Big Data Analytics

Getting to Know Data \& Exploratory Data Analysis

- EDA: Purpose \& Benefits
- Size, Dimension, and Resolution of Data
- Types of Attributes
- Statistical EDA
- Measures of Central Tendencies and Spread
- Bivariate EDA: Correlation, Contingency Table
- Graphical EDA
- Types of Diagrams

Imdad ullah Khan

Exploratory Data Analysis (EDA): Purpose and Benefits

EDA: Initial investigation of data using summary statistics and diagrams
Objectives of EDA are to

- understand data (what it is, where it comes from, what does it represent, kind of values, specific characteristics of data)
- find out if there are missing values? (how to deal with them!)
- spot anomalies (are there outliers?)
- discover patterns (how does the data look like?)
- understand relationships between features (measure similarity, distance and relationship type)
- check our assumptions

■ visually describe the data

EDA: Purpose and Benefits

Preliminary exploration and inspection of data is essential for analysis

- It guides preprocessing steps
- It gives a clear picture of data sizes, which helps in selecting the right data structures, tools and even modeling strategies
- Could help reduce data sizes (dimensions or records)

Data object and Attribute

Data object

- represents an entity in the data set

■ also called data item, point, instance, example, sample, row, observation
■ e.g. a patient, movie, student, customer, product, book, tweet

- described by a set of attributes

Attribute

■ is a data field, representing a feature/characteristic of data objects

- also called variable, feature, dimension, column, coordinate, field

■ e.g. reaction to a test, genre/director, course, address, price/category, author, publisher, word

Size and dimensions of data

Size of Data refers to number of data objects
Dimension of Data refers to number of attributes

Sparsity in Data

If most of the feature values are missing, then the data is called sparse
■ Missing values could be represented as NaN, blank, -, 0

- This could be a problem for many statistical methods

■ For efficient computation, can use libraries for sparse data

- e.g. sparse matrix multiplication, sparse storage schemes

Resolution of Data

Different resolution reveal different patterns

- If resolution is too fine, a pattern may be buried in noise
- If the resolution is too coarse pattern may disappear
- See number of bins in histograms below

Types of Data

Types of data based on number of attributes

- Univariate Data
- Bivariate Data

■ Multivariate Data

Types of Data

■ Univariate: Consists of only one feature per observation. Analysis deals with only one quantity that changes

Heights (cm)
164
167.3
170
174.2
178
180
186

- What is the average height?
- How much the values deviate form the average height?

Types of Data

- Bivariate: Involves two different features per observation

Analysis of this type of data deals with comparisons, relationships, causes and explanations

Temperature (${ }^{\circ} \mathbf{C}$)	Ice Cream Sales
20	2000
25	2500
35	5000
43	7800

- Are the temperature and ice cream sales related/dependent?
- As temperature increases, sales also increases

Types of Data

■ Multivariate: Objects are described by more than 2 features
To see if one or more of them are predictive of a certain outcome
The predictive variables are independent variables and the outcome is the dependent variable

Roll Num	CS100	SS101	MT200	MGMT240	Major
19100115	A	B	B	C	CS
19100120	B	A	B	C	PHY
19100122	B	B	C	A	CS
19100126	C	A	C	A	EE
19100127	B	A	C	C	CS
19100133	C	B	A	B	PHY
19100135	C	C	A	C	Maths

Types of Attributes

Roll Num	Gender	Grade	Age	Major
19100115	Male	B	23	CS
19100120	Male	A	22	PHY
19100122	Female	B	21	CS
19100126	Male	C	19	EE
19100127	Female	A	21	CS
19100133	Female	B	20	PHY
19100135	Male	C	22	Maths

- Nominal/Categorical Attributes
- Ordinal Attributes

■ Numeric Attributes

Types of Attributes: Nominal/Categorical

- Possible values are symbols, labels or names of things, categories
- gender, major, state, color

Describe a feature qualitatively and values have no order
■ Not quantitative, arithmetic operations can't be performed on them male - female $=? ? \quad$ green + blue $=? ?$

- Can code by numbers (numeric symbols) e.g. postal codes, roll numb
- frequency of values and the most frequent value

Can compute

- middle value
- average value of an attribute

Binary Attribute: - special case of nominal True/false, Pass/Fail, 0/1
■ Symmetric: Both symbols carry the same weight e.g. gender
■ Asymmetric: Both symbols are not equally important, e.g. Pass/Fail

Types of Attributes: Ordinal Attributes

- Possible values have meaningful order
- Grades : A,B,C,D
- Serving Sizes : Small, Medium, Large

■ Ratings : poor, average, excellent
■ No quantified difference between two levels

- A is higher/better than B but
- Cannot quantify how much higher is A than B , or
- if the difference between A and B the same as the difference between B and C
- Can be obtained by discretizing numeric quantities (data reduction)

Can compute

- frequency of values and the most frequent value
- middle value
- average value of an attribute

Types of Attributes: Numeric Attributes

- Quantitative and measurable
- can quantify the difference between two values
- temperature, age, number of courses, height, years of experience
- frequency of values and the most frequent value

Can compute
■ middle value

- average value of an attribute

■ Discrete Numeric Attributes

- values come from a finite or countably infinite sets

■ Continuous Numeric Attributes

- values are real (continuous)

■ Interval-Scaled: No point 0, ratios have no meaning

- e.g. Temperature in Celsius. 30° is not double as hot as 15°

■ Ratio-Scaled: Well-Defined point 0, ratios are meaningful

- e.g. Temperature in Kelvin. 30° is double as hot as 15°

Statistical EDA

Statistical Description of Data

- Estimates that give an overall picture of data
- Summary statistics are numbers that summarize properties of data
- Typical values of variables (features/attributes)
- Spread and distribution of values
- Dependencies and correlations among variables

Measures of Central Tendencies

- These measures describe the location of data
- location of concentration or middle of data

■ Data is "distributed" around this "center"

- Computed for each attribute
- Three common types of locations

■ Mode

- Mean
- Median
- These measures do not give information regarding
- extreme values in data
- distribution or spread of the data

Frequency

Nominal and Ordinal attributes are generally described with frequencies

- The frequency of a value is the number of times the value occurs in the dataset
- Some time we use fraction or percentage of time the value appears
- Probability mass function

Measures of Central Tendencies: Mode

For location of nominal and ordinal attributes one can use the most frequent value

- Mode is the most frequent element
- Can have more than one modes
- unimodal (one mode in data)
- multi-modal (bimodal, trimodal): more than one modes in data

Not the same as the Majority element (a value with frequency more than 50\%)

Measures of Central Tendencies: Mean

For a dataset $\mathcal{X}=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$

- (Arithmetic) Mean is the average of the data set
\triangleright This definition readily extend to higher dimensional data

$$
\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

■ Weighted Mean

$$
\bar{x}=\frac{\sum_{i=1}^{n} w_{i} x_{i}}{\sum_{i=1}^{n} w_{i}}
$$

■ Harmonic Mean

$$
\bar{x}=\frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}}}
$$

- Geometric Mean

$$
\bar{x}=\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}
$$

Other Types of Mean

- Arithmetic mean is sensitive to outliers
\triangleright unstable statistic
■ Just one very high/low value (think $\pm \infty$) makes mean very high/low

Trimmed Mean: Ignore $k \%$ of values at both extremes to compute mean

Measures of Central Tendencies: Median

Median is the middle value of a dataset
■ Odd/even number of values
■ Median is less sensitive to outliers as compared to mean

- Median is good for asymmetric distributions and where data has outliers

■ Various possible definitions for median of higher dimensional data
■ Mean together with variance (see below) has nice properties

Measures of Spread

Location measures do not tell anything about extremes or spread (how extreme are the extremes)

Measures of spread describe distribution of data

- Max
- Min
- Range $:=\max -\min$
- Midrange $:=$ average of min and max

■ Inter-Quartile Range := 3rd quartile - 1st quartile

- Low Spread

■ Variance and Standard Deviation

Quantile

Quantiles are points taken at regular interval so as data is divided into roughly equal sized consecutive subsets

■ The i th q-quantile is a data point x such that $\sim i / q$ fraction of points are less than x and $\sim(q-i) / q$ fraction of points are greater than x

- Median is the first 2-quantile

■ 3rd quartile $:=3$ rd 4-quantile $:=75$ percentile

Measures of Spread

Five-Number Summary

Five-number summary (elementary EDA of numeric univariate data)

- Min
- $1^{\text {st }} /$ lower quartile
- Median
- $2^{\text {nd }} /$ upper quartile
- Max

EDA: Measures of Spread

Variance: Measures the deviation in values relative to mean

$$
\sigma^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}
$$

- Varaince is mean squared deviation from mean
- Squared to avoid cancellation of $+v e$ and $-v e$ deviation
- Mean deviation could be 0 for data with significant spread
- mean and average distance from mean of both

$$
\{-5,-10,5,10\} \quad \text { and } \quad\{-100,-50,50,100\} \text { are } 0 \text { and } 0
$$

\triangleright There is significantly more spread in the latter data
Mean Absolute Deviation: MAD $:=\frac{\sum_{i=1}^{n}\left|x_{i}-\bar{x}\right|}{n}$
Variance is easy to compute and has useful mathematical properties

Measures of Spread

Standard Deviation

- Variance has different unit than that of original data
- Standard deviation also measures deviation in values relative to mean

■ Standard deviation is the square root of variance

$$
\sigma=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}}
$$

■ Standard deviation restores the measure to the original unit of data

Normal Distribution (Bell-Curve)

For normal distribution, there are guarantees that certain number of values must fall within k st-dev from the mean

- At least $\sim 68 \%$ must lie within $k=1$ st-dev $(\bar{x} \pm 1 \sigma)$
- At least $\sim 95 \%$ must lie within $k=2$ st-dev $(\bar{x} \pm 2 \sigma)$
- At least $\sim 99.7 \%$ must lie within $k=3$ st-dev $(\bar{x} \pm 3 \sigma)$

EDA: Three-Sigma Rule - The Empirical Rule

For any distribution of data, there are guarantees that certain number of values must fall with k st-dev from the mean

- At least $\sim 75 \%$ must lie within $k=2$ st-dev $(\bar{x} \pm 2 \sigma)$
- At least $\sim 89 \%$ must lie within $k=3$ st-dev $(\bar{x} \pm 3 \sigma)$
- At least $\sim 93 \%$ must lie within $k=4$ st-dev $(\bar{x} \pm 4 \sigma)$

Used for bivariate data or pairs of attributes, more detail later

■ Nominal or Ordinal Attributes

- Contingency Table
- χ^{2} statistics

■ Numeric Attributes

- Covariance
- Correlation
- Correlation Matrix

Contingency Table

Contingency table summarizes data with two nominal or ordinal features
■ Used to determine whether the variable pair is correlated (χ^{2}-Test)
(nominal) A and B taking values in $\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ and $\left\{b_{1}, b_{2}, \ldots, b_{q}\right\}$

- $f_{i j}$: frequency of joint occurrence of $\left(a_{i}, b_{j}\right)$
\triangleright observed frequency of the joint event $\left(A=a_{i}, B=b_{j}\right)$
Contingency Table:

$C=$| | a_{1} | a_{2} | \ldots | a_{p} |
| :--- | :--- | :--- | :--- | :--- |
| b_{1} | | | | |
| b_{2} | | | | |
| \vdots | | | $f_{i j}$ | |
| b_{q} | | | | |

	Favor	Neutral	Oppose	$\mathrm{f}_{\text {row }}$
Democrat	10	10	30	50
Republican	15	15	10	40
$\mathrm{f}_{\text {column }}$	25	25	40	$\mathrm{n}=90$

χ^{2}-test for two attributes A and B

χ^{2}-statistic: A "correlation" between two nominal attributes A and B taking values in $\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ and $\left\{b_{1}, b_{2}, \ldots, b_{q}\right\}$

- $f_{i j}$: frequency of joint occurrence of $\left(a_{i}, b_{j}\right)$
\triangleright observed frequency of the joint event $\left(A=a_{i}, B=b_{j}\right)$
- The expected frequency, $e_{i j}$ of the joint event $\left(A=a_{i}, B=b_{j}\right)$, under independence assumption
- Estimating probability, $P_{a_{i}}=\operatorname{Pr}\left\{A=a_{i}\right\}=\frac{\sum_{j=1}^{q} f_{i j}}{N}, \quad N=p q$

■ $e_{i j}=P_{a_{i}} \cdot P_{b_{j}} \cdot N$

- The χ^{2} value (Pearson's χ^{2}-statistics) is $\sum_{i=1}^{p} \sum_{j=1}^{q} \frac{\left(f_{i j}-e_{i j}\right)^{2}}{e_{i j}}$

■ Large χ^{2} values indicates variables are related

Covariance and Correlation

Covariance and correlation are helpful in understanding the dependency/relationship between two numeric variables

Covariance between two variables $\mathbf{x}=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ and $\mathbf{y}=\left\{y_{1}, y_{2}, \cdots, y_{n}\right\}$ with means $\overline{\mathbf{x}}$ and $\overline{\mathbf{y}}$, resp. is defined as

$$
\operatorname{COv}(\mathbf{x}, \mathbf{y})=\frac{\sum_{i=1}^{n}\left(x_{i}-\overline{\mathbf{x}}\right)\left(y_{i}-\overline{\mathbf{y}}\right)}{n}
$$

\triangleright Covariance reveals the "proportionality" between variables
■ Note when x_{i} and y_{i} both are greater or smaller than their respective means, $\left(x_{i}-\overline{\mathbf{x}}\right)\left(y_{i}-\overline{\mathbf{y}}\right)$ is positive and vice-versa
■ $\operatorname{COv}(\mathbf{x}, \mathbf{y})<0 \Longrightarrow$ inverse proportionality
$\square \operatorname{Cov}(\mathbf{x}, \mathbf{y})>0 \Longrightarrow$ direct proportionality
$\square \operatorname{Cov}(\mathbf{x}, \mathbf{y})=0 \Longrightarrow$ no linear relation

Covariance and Correlation

Some properties of covariance that readily follow from definition
$\square \operatorname{cov}(\mathbf{x}, \mathbf{y})=\operatorname{Cov}(\mathbf{y}, \mathbf{x})$

- $\operatorname{COv}(\mathbf{x}, \mathbf{x})=\operatorname{VAR}(\mathbf{x}, \mathbf{x})$

■ If \mathbf{x} and \mathbf{y} are independent, then $\operatorname{Cov}(\mathbf{x}, \mathbf{y})=0$

- For constant a and b
- $\operatorname{cov}(\mathbf{x}, a)=0$
- $\operatorname{cov}(a \mathbf{x}, b \mathbf{y})=a b \operatorname{cov}(\mathbf{x}, \mathbf{y})$
- $\operatorname{Cov}(\mathbf{x}+a, \mathbf{y}+b)=\operatorname{COv}(\mathbf{x}, \mathbf{y})$

■ $\operatorname{COv}(\mathbf{x}, \mathbf{y}+\mathbf{z})=\operatorname{COv}(\mathbf{x}, \mathbf{y})+\operatorname{Cov}(\mathbf{x}, \mathbf{z})$

Covariance and Correlation

Correlation

- Covariance depends on magnitude and scale of variable \mathbf{x} and \mathbf{y}

■ Correlation quantifies how strongly two variables are linearly related

$$
r_{\mathrm{xy}}=\operatorname{corr}(\mathbf{x}, \mathbf{y})=\frac{\operatorname{Cov}(\mathbf{x}, \mathbf{y})}{\sigma_{\mathbf{x}} \cdot \sigma_{\mathbf{y}}}
$$

■ $-1 \leq \operatorname{corr}(\mathbf{x}, \mathbf{y}) \leq 1$

- It is not affected by changes in scale of variables \mathbf{x} and y
- $\operatorname{corr}(\mathbf{x}, \mathbf{y})=-1 \Longrightarrow$ perfect negative linear association
- $\operatorname{corr}(\mathbf{x}, \mathbf{y})=1 \Longrightarrow$ perfect positive linear association
- $\operatorname{corr}(\mathbf{x}, \mathbf{y})=0 \Longrightarrow$ no linear association

Correlation

Figure: x and y-axis represent variables - their correlations is on the top

Correlation matrix

For multi-variate numeric data correlation matrix is

- A table of pairwise correlation coefficients between variables

■ Each cell shows the correlation between two variables
■ Used to summarize data, as an input into a more advanced analysis, and as a diagnostic for advanced analyses

- Also used to remove redundant variables

			sleep body weight in kg	exposure total sleep (hours/day
body weightin kg	1	-.307	maximum life index (1-5)	span (years)
total sleep (hours/day)	-.307	1	-.642	.302
sleep exposure index (1-5)	.338	-.642	-.410	
maximumlife span (years)	.302	-.410	.360	.360

Graphical EDA

Diagrammatic Representations of Data

■ Easy to understand: Numbers do not tell all the story. Diagrammatic representation of data makes it easier to understand

■ Simplified Presentation: Large volumes of complex data can be represented in a simplified and intelligible diagram

■ Reveals hidden facts: Diagrams help in bringing out the facts and relationships between data not noticeable in raw/tabular form

- Easy to compare: Diagrams make it easier to compare data

Visualizing Data for Insight

Purpose of Graphical EDA: To reveal underlying structures, detect outliers and anomalies, and understand patterns within the data through visual methods.

- Simplifies complex quantitative information.

■ Facilitates faster comprehension and decision-making.
■ Helps in spotting trends, patterns, and outliers.
Common Tools: Histograms, Box plots, Scatter plots, etc.

Types of Diagrams

We will briefly discuss and use the following types of diagrams
\triangleright More on importance of visualization later

- Bar Charts
- Histogram
- Box Plot
- Scatter Plot
- Heat map
- Line Graph
- Parallel Axis Plot
- Word-Cloud
\triangleright and also overlapping histogram
\triangleright and also side-by-side box-plots
\triangleright and scatter plot matrix

Bar charts

- Generally used for a nominal and ordinal variables
- Different bars (usually colored/shaded differently) for distinct values (levels, categories, symbols) of the variable
- Height of bar represent frequencies of each symbol (value)
- Can reveal variables that have no or limited information e.g. constants

■ Note that we can use pie charts for the same purpose too

- Humans perceive difference in lengths better than in angles

Histograms

■ Represent distribution of data in a numeric/continuous variable (estimates probability distribution of a numeric variable)
■ Group values by a series of intervals (bins - usually consecutive non-overlapping subintervals covering range of data)

- Plot the number of values falling in each bin (represented by the height of the bar)
■ Normalized histogram shows proportion of values in each bin
Histogram of Monthly Salary

Histograms

A histogram with appropriate number/length of bins reveals

- Where is the data located
- Where/what are the extremes

■ What is the distribution of the data

- How the data is spread out
- If the distribution is symmetric or have skew (left or right)
- Whether the data is unimodal, bimodal or more
- Can also detect outliers in the data if any

■ Number and sizes of bins are important considerations

- Bins do not have to be of equal sizes
- For unequal bin sizes height of the bar is not the frequency of values in the bin, it is the frequency density
- Area of the bar is proportional to the frequency
- Number of items per unit of the variable of x-axis
- Too many bins in histogram gives too much unnecessary details (shows too much noise)
- Too few bins give almost nothing, obscure the underlying patterns

Histograms

Histogram of Ozone Pollution Data Too Many Intervals

Histogram of Ozone Pollution Data

Overlapping Histograms

Useful in observing distribution of values with respect to a nominal variable

Box Plots

Another way of displaying the distribution of data (somewhat) Box-Plots or Box and Whisker diagrams

Box Plots

Box-Plots or Box and Whisker diagrams

- Top and bottom lines of the box are 3rd and 1st quartiles of data
- Length of the box is the inter-quartile range (midspread)
- The line in the middle of the box is median of data
- The top whisker denotes the largest value in the data that is within 1.5 times midspread ($Q 3 \times 1.5 \cdot I Q R$)
- Similarly the bottom whisker
- Anything above and below the whiskers are considered outliers
- Relative location of median within the box tells us about data distribution
- We find out at what end are the outliers if any

Box Plots

- Can get some idea of skew by observing the shorter whisker

■ Various norms for whiskers (sometime) top whisker is 90th percentile
■ Uni-modality and multi-modality type information is generally not clear from box plots

Box Plot of Ozone in New York

Histogram of Ozone Pollution Data

Side-by-side Box Plots

- Extremely useful for comparisons of two or more variables.

■ To compare numeric variables, we draw their box-plots in parallel

Side-by-side Box Plots

■ Side by side groupwise box plots are extremely useful

- Groups are based on values of a categorical variable
- It reveals whether a factor (the categorical variable) is important
- It addresses whether the location of data differ between groups
- To some extent it also reveals whether distribution and variation differ between groups

■ Overlapping histograms are more suitable for the latter question, unless there is too much overlap

Scatter Plot

Scatter Plot is the best to visualize two dimensional numeric data This directly represent the two dimensional observations as points in \mathbb{R}^{2}. Plot one variable on x-axis and other on y-axis

Scatter Plot

Scatter Plot is the best to visualize two dimensional numeric data
This directly represent the two dimensional observations as points in \mathbb{R}^{2}. Plot one variable on x-axis and other on y-axis

- It shows how the two variables are related to each other
\triangleright reveals correlations between the variables
- If one or both variables are highly skewed, then scatter plots are hard to examine, as bulk of the data is concentrated in a small part of plot
- For this we should use some kind of transformation, explained later on one or both the variables
- log-scaled plots can also be used in such cases

Scatter Plot

Scatter Plot Matrix

- Pairwise scatter plots, pairwise correlations and individual histograms or density plots
- Summarize the relationships of all pairs of numerical attributes

	SepalLength	PetalLength	SepalWidth	PetalWidth
\sum $\substack{0 \\ 0 \\ 0 \\ 0}$				

Scatter Plot Matrix

- Scatter plot (matrix) can be combined with information in a nominal attribute encoded through color or marker shape

Heat Map

Presents pairwise relationship between attributes of multivariate data

Heat Map

- Presents pairwise relationship between attributes of multivariate data
- Provides a numerical value of the correlation between each variable
- Also provides an easy to understand visual representation of those numbers (colors shades)

■ Darker red showing high correlation

- Dark blue showing none or negative correlation
- Can be used to visualize any matrix

Line graphs

■ Line graphs are used for time series e.g. player's yearly average, student's semester gpa or hourly energy consumption
■ Two or more time series can be compared in different colors or markers (legend should be provided)

Parallel Axis Plot

Word-Cloud

Very useful in text analytics

A word cloud shows words used in a text corpus (collection of documents) with size of words proportional to their importance (e.g. TF-IDF)

Quite clear that the word cloud on left is for a collection of articles about US politics, political news, while that on the right seems a corpus of astronomy/astrophysics

