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Clustering: Definition

Clustering/cluster analysis/data segmentation

Grouping of objects into clusters such that objects in the same cluster are
more similar and objects in different clusters are less similar

Intra-cluster distances (between pairs of points in the same cluster)

Inter-cluster distances (between pairs of points in different clusters)

small intra-cluster distances

large inter-cluster distances

x

y

z
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Clustering: Definition

The clustering hypothesis: Points in the same cluster behave similarly
with respect to information needs

Clustering is an unsupervised task, there is no right answer

There is not even the right number of clusters
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Clustering: Consideration

Partitioning Level

Single level or multi-level (hierarchical partitioning)

Some times multiple levels of partitioning are required

Students partitioned by schools, by major/minor, even further by cgpa

Books in a library clustered into subject areas, topics, sub-topics

Exclusive or Non-Exclusive Clustering

Can points belong to more than one clusters (are clusters intersecting)

In social networks typically we get overlapping communities

Similarity Measure

What is type of data, what similarity measure to be used

Similarity measure should reflect the inherent grouping in data

Clustering Space

Are all attributes of data points are to be considered (full space)

Clustering based on a subspace, e.g. for clustering students based on
performance, gender and address info can be ignored
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Clustering: Definition

Generally, clustering produces a partition [C1,C2, . . . ,Ck ] of the dataset P

Each Ci ⊆ P

For i ̸= j , Ci ∩ Cj = ∅

k⋃
i=1

Ci = P

C1

C2

C3

C5

C4
C6

C7

P
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Clustering: Definition

Generally, clustering produces a partition [C1,C2, . . . ,Ck ] of the dataset P

Broadly two different ways of clustering depending on input

Input: Given a dataset (feature vectors) and a proximity measure

Output: Clusters of the dataset into k clusters

Alternatively,

Input: Given pairwise proximity values for a (abstractly described) dataset
(e.g. distance or similarity matrix)

Output: Clusters of the dataset into k clusters

The number of clusters k may or may not be part of the input (fixed)
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Clustering: Applications

Documents Clustering

Group documents based on their similarity with other documents

document similarity computed from theirtf-idf vectors

Documents about same topic or written by same author ideally would
form a cluster

e.g. sports, politics, entertainment, news

Benefits: reduces search space, improves search and retrieval cost
source: towardsdatascience.com
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Clustering: Applications

Outlier Detection

Outliers are substantially different from other objects in a dataset

Identify objects that do not belong to a cluster (or the object itself is
a cluster)

Benefits: fraud detection in financial transactions, data cleaning

cluster 1

cluster 2

cluster 3outlier
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Clustering: Applications

Market Segmentation/ Business Intelligence

Subdivide customers into distinct subsets
Customers in same subset share common characteristics

Each subset can be target of different marketing campaigns

Based on the target, use appropriate proximity measures
purchasing history, age, salary, nature of job etc.

source: medium.com
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Clustering: Applications

Data Compression and Graph Summarization

Make clusters of nodes in a graph

Each cluster corresponds to a super node in the graph

Efficient storage, transmission, processing and analysis of graphs

{1, 2, 3}

{4, 5} {6}

1 2 3

5 64

super-edge

super-node

1 2 3

5 64

Cluster 1

Cluster 2 Cluster 3
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Basic Clustering Methods

Clustering methods can be categorized into

Distance Based

Density and grid-based

Generative Model based

Other methods used for specific data types

e.g. for graph data we used connectivity based clustering

Different methods may generate different clusterings of the same data set
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Distance based Clustering

Assumes a meaningful proximity measure is defined over the dataset P

Distance based clustering algorithms can be categorized into

1 Point assignment based methods

Require points as feature vectors and the distance measure

Assume that number of required clusters k is provided

Produces a single level partition of P into k parts

2 Hierarchical methods

Can work with the pairwise distance matrix without explicit points
representation or the definition of distance measure

Produces multi-level partitions of P
Does not require number of clusters k as input

Can be further categorized into

Agglomerative methods (Bottom-Up Approach)

Divisive methods (Top-Down Approach)
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Point Assignment Based Clustering

Imdad ullah Khan (LUMS) Clustering 13 / 79



k-Partition Problem

Given a set of n points, P ⊂ Rm and k ∈ Z, number of clusters

Assume Euclidean distance measure over P ▷ ℓp, cosine can be used

For a subset Ci ⊆ P, denote by ci the centroid of Ci

ci :=
1

|Ci |
∑
x∈Ci

x

Centroid is the arithmetic mean of m-dim vectors (coordinate-wise mean)

Goodness of a k-partition C = {C1,C2, . . . ,Ck} is measured by

sum of squared error, SSE (C) =
k∑

i=1

∑
x∈Ci

∥x − ci∥2

also called Within SSE

Problem: Find a k-partition C∗ of P with minimum SSE

Brute force approach (try all partitions) is not feasible
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k-means Algorithm

A basic greedy algorithm for the k-Partition problem

Algorithm : k-means algorithm (P, k)

Select k random points as initial centroids

▷ Alternatives of centroids can be used

while Stopping criterion is not met do ▷ Many choices

Assign each point x ∈ P to the centroid closest to x

▷ closeness w.r.t the similarity measure

▷ Assignment Step

Compute the centroids of (modified) clusters

▷ Refitting Step
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k-means Algorithm: Illustration

Refitting

Assignment
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k-means Algorithm: Runtime

Algorithm : k-means algorithm (P, k)
Select k random points as initial centroids ▷ Alternatives of centroids can be used
while Stopping criterion is not met do ▷ Many choices

Assign each point x ∈ P to the centroid closest to x
▷ closeness w.r.t the similarity measure

Compute the centroids of (modified) clusters

Each iteration: O(nk) distance computations

For each x ∈ P compute distances to centroids and find closest

Recompute centroids: in total takes O(n) time

number of iterations is t =⇒ total runtime is O(tkn)

t depends on the stopping rule, generally, t, k ≪ n

Total time: O(n) distance computations ▷ very efficient
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k-means Algorithm: Stopping Criteria

A clustering with smaller SSE than another is not necessarily better

SSE depends on the value of k

k = n =⇒ SSE = 0

In general large k =⇒ small SSE

Stopping criterion could be

Stop when there is minimal (less than a threshold) change to SSE

Stop when no change in centroids

Stop when few points (less than a threshold) change their centroids
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k-means Algorithm: Initial k centers

Quality of final clustering critically depends on initial centroids

centroids centroids

Different initial centers lead to different clustering, maybe very suboptimal

Imdad ullah Khan (LUMS) Clustering 19 / 79



k-means Algorithm: Initial k centers

Quality of final clustering critically depends on initial centroids

Different initial centers lead to different clustering, maybe very suboptimal

Imdad ullah Khan (LUMS) Clustering 20 / 79



k-means Algorithm: Initial k centers
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k-means Algorithm: Initial k centers

Quality of final clustering critically depends on initial centroids

Some methods used in the literature to choose initial centroids are

Randomly chose k points in space of P (e.g. Rm)

k-means++: Choose first point at random, choose the next point
farthest from the first chosen point, repeatedly choose the next point
that is farthest from the already chosen points

Sample a subset of points. Run hierarchical clustering to get k
clusters, choose the centroids of each cluster as initial centroids
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k-means Algorithm: The right value of k

Suppose SSE is the right clustering quality parameter

Suppose k is the right number of clusters

If we cluster into k ′ < k clusters, then SSE will go up

If we cluster into k ′ > k clusters, then SSE will go sharply down

Using this ’concavity’, the right value of k can be found with a binary search
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k-means Algorithm: Sensitivity to outliers

k-means algorithm is very sensitive to outliers because mean is an
unstable statistic

Let P = {1, 2, 3, 8, 9, 10, 25} ⊂ R

The correct clustering looks like {1, 2, 3}, {8, 9, 10} and 25 is an outlier

SSE ({1, 2, 3}, {8, 9, 10, 25}) = 196

SSE ({1, 2, 3, 8}, {9, 10, 25}) = 189.67

k-means will select the latter partition

Clearly it is not good, as it separates 8 from 9 and 10
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k-means Algorithm: Dealing with instability

One way to deal with the instability of centroids is to choose some
other representative of each cluster

Representative of a cluster is called clusteroid

Since clusteroid, generally is somewhat central element of the cluster,
it is also called medoid

The goal here is to choose k clusteroids and minimize the sum of
distances from each point to its clusteroid
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k-Medians algorithm

Median is less sensitive to outliers than mean

We use ’median of clusters’ instead of centroids as clusteroids

Let medi be the ‘median’ of a cluster Ci .

Goodness of a k-partition C = {C1,C2, . . . ,Ck} is measured by

Smed(C) :=
k∑

i=1

∑
x∈Ci

∥xi −medi∥2

Problem: Find a k-partition C∗ of P with minimum Smed(·)

Various definitions of median for points in higher dimensions

Oja Median, Simplicial Median, 1-Median, Coordinate-wise median
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k-Medians algorithm

We give a generic version of k-medians algorithms

Algorithm : k-medians algorithm (P, k)
Select k points as initial medians ▷ randomly or arbitrarily

while Stopping criterion is not met do ▷ many choices

Assign each point x ∈ P to the median closest to x ▷ closeness w.r.t

the similarity measure

Compute the medians of (modified) clusters
▷ using the adopated definition of median
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Partition Around Medoids

A pseudocode of Partition Around Medoids (PAM) is as follows:

Algorithm : Partition Around Medoids (P, k)
Select k points as initial clustroids (medoids) arbitrarily

while Stopping criterion is not met do ▷ many choices

Choose a non-medoid point p

Compute change in SSE with replacing a medoid m with p

If the change in SSE is negative, then swap m with p

Runtime is O(k(n − k)2) in each iteration
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k-modes algorithm: Categorical Data

k-Means or k-Medians cannot handle nominal data

k-Modes algorithm is an extension for nominal data

It just replaces mean with mode of the cluster

Mode of multidimensional data is vector of coordinate wise modes

Some distance to the clusteroid also needs to be defined

In the above definition of modes, distance to clusteroid (mode) can
be for instance the Hamming distance

We can use any of the distance measures discussed for nominal data
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Agglomerative Clustering
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Hierarchical Clustering

Hierarchical Clustering

Creates a hierarchy of clusters (multi-level partitions)

returns a set of nested clusters

Generally no requirement of a fixed number of k clusters

Hierarchical method can be

Divisive Approach (Top-Down)

Initially all points are in one huge cluster

In every step one current cluster is split into two

Generates a top-down hierarchy of clusters

Agglomerative Approach (Bottom-Up)

Initially each point is a cluster itself

In every step two clusters are merged into one

Generates a bottom-up hierarchy of clusters

Imdad ullah Khan (LUMS) Clustering 31 / 79



Hierarchical Clustering

Hierarchical Clustering: Agglomerative and Divisive Approach

Agglomerative Divisive
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Hierarchical Clustering

Output of hierarchical clustering is represented by a dendrogram
(a tree recording the sequence of merges or splits)
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Hierarchical Clustering: Divisive Approach

We will discuss spectral clustering a divisive clustering approach
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Hierarchical Clustering: Agglomerative Approach

Agglomerative Clustering

Initially each point is a cluster itself

In every step two ‘close by’ clusters are merged into one

Generates a bottom-up hierarchy of clusters

Key considerations:

Representation of clusters

Distance between clusters

The choice of pairs of clusters to be merged

A stopping criterion
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Agglomerative Clustering

Algorithm : Generic Agglomerative Clustering (P)

Initialize with each point as a cluster in C

while stopping criterion is not met do

Choose the best pair of clusters (Ci ,Cj) ∈
(C
2

)
Cm ← merge(Ci ,Ci )

C ← C \ {Ci ,Cj} ∪ {Cm}
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Agglomerative Clustering

Generic Agglomerative Clustering

P = {A,B,C ,D,E ,F ,G ,H, I}

Initialize with each point as a cluster in C
while stopping criterion is not met do

Choose the best pair of clusters (Ci , Cj ) ∈
(
C
2

)
C ← merge(Ci , Ci )
C ← C \ {Ci , Cj} ∪ {Cm}
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Agglomerative Clustering
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Agglomerative Clustering
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Agglomerative Clustering

Generic Agglomerative Clustering
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Agglomerative Clustering

Generic Agglomerative Clustering
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Agglomerative Clustering
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Agglomerative Clustering

Generic Agglomerative Clustering
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Agglomerative Clustering

Generic Agglomerative Clustering
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Agglomerative Clustering

Generic Agglomerative Clustering
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Agglomerative Clustering

Generic Agglomerative Clustering
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Hierarchical Clustering

Hierarchical Clustering (both divisive and agglomerative)

is rigid in nature

once a cluster is made, it cannot be undone

less chances of improvement

generally less computational cost

does not require specific number of clusters

Can stop when clustering is good enough (stopping criterion)
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Agglomerative Clustering

Agglomerative Clustering

Initially each point is a cluster itself

In every step two ‘close by’ clusters are merged into one

Generates a bottom-up hierarchy of clusters

Key considerations:

Representation of clusters

Distance between clusters

The choice of pairs of clusters to be merged

A stopping criterion
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Agglomerative Clustering: Euclidean Space

Let P = {x1, . . . , xN}, each xi ∈ Rn

Represent each cluster by its centroid

Distance between two clusters is the distance between their centroids

Select a pair of clusters with minimum (inter-centroid) distance

Stop when the number of clusters is equal to k

Note that this representation requires explicit feature vectors for points
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Cluster: Diameter, Radius and Density

Diameter of a cluster C , dia(C ) is the max inter-point distance in C

dia(C ) = max
x ,y∈C

{d(x , y)}

Radius of a cluster C with centroid c, rad(C ) is the maximum
distance of a point in C from the centroid c

rad(C ) = max
x∈C
{d(x , c)}

Density of a cluster C : is mass (number of points) over volume

What is volume (shape) of the cluster? Use an estimate

den(C ) =
|C |

dia(C )2
or den(C ) =

|C |
rad(C )2

or den(C ) =
|C |

rad(C )n

The exponent in denominator is usually 1, 2, or n (dimensionality of points)
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Agglomerative Clustering: Stopping Criteria

Stop based on ‘quality’ of recently merged cluster, e.g. when the

average inter-point distance of the merged cluster is above a threshold

diameter of the merged cluster is above a threshold

radius of the merged cluster is above a threshold

the average distance from the centroid is above a threshold

sum of squared distances from the centroid is above a threshold

Stop based on a global ‘quality’ measure. e.g. when

the average diameter of all clusters increases above a threshold

the idea is as long as we merge cluster that truly should be merged, the
average diameter will not significantly increase

when we merge a pair that should not be merged, there would be a
sudden jump in the average diameter
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Agglomerative Clustering: Distance between Clusters

Distance Between two cluster Ci and Cj can be defined as

Centroid Link: distance between centroids of Ci and Cj

Requires points as numeric vectors

Single Link: Minimum inter-point distance between Ci and Cj

Average Link: Average inter-point distance between Ci and Cj

Complete Link: Maximum Inter-point distance between Ci and Cj

Single Link Complete Link

Average Link Centroid Link
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Agglomerative Clustering: Pair Selection Criteria

Pair selection can be based on any distance measures between two clusters

e.g. select a pair of clusters with minimum

Centroid link

Single Link

Average Link

Complete Link

Can also select pair based on ‘quality’ of the resulting (merged) cluster

e.g. choose a pair

resulting in the lowest radius of a merged cluster

resulting in the lowest diameter of a merged cluster
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Agglomerative Clustering: Cluster Representation

We cannot compute centroids if

points are not real vectors (non-Euclidean space)

points are only abstractly described (no explicit vectors) and only
distance matrix is provided

We can represent clusters by a central element. Any definition of
clusteroid of a cluster C can b used , e.g. a point in C

with minimum sum (average) of distances to other points in C

with minimum largest distance to a point in C

with minimum sum of squared distances to other points in C

Notions of inter-cluster distances, pair selection and stopping rules can be
adapted to this version of problem (replace clustroid for centroid if needed)
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Clustering Quality Assessment

Validation and Evaluation
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Goals and Aspects of Clustering Quality Assessment

1 Determine cluster tendency of dataset

Are there meaningful groups (non-random structure) in the data

or clusters represent some patterns in noise
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Goals and Aspects of Clustering Quality Assessment

1 Determine cluster tendency of dataset

2 Find the correct number of clusters

Recall the elbow method
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Goals and Aspects of Clustering Quality Assessment

1 Determine cluster tendency of dataset

2 Find the correct number of clusters

3 Evaluate Clustering Quality

Validate the output clustering by comparing with known results (class
labels or manual clustering by experts)

Evaluate how well the output clustering fit the data without reference
to external results

4 Compare two clustering algorithms

Observe the kind of patterns each try to mine and determine which
algorithm is suitable for the task at hand

5 Compare two clusters in a clustering
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Clustering: Evaluation and Validation

Clustering is an unsupervised task (cannot use ground truth in the
clustering algorithm)

Cluster Validation against Class Labels: If true class labels are
available, we can see how well clusters match with class labels

Cluster Evaluation with No Class Labels: Assess cluster quality w.r.t
proximity measure
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Validation of Clustering

Two basic criteria for validating clusterings are:

1 Cluster homogeneity

Clusters should contain objects of a single class only

Such clusters are called pure, the purer the clusters the better

Singleton clusters are the most homogeneous
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Validation of Clustering

Two basic criteria for validating clusterings are:

1 Cluster homogeneity

2 Cluster Completeness

Objects in the same class should be contained in a single cluster

Classes should not be split into multiple clusters

Singleton clusters may not be complete
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Evaluation of Clustering

Three basic criteria for evaluating clusterings are:

1 Cluster Compactness

Objects in a cluster should be highly similar, Intra-Cluster-Low distances

generally desired in classification type tasks such as image recognition

Proximity measure should be meaningful (similarity ∼ homogeneity)

Also called cluster cohesion

small intra-cluster distances

large inter-cluster distances

x

y

z
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Evaluation of Clustering

Three basic criteria for evaluating clusterings are:

1 Cluster Compactness

2 Cluster Separation

Clusters should be well-separated (far apart)

Objects in two different clusters should be highly dissimilar

Inter-cluster high distances

Again proximity measure should be meaningful

small intra-cluster distances

large inter-cluster distances
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Evaluation of Clustering

Three basic criteria for evaluating clusterings are:

1 Cluster Compactness

2 Cluster Separation

3 Agreement of pairwise proximity with clustering-induced metric

Clustering should respect the pairwise proximity measure

Similar/distant pairs should be in the same/different clusters

Somewhat encompasses both compactness and separation

Arrange rows and columns of similarity matrix by cluster ids and inspect it
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External and Internal Measures of Clustering Quality
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External and Internal Measures of Clustering Quality

Numerical measures for clustering validation and evaluation

External or Extrinsic Measures ▷ used for validation

They use class labels

Some are indexes to measure for a specific criterion

Different Indexes on a common scale can be combined to measure for
combination of criteria

Internal or Intrinsic Measures ▷ used for evaluation

They do not use class labels

Some are indexes to measure for a specific criterion

Different Indexes on a common scale can be combined to measure for
combination of criteria

Generally a statistical significance of index values needs to be
ascertained
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External Measures

Any measures for assessment of quality of classification can be used

Accuracy

Error

Precision, Recall, F1 measure

Purity

Entropy

Conditional Entropy

Normalized Mutual Information (NMI)

Maximum Matching: Match clusters to class and see goodness of
matching
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External Measures: Purity

Let C = {C1,C2, . . . ,Ck}, L classes

Let nij be objects of class i in cluster Cj

Purity of Cj : ratio of dominant class in Cj to |Cj |
purity(Cj) =

max
1≤i≤L

nij

|Cj |

C1

purity(C1) = 6/8 purity(C2) = 6/7 purity(C3) = 6/8

C3C2

Classes

Purity of clustering C: purity
(
C
)

=
k∑

j=1

|Cj |
N

purity(Cj)

purity(C) = 8/23× 7/8 + 7/23× 6/7 + 8/23× 6/8 = 19/23
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External Measures: Purity

Let C = {C1,C2, . . . ,Ck}, L classes

Let nij be objects of class i in cluster Cj

Purity of Cj : ratio of dominant class in Cj to |Cj |
purity(Cj) =

max
1≤i≤L

nij

|Cj |

Purity of clustering C: purity
(
C
)

=
k∑

j=1

|Cj |
N

purity(Cj)

Highest purity is 1 when clusters are the purest

Singleton clusters maximize purity

Purity favors homogeneity only

Ignores cluster completeness
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External Measure: Conditional Entropy

Let C = {C1,C2, . . . ,Ck} ▷ Clustering into k clusters

T = {T1,T2, . . . ,TL} ▷ True partition into L classes

nij : objects of class Ti in cluster Cj

pij = nij/|Cj | ▷ class (probability) distribution in Cj

Conditional entropy of T w.r.t cluster Cj : entropy of class distrib. in Cj

H(T |Cj) = −
L∑

i=1

pij log pij

Conditional entropy of T w.r.t clustering C:

H(T |C) = −
k∑

j=1

|Cj |
N

H(T |Cj) = −
k∑

j=1

|Cj |
N

L∑
i=1

pij log pij
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External Measure: Conditional Entropy

Highest possible value is log L

Split classes results in higher entropy

For perfectly complete clusters conditional entropy is 0

Conditional entropy favors completeness

Compute values of conditional entropies in this example

C1

purity(C1) = 6/8 purity(C2) = 6/7 purity(C3) = 6/8

C3C2

Classes

Imdad ullah Khan (LUMS) Clustering 71 / 79



External Measure: Rand and Jaccard Index of clustering

Let C = {C1,C2, . . . ,Ck} ▷ Clustering into k clusters

T = {T1,T2, . . . ,TL} ▷ True partition into L classes

Measures of pairwise agreement of class labels and clustering parts

Clustering

S
am

e
cl

as
s

True Positive False Positive

False Negative True Negative

Number
of pairs(

N
2

)

D
iff

er
en

t
cl

as
s

T
ru
e
cl
as
se
s

Same cluster Different clusters

Rand Index of C: RI (C) :=
TP + TN(N

2

)
▷ Compare with standard precision and recall

Jaccard Index of C: J(C) :=
TP

TP + FN + FP
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Internal Measure: Within sum of squared error (wsse)

A measure of compactness of a cluster or clustering is SSE or average SSE

For a k-partition C = {C1,C2, . . . ,Ck} sum of squared error (sse) is:

Let ci = centroid(Ci ), then

sse(C) =
k∑

i=1

∑
x∈Ci

||x − ci ||2

also called within sum of squared error (wsse or wss)
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Internal Measure: Statistical Significance

For sse and other internal measures need to see whether the values
are meaningful or statistically significant (deep statistical theories)

A rough idea (rule of thumb is) to see if e.g. the obtained sse for a
clustering of N points in a certain space into k clusters is good

Generate random datasets of N points in the same space (same
ranges and dimensions) and then cluster them into k clusters using
the same algorithm

Observe the distribution of the sse of these trials (say get the mean
and st-dev)

If the mean sse of these random points is significantly higher than
our sse, then sse is significant (and clustering is good)
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Internal Measure: Statistical Significance
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Internal Measure

Some other internal measures for cluster (or clustering) compactness

(weighted) average of intra-cluster pairwise distances

Correlation between proximity matrix and cluster co-belonging matrix
(see below)

Smaller values of an index means clusters are compact
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Internal Measure: bss

Clustering Separation can be measured by

(weighted) average of inter-cluster pairwise distances

The Between Sum of Squares (bss) is given by

Let ci = centroid(Ci ) and let c = centroid(P) (centroid of the whole
dataset), then

bss(C) =
k∑

i=1

|Ci |(c− ci )
2

Larger values of an index means clusters are well-separated
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Internal Measure: Silhouette Coefficient

Silhouette Coefficient incorporates both cohesion and separation

Let C = {C1, . . . ,Ck}. For a point x in Ci

a(x) =
1

|Ci |
∑

x ̸=y∈Ci

d(x , y) ▷ mean distance from x in its cluster

b(x) = min
j ̸=i

1

|Cj |
∑
y∈Cj

d(x , y) ▷ mean distance from x in closest cluster

Silhouette Coefficient of x ∈ P: s(x) :=
b(x)− a(x)

max{a(x), b(x)}

Silhouette Coefficient of C is the mean value of s(x) over points in P

SC (C) :=
1

N

∑
x∈P

s(x)

SC (C) ∈ [−1, 1] ▷ the closer to 1 the better clustering
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Internal Measure: Clustering co-belonging matrix

Correlation between proximity and clustering induced co-belonging
matrices

Let D be the pairwise proximity matrix

Let C be the co-belonging matrix induced by clustering

A row and column for each point, and C (i , j) = 1 or 0 depending on
whether xi ̸= xj ∈ P belong to the same cluster

High correlation between these two symmetric matrices means good
clustering and vice-versa (if proximity is similarity)

For distance matrix low correlation indicates good clustering

Incorporates both compactness and separation, also measures
agreement of clustering-induced metric and pairwise proximity
measure
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