally
$■ \mathbf{e}_{1}^{\prime}=A \mathbf{e}_{1}=2 \mathbf{e}_{1} \quad$ and $\quad \mathbf{e}_{2}^{\prime}=A \mathbf{e}_{2}=\mathbf{e}_{2}$
■ For $\mathbf{u}=\left[\begin{array}{l}x \\ y\end{array}\right]=x \mathbf{e}_{\mathbf{1}}+y \mathbf{e}_{2}, \quad A \mathbf{u}=x \mathbf{e}_{\mathbf{1}}^{\prime}+y \mathbf{e}_{2}^{\prime}=\left[\begin{array}{c}2 x \\ y\end{array}\right]$
■ grid changes, unit square becomes 2×1 rectangle

Linear Transformation: Vertical Scaling

- $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ stretches each vector by a factor of 2 vertically
$■ \mathbf{e}_{1}^{\prime}=A \mathbf{e}_{1}=\mathbf{e}_{1} \quad$ and $\quad \mathbf{e}_{2}^{\prime}=A \mathbf{e}_{2}=2 \mathbf{e}_{2}$
- For $\mathbf{u}=\left[\begin{array}{l}x \\ y\end{array}\right]=x \mathbf{e}_{1}+y \mathbf{e}_{2}, \quad A \mathbf{u}=x \mathbf{e}_{1}^{\prime}+y \mathbf{e}_{2}^{\prime}=\left[\begin{array}{c}x \\ 2 y\end{array}\right]$
- grid changes, unit square becomes 1×2 rectangle

Linear Transformation: Uniform Scaling

- $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$ stretches each vector by a factor of 2 in both directions
$■ \mathbf{e}_{1}^{\prime}=A \mathbf{e}_{1}=2 \mathbf{e}_{1} \quad$ and $\quad \mathbf{e}_{2}^{\prime}=A \mathbf{e}_{2}=2 \mathbf{e}_{2}$
- For $\mathbf{u}=\left[\begin{array}{l}x \\ y\end{array}\right]=x \mathbf{e}_{1}+y \mathbf{e}_{2}, \quad A \mathbf{u}=x \mathbf{e}_{1}^{\prime}+y \mathbf{e}_{2}^{\prime}=\left[\begin{array}{l}2 x \\ 2 y\end{array}\right]$
- grid changes, unit square is uniformly stretched by a factor of 2

Linear Transformation: Uniform Scaling

Uniform Scaling Application

Linear Transformation: Non-Uniform Scaling

- $A=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]$ stretches vectors by factors 3 and 2
$■ \mathbf{e}_{1}^{\prime}=A \mathbf{e}_{1}=3 \mathbf{e}_{1} \quad$ and $\quad \mathbf{e}_{2}^{\prime}=A \mathbf{e}_{2}=2 \mathbf{e}_{2}$
- For $\mathbf{u}=\left[\begin{array}{l}x \\ y\end{array}\right]=x \mathbf{e}_{1}+y \mathbf{e}_{2}, \quad A \mathbf{u}=x \mathbf{e}_{1}^{\prime}+y \mathbf{e}_{2}^{\prime}=\left[\begin{array}{l}3 x \\ 2 y\end{array}\right]$
- grid changes, unit square becomes a 3×2 rectangle

Linear Transformation: Non-Uniform Scaling

- $A=\left[\begin{array}{cc}2 & 0 \\ 0 & .5\end{array}\right]$ stretches vectors by factor of 3 and $1 / 2$
$\square \mathbf{e}_{1}^{\prime}=A \mathbf{e}_{1}=2 \mathbf{e}_{1} \quad$ and $\quad \mathbf{e}_{2}^{\prime}=A \mathbf{e}_{2}=1 / 2 \mathbf{e}_{2}$
- For $\mathbf{u}=\left[\begin{array}{l}x \\ y\end{array}\right]=x \mathbf{e}_{1}+y \mathbf{e}_{2}, \quad A \mathbf{u}=x \mathbf{e}_{1}^{\prime}+y \mathbf{e}_{2}^{\prime}=\left[\begin{array}{l}2 x \\ y / 2\end{array}\right]$
- grid changes, unit square becomes a $2 \times 1 / 2$ rectangle

Linear Transformation: Non-Uniform Scaling

Non-Uniform Scaling Application

Linear Transformation: Negative Scaling

- $A=\left[\begin{array}{cc}-1 & 0 \\ 0 & 2\end{array}\right]$ stretches each vector by a factor of -1 horizontally and by a factor of 2 vertically
- $\mathbf{e}_{1}^{\prime}=A \mathbf{e}_{1}=-1 \mathbf{e}_{1} \quad$ and $\quad \mathbf{e}_{2}^{\prime}=A \mathbf{e}_{2}=2 \mathbf{e}_{2}$
- For $\mathbf{u}=\left[\begin{array}{l}x \\ y\end{array}\right]=x \mathbf{e}_{1}+y \mathbf{e}_{2}, \quad A \mathbf{u}=x \mathbf{e}_{1}^{\prime}+y \mathbf{e}_{2}^{\prime}=\left[\begin{array}{c}-x \\ 2 y\end{array}\right]$
- grid changes, unit square becomes a 1×2 rectangle but flipped across

Linear Transformation: Horizontal Mirror

- $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ reflects each vector across vertical axis
- grid stays the same with different orientation, unit square is mirrored through horizontal axis

Linear Transformation: Vertical Mirror

- $A=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$ reflects each vector across vertical axis
- grid stays the same with different orientation, unit square is mirrored through horizontal axis

Linear Transformation: Vertical Mirror

Reflection/Mirror Application

Linear Transformation: Diagonal Mirror

- $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ reflects each vector across 45° mirror
- grid stays the same with different orientation, unit square is mirrored through 45° mirror

Linear Transformation: Other Diagonal Mirror

- $A=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$ reflects each vector across 45° mirror
- grid changes, unit square is mirrored through the other diagonal mirror

Linear Transformation: Horizontal Shear

- $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ leaves horizontal dimension intact and skew each vector in vertical dimension (horizontal shear)
- unit square becomes a parallelogram

Linear Transformation: Horizontal Shear

Horizontal Shear Application

Linear Transformation: Vertical Shear

- $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ leaves vertical dimension intact and skew each vector in horizontal dimension (horizontal shear)
- unit square becomes a parallelogram

Linear Transformation: Vertical Shear

Vertical Shear Application

NatWest

Linear Transformation: Shear

- $A=\left[\begin{array}{ll}1 & 1 \\ 0 & s\end{array}\right]$ vertical shear and $A=\left[\begin{array}{ll}s & 0 \\ 1 & 1\end{array}\right]$ horizontal shear
- unit square becomes a parallelogram

Linear Transformation: Rotation

- $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ rotates every vector by 90° clockwise
- unit square rotates to the adjacent unit square

Linear Transformation: Rotation

■ $A=\left[\begin{array}{cc}.5253 & -.8509 \\ .8509 & .5253\end{array}\right]$ rotates every vector by 45° clockwise

- unit square rotates by 45°

Linear Transformation: Rotation

- $A=\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$ rotates every vector by θ clockwise

■ unit square rotates by θ clockwise

Linear Transformation: Rotation

Rotation Applications

Linear Transformation: Projection

- Let \mathbf{v} be a vector, let ℓ be a line in the direction of \mathbf{v}
- Projection of \mathbf{u} on ℓ (or on \mathbf{v}) is the point \mathbf{p} on ℓ that is closest to \mathbf{u}
- \mathbf{p} is scaled vector hat $(v) \quad p=a \hat{\mathbf{v}}$
$\triangleright a$: scalar projection or projection length
- $\mathbf{u}-p=\mathbf{u}-a \hat{\mathbf{v}}$ is perpendicular on $\hat{\mathbf{v}}$
- $\mathbf{v} \cdot \mathbf{v}-\boldsymbol{a} \mathbf{v}=0$
- Hence $\mathbf{v} \cdot \mathbf{u}-\mathbf{v} \cdot \mathbf{a v}=\mathbf{v} \cdot \mathbf{u}-a \mathbf{v} \cdot \mathbf{v}=0$
- Which means $a \mathbf{v} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
$\square a=\frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{v} \cdot \mathbf{v}}=\frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{v}\|}$
The vector projection, \mathbf{p} is given by $\mathbf{p}=\frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{v}\|} \hat{\mathbf{v}}=\frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{v}\|} \frac{\mathbf{v}}{\|\mathbf{v}\|}=\frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{v}\|^{\mathbf{2}}} \mathbf{v}$

Linear Transformation: Projection

The vector projection, \mathbf{p} is given by $\mathbf{p}=\frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{v}\|} \hat{\mathbf{v}}=\frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{v}\|} \frac{\mathbf{v}}{\|\mathbf{v}\|}=\frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{v}\|^{2}} \mathbf{v}$

- For unit vector $\hat{\mathbf{v}}$, the vector projection, \mathbf{p} of \mathbf{u} on $\hat{\mathbf{v}}$ is $\mathbf{p}=(\mathbf{u} \cdot \hat{\mathbf{v}}) \hat{\mathbf{v}}$

$$
\begin{aligned}
\mathbf{p} & =(\mathbf{u} \cdot \hat{\mathbf{v}}) \hat{\mathbf{v}}=\left(\left[\begin{array}{l}
x \\
y
\end{array}\right] \cdot\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)\left[\begin{array}{l}
a \\
b
\end{array}\right]=(x a+y b)\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
& =\left[\begin{array}{l}
x a^{2}+y a b \\
x a b+y b^{2}
\end{array}\right]=\left[\begin{array}{ll}
a^{2} & a b \\
a b & b^{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
\end{aligned}
$$

- $A=\left[\begin{array}{ll}a^{2} & a b \\ a b & b^{2}\end{array}\right]$ projects every vector onto the unit vector $\left[\begin{array}{l}a \\ b\end{array}\right]$

Composition of Linear Transformation

Any image processing operation (linear) can be described as combination of the above elementary transformation

Composing transformations
■ Want to transform an object, then transform it some more

$$
\mathbf{u} \mapsto g(\mathbf{u}) \mapsto f(g(\mathbf{u})) \quad:=(f \circ g)(\mathbf{u})
$$

■ Represent $(f \circ g)(\cdot)$ using same representation as for f and g (matrix) $\triangleright($ "f compose g")

- Let S and T be the corresponding matrices for f and g, resp.
$\square f(\mathbf{u})=S \mathbf{u}$ and $g(\mathbf{u})=T \mathbf{u}$
■ $f \circ g(\mathbf{u})=S T \mathbf{u}$

Composition of Linear Transformation

90° rotation followed by horizontal shear
$\underbrace{S=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]}_{\text {shear }} \quad \underbrace{T=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]}_{\text {rotation }}$
$\mathbf{e}_{1}^{\prime}=T \mathbf{e}_{1}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \quad$ and $\quad \mathbf{e}_{2}^{\prime}=T \mathbf{e}_{2}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$
$S \mathbf{e}_{1}^{\prime}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
$S \mathbf{e}_{2}^{\prime}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{c}-1 \\ 0\end{array}\right]=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$
$S T=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right]$

Composition of Linear Transformation

$S=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$

$T \mathbf{e}_{\mathbf{1}}^{\prime}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

$$
T \mathbf{e}_{2}^{\prime}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
$$

$T=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$

$\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right]$

Composition of Linear Transformation

- Transforming first by T then by S is the same as transforming by $S T$
- In general, composition is not commutative
- Generally, $S T \neq T S$

■ Note that $S \circ T$, is applying T first and S second
■ We can compose many transformation $S \circ T \circ R$

Simultaneous Equations: Solving $A \mathbf{x}=\mathbf{b}$

Consider the following scenario

- ISB metro has 3 bridges, 4 stations, 20km length and cost is 20b

■ Lahore metro has 2 bridges, 6 stations, 27 km length and cost is 27 b
■ Multan metro has 3 bridges, 5 stations, 22km length and cost is 24b

- You want another metor with 4 bridges, 5 stations and 25 km length, what will be the cost?
- If we have cost per bridge, per station, per km then we can solve it

$3 b+4 s+20 \ell=20$
$2 b+6 s+27 \ell=27$
$3 b+5 s+22 \ell=24$

2 \& 6 \& 27

3 \& 5 \& 22\end{array}\right]\left[$$
\begin{array}{l}b \\
s \\
\ell\end{array}
$$\right]=\left[$$
\begin{array}{l}20 \\
27 \\
24\end{array}
$$\right]:=A \mathbf{x}=\mathbf{b}\)

Which vector \mathbf{x} the transformation A maps to \mathbf{b} ? (the reverse question)

Simultaneous Equations: Solving $A \mathbf{x}=\mathbf{b}$

Solving $A \mathbf{x}=\mathbf{b}$

For a matrix A, let A^{-1} be a matrix such that

$$
A^{-1} A=\mathbb{I}
$$

Composing A^{-1} with A gives solution to $A \mathbf{x}=\mathbf{b}$
$A^{-1} A \mathbf{x}=A^{-1} \mathbf{b} \Longrightarrow I \mathbf{x}=A^{-1} \mathbf{b}$
A^{-1} is called the inverse of A, if we can find it then we can solve $A \mathbf{x}=\mathbf{b}$

Linear Transformation: Determinant and Inverse

$\left[\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right]$

$\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]\left[\begin{array}{l}b \\ d\end{array}\right]$

$$
\left[\begin{array}{cc}
-a & 0 \\
0 & -d
\end{array}\right]
$$

The area of this new parallelogram (the transformed unit square) $a d-b c$ in $2 d$ is called the determinant of the matrix $A, \operatorname{det}(A)$

$$
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]\right)=0
$$

■ Columns of A are linearly dependent \Longrightarrow determinant is 0
■ This matrix is not invertible

Change of Bases

If $B=\left\{\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}, \ldots, \mathbf{b}_{\mathbf{n}}\right\}$ is a basis for $\mathbb{R}^{\boldsymbol{n}}$, then any vector $\mathbf{x} \in \mathbb{R}^{\boldsymbol{n}}$
■ can be expressed uniquely as $\mathbf{x}=\beta_{1} \mathbf{b}_{1}+\beta_{2} \mathbf{b}_{2}+\ldots+\beta_{n} \mathbf{b}_{\mathbf{n}}$
■ the scalars $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ are the coordinates of \mathbf{x} w.r.t the basis B
$\square \mathbf{x}$ is denoted by $\mathbf{x}_{B}=\left[\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right]_{B}^{T}$

Let A be the standard basis, $A=\left\{\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{\mathbf{n}}\right\}$
Let $\quad \mathbf{x}_{A}:=\left[\begin{array}{llll}\alpha_{1} & \alpha_{2} & \ldots & \alpha_{n}\end{array}\right]_{A}^{T}$
To find coordinates of \mathbf{x} w.r.t B, i.e. $\quad \mathbf{x}_{B}=\left[\begin{array}{llll}\beta_{1} & \beta_{2} & \ldots & \beta_{n}\end{array}\right]_{B}^{T}$
Solve the linear system of equations $\quad \mathbf{x}=\beta_{1} \mathbf{b}_{1}+\beta_{2} \mathbf{b}_{2}+\ldots+\beta_{n} \mathbf{b}_{\mathbf{n}}$

Change of Bases

Let $\quad \mathbf{x}_{A}:=\left[\begin{array}{llll}\alpha_{1} & \alpha_{2} & \ldots & \alpha_{n}\end{array}\right]_{A}^{T}$
To find coordinates of \mathbf{x} w.r.t B, i.e. $\quad \mathbf{x}_{B}=\left[\begin{array}{llll}\beta_{1} & \beta_{2} & \ldots & \beta_{n}\end{array}\right]_{B}^{T}$
Solve the linear system of equations $\quad \mathbf{x}=\beta_{1} \mathbf{b}_{1}+\beta_{2} \mathbf{b}_{2}+\ldots+\beta_{n} \mathbf{b}_{\mathbf{n}}$
B : the matrix with basis vectors as columns, $\Longrightarrow B$ is invertible

$$
\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{b}_{1} & \mathbf{b}_{2} & \ldots & \mathbf{b}_{\mathbf{n}} \\
\mid & \mid & & \mid
\end{array}\right]\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{n}
\end{array}\right]_{B}=\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right]_{A}
$$

$\left[\begin{array}{ll}2 & 3\end{array}\right]_{B}$ means go 2 and 3 steps in directions \mathbf{b}_{1} and \mathbf{b}_{2}. We need to know \mathbf{b}_{1} and \mathbf{b}_{2} in coordinate system of A. Because in B 's coordinates they are $\left[\begin{array}{ll}1 & 0\end{array}\right]_{B}^{T}$ and $\left[\begin{array}{ll}0 & 1\end{array}\right]_{B}^{T}$

$$
\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{b}_{1} & \mathbf{b}_{2} & \ldots & \mathbf{b}_{\mathbf{n}} \\
\mid & \mid & & \mid
\end{array}\right]^{-1}\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right]_{A}=\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{n}
\end{array}\right]_{B}
$$

Change of Bases

$$
\mathbf{b}_{1}=\left[\begin{array}{l}
3 \\
1
\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

Change of Bases

$$
\mathbf{b}_{1}=\left[\begin{array}{l}
3 \\
1
\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

Change of Bases

$$
\begin{aligned}
& \mathbf{b}_{1}=\left[\begin{array}{l}
3 \\
1
\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right] \\
& {\left[\begin{array}{cc}
3 & -2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
3
\end{array}\right]} \\
& {\left[\begin{array}{cc}
3 & -2 \\
1 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
4 \\
3
\end{array}\right]} \\
& =\left[\begin{array}{cc}
.2 & .4 \\
-.2 & .6
\end{array}\right]\left[\begin{array}{l}
4 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\end{aligned}
$$

Transformation in different Bases

- Apply transformation T to vector x_{B}
- T is given in coordinate system of A, we cannot do $T \mathbf{x}_{B}$
- Previously we translated vector from one coordinates system to other

■ Now we need to do it for transformation

■ Let T_{B} be the transformation in B coordinate system then

$$
T_{B}=B^{-1} T B
$$

- By the same reasoning

$$
T=B T_{B} B^{-1}
$$

Transformation in different Bases

$$
\left[\begin{array}{cc}
.2 & .4 \\
-.2 & .6
\end{array}\right] \underbrace{\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]}_{90^{\circ} \text { rotation }}\left[\begin{array}{cc}
3 & -2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

Transformation in different Bases

- Translation of vectors and linear transformation between standard bases and another basis B

■ Vectors in B are bases vectors (linearly independent) i.e. B is invertible
$B=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ \mathbf{b}_{1} & \mathbf{b}_{2} & \ldots & \mathbf{b}_{\mathrm{n}} \\ \mid & \mid & & \mid\end{array}\right]$
$T_{B}=B^{-1} T B$

$$
T=B T_{B} B^{-1}
$$

Eigenvalue and Eigenvectors

■ Eigenvalue/eigenvectors are extremely important concepts related to linear transformation

- Has fundamental applications in large graph analysis

■ Google's pagerank algorithm and Ask's HITS algorithm

- Spectral clustering
- Matrix decomposition
- Recommender systems
- Diffusion Processes and Immunization
- Dynamic systems and many more

Eigenvalue and Eigenvectors: Definition

Eigenvalue and Eigenvectors: Definition

- Recall matrices as linear transformation and our view of how the whole space is transformed
- We visualize transformation of the space by observing transformation of the "unit square" (2×2 square centered at the origin)
- Notice some vectors do not change their directions with transformation

Eigenvalue and Eigenvectors: Definition

■ $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ does not change direction or size
$\square \begin{aligned} & {\left[\begin{array}{l}0 \\ 1\end{array}\right] \text { does not change direction, size is }} \\ & \text { doubled }\end{aligned}$

- $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ changes direction and size

The horizontal and vertical vectors are special, they are called eigenvectors Horizontal vector size does not change so the corresponding eigenvalue is 1 Vertical vector's size is doubled so the corresponding eigenvalue is 2

Eigenvalue and Eigenvectors: Definition

- $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ does not change direction or size
- $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ changes direction and size
- $\left[\begin{array}{c}-.6 \\ 1\end{array}\right]$ changes direction and size

The horizontal vector is special called eigenvector
Horizontal vector size does not change so the corresponding eigenvalue is 1

Eigenvalue and Eigenvectors: Definition

- $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ rotates by 45°
- $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ rotates by 45°

■ $\left[\begin{array}{c}-.6 \\ 1\end{array}\right]$ rotates by 45°

All vectors change their span

Eigenvalue and Eigenvectors: Definition

- $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ does not change span and size is
- $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ does not change span and size is
doubled
- $\left[\begin{array}{l}1 \\ 1 \\ \text { doubled }\end{array}\right.$ does not change span and size is

All vectors stay on their spans and sizes are doubled

Eigenvalue and Eigenvectors: Definition

- $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ does not change span and size is scaled by -1
- $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ does not change span and size is scaled by -1
$\square\left[\begin{array}{l}1 \\ 1\end{array}\right]$ does not change span and size is

All vectors stay on their spans and sizes are doubled

Eigenvalue and Eigenvectors: Definition

- $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ does not change span and size
- $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ changes its span and size
- $\left[\begin{array}{l}.4472 \\ .8944\end{array}\right]$ does not change span and size is increased

All other vectors change their span

Eigenvalue and Eigenvectors: Computation

- eigen (German) means "self"' or "characteristic"

■ eigenvectors := "self vectors" or "characteristic vectors"

- Transform the space
- Find vectors that remain on the same span (these are eigenvectors)
- Measure how their lengths have changed (corresponding eigenvalues)
- Clearly, cannot do it geometrically, think of higher dimensions
- For a square matrix A, solve $A \mathbf{x}=\lambda \mathbf{x}$ for \mathbf{x}

■ \mathbf{x} is a vector that stays on its span, just scales by a factor of λ

- There is no change of direction (span) of \mathbf{x}

■ Solutions \mathbf{x} 's are called eigenvectors of A
■ λ is called the eigenvalue corresponding to \mathbf{x}

Eigenvalue and Eigenvectors: Definition

■ By linearity, vectors on a line map to a line, all vectors on the span of an eigenvectors are also eigenvectors

Eigenvalue and Eigenvectors: Definition

- In 2d rotation all vectors change their spans (except 180° rotation)
- In 3d x-axis and y-axis change their spans but z-axis does not
- These are eigenvectors of this rotation
- Physically, this is the axis of rotation

Eigenvalue and Eigenvectors: Computation

$$
[\mathbf{x}, \lambda] \text { is an eigen pair } \Leftrightarrow A \mathbf{x}=\lambda \mathbf{x}
$$

- LHS is matrix-vector product, RHS is scalar-vector product
- Convert RHS to $\lambda \mathbb{I} \mathbf{x}$ ($\lambda \mathbb{I}$ is the uniform scaling matrix)
- This makes the math work but does not change the meaning

$$
[\mathbf{x}, \lambda] \text { is an eigen pair } \Leftrightarrow A \mathbf{x}-\lambda \mathbb{I} \mathbf{x}=\mathbf{0} \Leftrightarrow(A-\lambda \mathbb{I}) \mathbf{x}=\mathbf{0}
$$

- $\mathbf{x}=\mathbf{0}$ is a trivial solution (no length or direction)
- We want \mathbf{x} that is mapped to $\mathbf{0}$ by the linear transform $(A-\lambda \mathbb{I})$
- A transformation maps a non-zero vector to $\mathbf{0}$ only if it's determinant is $\mathbf{0}$
- \therefore we find λ such that $\operatorname{det}(A-\lambda \mathbb{I})=0$
- Once we get the transformation, solve the system of linear equation to $(A-\lambda \mathbb{I}) \mathbf{x}=\mathbf{0}$ to find \mathbf{x}

Eigenvalue and Eigenvectors: Computation

- $\operatorname{det}\left(\left[\begin{array}{cc}1-\lambda & 0 \\ 0 & 2-\lambda\end{array}\right]\right)=(1-\lambda)(2-\lambda)$

■ $(1-\lambda)(2-\lambda)=0 \Longrightarrow \lambda=1$ or $\lambda=2$
$\underbrace{\left[\begin{array}{cc}1-1 & 0 \\ 0 & 2-1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]}_{\text {@ } \lambda=1:}$
$\Longrightarrow\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$\Longrightarrow\left[\begin{array}{l}0 \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Longrightarrow \mathbf{x}=\left[\begin{array}{l}t \\ 0\end{array}\right]$
$\left[1,\left[\begin{array}{l}t \\ 0\end{array}\right]\right.$ is an eigenpair

$$
\underbrace{\left[\begin{array}{cc}
1-2 & 0 \\
0 & 2-2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}_{@ \lambda=2:}
$$

$$
\Longrightarrow\left[\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
\Longrightarrow\left[\begin{array}{c}
-x_{1} \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Longrightarrow \mathbf{x}=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
$$

$\left[2,\left[\begin{array}{l}0 \\ t\end{array}\right]\right.$ is an eigenpair

Eigenvalue and Eigenvectors: Computation

$\square \operatorname{det}\left(\left[\begin{array}{cc}1-\lambda & 1 \\ 0 & 1-\lambda\end{array}\right]\right)=(1-\lambda)^{2}$
$\square(1-\lambda)^{2}=0 \Longrightarrow \lambda=1$
$\underbrace{\left[\begin{array}{cc}1-1 & 1 \\ 0 & 1-1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]}_{0 \lambda=1:}$
$\Longrightarrow\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Longrightarrow\left[\begin{array}{c}x_{2} \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Longrightarrow \mathbf{x}=\left[\begin{array}{l}t \\ 0\end{array}\right]$
$\left[1,\left[\begin{array}{l}t \\ 0\end{array}\right]\right.$ is an eigenpair

Eigenvalue and Eigenvectors: Computation

- $\operatorname{det}\left(\left[\begin{array}{cc}0-\lambda & -1 \\ 1 & 0-\lambda\end{array}\right]\right)=(0-\lambda)^{2}-(1)(-1)$

■ $(-\lambda)^{2}+1=0 \Longrightarrow \lambda^{2}=-1$

- No real λ as solution

Hence no real eigenvectors

Eigenvalue and Eigenvectors: Computation

- $\operatorname{det}\left(\left[\begin{array}{cc}2-\lambda & 0 \\ 0 & 2-\lambda\end{array}\right]\right)=(2-\lambda)^{2}$
- $(2-\lambda)^{2}=0 \Longrightarrow \lambda=2$

$\underbrace{\left[\begin{array}{cc}2-2 & 0 \\ 0 & 2-2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]}_{@ \lambda=2:}$
$\Longrightarrow\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Longrightarrow\left[\begin{array}{l}0 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Longrightarrow \mathbf{x}=\left[\begin{array}{l}t_{1} \\ t_{2}\end{array}\right]$
All vectors are eigenvectors with eigenvalue 2

Transformation in different Bases

- Translation of vectors and linear transformation between standard bases and another bases B
- Vectors in B are basis vectors (linearly independent) B is invertible

$$
\begin{array}{r}
B=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{b}_{1} & \mathbf{b}_{2} & \ldots & \mathbf{b}_{\mathrm{n}} \\
\mid & \mid & & \mid
\end{array}\right] \\
T_{B}=B^{-1} T B
\end{array}
$$

$$
T=B T_{B} B^{-1}
$$

Eigenbases: Diagonalization

■ Let T be a $n \times n$ linear transformation
\square Let $B=\left\{\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}\right\}$ be bases - vectors in B are eigenvectors of T
■ For $1 \leq i \leq n, \quad T \mathbf{b}_{\mathbf{i}}=\lambda_{i} \mathbf{b}_{\mathbf{i}}$
■ Note there must be n vectors in B

$$
\begin{array}{r}
B=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{b}_{1} & \mathbf{b}_{2} & \ldots & \mathbf{b}_{\mathrm{n}} \\
\mid & \mid & & \mid
\end{array}\right] \\
T_{B}=B^{-1} T B
\end{array}
$$

$$
T=B T_{B} B^{-1}
$$

■ How does $T \mathbf{x}$ looks like in eigenbasis?

Eigenbases: Diagonalization

- Let T be a $n \times n$ linear transformation

■ Let $B=\left\{\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}\right\}$ be bases - vectors in b are eigenvectors of T
$■$ For $1 \leq i \leq n, \quad T \mathbf{b}_{\mathbf{i}}=\lambda_{i} \mathbf{b}_{\mathbf{i}}$

$$
T_{B}=B^{-1} T B
$$

$$
T=B T_{B} B^{-1}
$$

■ How does $T \mathbf{x}$ looks like in eigenbasis?

$$
\begin{aligned}
T \mathbf{x} & =T\left(\alpha_{1} \mathbf{e}_{\mathbf{1}}+\ldots+\alpha_{n} \mathbf{e}_{\mathbf{n}}\right)=T\left(\beta_{1} \mathbf{b}_{\mathbf{1}}+\ldots+\beta_{n} \mathbf{b}_{\mathbf{n}}\right) \\
& =\beta_{1} T \mathbf{b}_{\mathbf{1}}+\ldots+\beta_{n} T \mathbf{b}_{\mathbf{n}}=\beta_{1} \lambda_{1} \mathbf{b}_{\mathbf{1}}+\ldots+\beta_{n} \lambda_{n} \mathbf{b}_{\mathbf{n}} \\
& =\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{b}_{1} & \mathbf{b}_{2} & \ldots & \mathbf{b}_{\mathbf{n}} \\
\mid & \mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{n}
\end{array}\right]=B D \mathbf{x}_{\mathbf{B}}=B D B^{-1} \mathbf{x}
\end{aligned}
$$

Eigenbases: Diagonalization

- Let T be a $n \times n$ linear transformation

■ Let $B=\left\{\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}\right\}$ be bases - vectors in b are eigenvectors of T

- For $1 \leq i \leq n, \quad T \mathbf{b}_{\mathbf{i}}=\lambda_{i} \mathbf{b}_{\mathbf{i}}$

$$
B=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{b}_{1} & \mathbf{b}_{2} & \ldots & \mathbf{b}_{\mathbf{n}} \\
\mid & \mid & & \mid
\end{array}\right] \quad D=\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]
$$

$$
T \mathbf{x}=B D B^{-1} \mathbf{x}
$$

■ Very easy to take T to a higher power (compose it many times)

- $T=B D B^{-1}$
- $T^{2}=B D B^{-1} B D B^{-1}=B D D B^{-1}=B D^{2} B^{-1}$
- $T^{3}=B D^{2} B^{-1} B D B^{-1}=B D^{2} D B^{-1}=B D^{3} B^{-1}$
- $T^{4}=B D^{3} B^{-1} B D B^{-1}=B D^{3} D B^{-1}=B D^{4} B^{-1}$

■ $T^{k}=\ldots=B D^{k} B^{-1}$

Eigenbases: Diagonalization

■ Let T be a $n \times n$ linear transformation
■ Let $B=\left\{\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}\right\}$ be bases - vectors in b are eigenvectors of T
■ For $1 \leq i \leq n, \quad T \mathbf{b}_{\mathbf{i}}=\lambda_{i} \mathbf{b}_{\mathbf{i}}$

$$
T \mathbf{x}=B D B^{-1} \mathbf{x}
$$

- $T^{k}=B D^{k} B^{-1}$

$$
D^{k}=\left[\begin{array}{lll}
\lambda_{1}^{k} & & \\
& \ddots & \\
& & \lambda_{n}^{k}
\end{array}\right]
$$

Powers of Matrices:

Suppose T represents the change in location of a particle per second

Find location of the particle after two weeks

Powers of Matrices:

Fibonacci numbers $F_{n}, 0,1,1,2,3,5,8,13,21, \ldots$

$$
F_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-2}+F_{n-1} & \text { if } n \geq 2\end{cases}
$$

Let $T=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
$\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{ll}2 \\ 1\end{array}\right] \quad\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}3 \\ 2\end{array}\right] \quad\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}3 \\ 2\end{array}\right]=\left[\begin{array}{l}5 \\ 3\end{array}\right] \quad\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}5 \\ 3\end{array}\right]=\left[\begin{array}{ll}8 \\ 5\end{array}\right] \quad\left[\begin{array}{cc}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}8 \\ 5\end{array}\right]=\left[\begin{array}{c}13 \\ 8\end{array}\right]$

$$
\left[\begin{array}{c}
F_{k+2} \\
F_{k+1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
F_{k+1} \\
F_{k}
\end{array}\right] \quad\left[\begin{array}{l}
F_{k+2} \\
F_{k+1}
\end{array}\right]=T^{k}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

$$
F_{k}=\frac{\lambda_{1}^{k}-\lambda_{2}^{k}}{\lambda_{1}-\lambda_{2}}=\frac{(1+\sqrt{5})^{k}-(1-\sqrt{5})^{k}}{2^{k} \sqrt{5}}
$$

Powers of Matrices:

First order linear recurrence relation

$$
\begin{aligned}
& x_{t+1}=a x_{t} \\
& x_{0}=3 \\
& x_{t+1}=3 x_{t}+5 y_{t} \\
& y_{t+1}=4 x_{t}-2 y_{t} \\
& x_{0}=2, y_{0}=3
\end{aligned}
$$

Coupled system of recurrence relations

Model many practical scenarios in population dynamics, economics, epidemiology, computing, signal processing

$$
\begin{aligned}
& \text { Let } \mathbf{u}_{\mathbf{t}}=\left[\begin{array}{l}
x_{t} \\
y_{t}
\end{array}\right] \\
& \mathbf{u}_{\mathbf{0}}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
& T=\left[\begin{array}{cc}
3 & 5 \\
4 & -2
\end{array}\right]
\end{aligned}
$$

$\square \mathbf{u}_{\mathbf{1}}=T \mathbf{u}_{\mathbf{0}}$
$\square \mathbf{u}_{2}=T \mathbf{u}_{1}=T T \mathbf{u}_{\mathbf{0}}=T^{2} \mathbf{u}_{0}$
$\square \mathbf{u}_{3}=T \mathbf{u}_{2}=T T^{2} \mathbf{v}_{\mathbf{0}}=T^{3} \mathbf{u}_{\mathbf{0}}$
■
$\square \mathbf{u}_{\mathbf{k}}=T^{k} \mathbf{u}_{\mathbf{0}}$

Random Walk

- Suppose the blue dot starts at 0
- At every step if it is at number i, then with probability $1 / 2$ it goes $i+1$ and and with probability $1 / 2$ it goes to $i-1$
- How many steps would it take to reach 6 or -8 ?
- What is root mean squared distance the - covers in n steps?
- Many possible extensions
- Lazy walks: with prob. ${ }^{1 / 2}$ stay at i, move to $i \pm 1$ each prob $1 / 4$
- Biased walks: with prob. $3 / 4$ move to $i+1$ and $1 / 4$ move to $i-1$

■ Biased walks: with prob. $1 / 2$ move to $i+b$ and $1 / 2$ move to $i-1$

- Models many things: stock prices fluctuations, gambling outcomes, team results in a game's season, molecules movements

Random Walk Generalizations

At every step • goes $\{U p$, Down, Left, Right $\}$ with probability $1 / 4$

- Random walk on grid

■ Random walk in space, often called Brownian motion
■ Model movements of particles in liquid or gas. The particle undertake random walk caused by momentum imparted to it by molecules in random directions

Random Walk on Graphs

- Let $G=(V, E)$ be a graph or digraph
- Let $d(u)$ be the degree of $u \in v$
- A random walker starts at some vertex $v_{0} \in V$

■ At every step if the walker is at vertex u, it picks randomly moves to a random (out) neighbor of u

- The probability that current vertex is u and next vertex is $v \in N(u)$ is $1 / d(u)$ or $1 / d^{+}(u)$ (for digraphs)

Markov Chain

- A Markov chain is a stochastic process defined on finite number of states
- The changes of state of system are called transition
- Transitions probabilities b / w states are given in transition matrix T

■ Let X_{n} be the state of the system at time n

- $T(i, j):=\operatorname{Pr}\left[X_{n+1}=i \mid X_{n}=j\right]$: prob. that system goes from state j to i
- $0 \leq T(i, j) \leq 1$ and columns sum to 1
\triangleright column-stochastic
- Memoryless process: $T(i, j)$ does not depend on the history of transitions

$$
\triangleright \text { Markovian property }
$$

■ Given present state, the past and future states are independent

$$
\left[\begin{array}{lll}
0.0 & 0.1 & 0.5 \\
0.1 & 0.0 & 0.5 \\
0.9 & 0.9 & 0.0
\end{array}\right]
$$

Markov Chain

■ Bounded Random Walk on integers $\{-3, \ldots, 3\}$

- The - begins at 0
- If - is at ± 3, then with prob. 1 it goes to ± 2
- If \bullet is at $i \neq \pm 3$, then with prob. . 5 it goes to $i \pm 1$
$-\left[\begin{array}{ccccccc}0 & .5 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & .5 & 0 & 0 & 0 & 0 \\ 0 & .5 & 0 & .5 & 0 & 0 & 0 \\ 0 & 0 & .5 & 0 & .5 & 0 & 0 \\ 0 & 0 & 0 & .5 & 0 & .5 & 0 \\ 0 & 0 & 0 & 0 & .5 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & .5 & 0\end{array}\right]$

Language Recognition System

- Smartphones next words suggestions use language generation
- The first i words are typed, what will be the $(i+1)$ st word?
- Model language generation as a Markov chain
\triangleright not realistic
- States correspond to last used words (say vocabulary has 1000 words)
- Transition probabilities $p_{w_{i} w_{j}}:=\operatorname{Pr}\left[w_{j} \mid w_{i}\right]:=\frac{\operatorname{freq}\left(w_{i} w_{j}\right)}{\operatorname{freq}\left(w_{i}\right)}$
- Estimate the 1000×1000 probabilities from a large text corpus

■ Probability of generating a text $w_{1} w_{2} w_{3} w_{4} w_{5}$ is
$p_{w_{1}} p_{w_{1} w_{2}} p_{w_{2} w_{3}} p_{w_{3} w_{4}} p_{w_{4} w_{5}}$

- $p_{w_{i}}$ is (empirical prob) frequency of w_{i} as first word in the corpus

■ Can extend it by estimating $p_{w_{i}} w_{j} w_{k}:=\operatorname{Pr}\left[w_{k} \mid w_{i} w_{j}\right]$

Markov Chain

- Instead of thinking that the system is in a given state at time t, consider
- a vector \mathbf{x} specifying probability distribution of system being in all states
- $\mathbf{x}^{(\mathbf{t})}$ is probability distribution at time $t, \mathbf{x}^{\mathbf{t}}{ }_{i} \geq 0, \sum_{i} \mathbf{x}^{\mathbf{t}}{ }_{i}=1$
- $\mathbf{x}^{(\mathbf{t}+\mathbf{1})}=T \mathbf{x}^{(\mathbf{t})}$
- By Markovian property, probability of going from j to i in two steps is $\sum_{k} T(k, j) T(i, k)=T^{2}(i, j)$
- probability of going from j to i in s steps is $T^{s}(i, j)$

Markov Chain

- $\mathbf{x}^{(\mathbf{t})}$: prob. distribution at time t

■ $\mathbf{x}^{(\mathbf{t}+\mathbf{1})}=T \mathbf{x}^{(\mathbf{t})}$

A distribution π is a stationary distribution for Markov chain T, if

$$
T \pi=\pi \quad \triangleright \text { eigenvector of } T \text { with eigenvalue } 1
$$

- The largest eigenvalue of a column stochastic real matrix is real $\left(\lambda_{1}=1\right)$

A markov chain is ergodic if there is a unique stationary distribution π and for any initial distribution x we have

$$
\lim _{t \rightarrow \infty} M^{t} \mathbf{x}=\pi \quad \triangleright \text { always converges to } \pi
$$

