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Rank Factorization of Matrices
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Rank of a matrix

For an n ×m matrix A

Column Rank of A, col-rank(A) is the maximum number of linearly
independent columns of A

Row Rank of A, row-rank(A) is the maximum number of linearly
independent rows of A

rank(A) := col-rank(A) = row-rank(A)
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Rank of a matrix

For an n ×m matrix A

Looking at A as a linear transformation i.e. A : Rm 7→ Rn

rank(A) is the true dimensionality of the range (output) space of A

...

A x

... ...

=

Dot Product

...

n×m m× 1 n× 1

y=Ax

...

x1

x2

x3

xm

a11 a12 a1m. . .
a21 a22 a2m. . .
a31 a32 a3m. . .

. . .an1 an2 anm

[
1
0

]
[
0
1

] [
1
1

]
[
2
2

]

columns of

[
1 2
1 2

]
are linearly dependent

If rank(A) = k , then output vectors live in a k-d subspace
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Rank of a matrix

Another definition of rank (aka decomposition rank)

An n ×m matrix A has

Rank-0 if all its entries are 0

Rank-1 if it is outer product of an n × 1 and an m × 1 vector, A = uvT

u
 [ vT

]


u1v
T

u2v
T

...
. . .

...
unv

T




. . .

v1u v2u . . . vmu

. . .

A = uvT = ==

Rank-2 if it is non-trivial sum of two rank-1 matrices A = uvT +wxT


u1v

T + w1x
T

u2v
T + w2x

T

...
. . .

...
unv

T + wnx
T




. . .

v1u+ x1w v2u+ x2w . . . vmu+ xmw

. . .

A = uvT + wxT = =

u w


[

vT

xT

]
=

Rank-k if it is sum of k rank-1 matrices and cannot be written as sum of
k − 1 or fewer rank-1 matrices
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Rank Factorization of a matrix

An n×m matrix A has rank-k if A can be “factored into” the product of a

(n × k) matrix U and ▷ tall and skinny

(k × n) matrix V T ▷ short and long

A = UV T

A cannot be factored into n × (k − 1) and (k − 1)×m matrices

A Un

m

n

k

×= V T

m

k

columns of U are the columns of the rank-1 factors ui ’s

rows of V T are the rows of the rank-1 factors vi ’s

All definitions of rank are equivalent - each implies the other
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Rank Factorization of a matrix

n × n matrix A is “full rank” if it has rank n

It uniquely maps n × 1 vectors to n × 1 vectors

A is a “bijection”, A is invertible

If rank(A) < n, then A is a singular matrix (rank deficient matrix)

The resulting dimensionality is ≤ n − 1

Cannot get pre-images from images

A is not invertible

There cannot be any inverse for a non-square matrix
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Low Rank Structure in Data
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Low rank data matrix

A: a n ×m data matrix ▷ rows: data points – columns: features

If A has rank k, then A = UV T ▷ |U| = n × k |V | = k ×m

Each row (data point) of A can be represented as a
linear combination of v1, . . . , vk

ai =
k∑

j=1
uijvj , uij are projection lengths of ai on vj

A Un

m

n

k

×= V T

m

k

Geometrically, all data lie in a k-d subspace (spanned by v1, . . . , vk)

v1

v2

all data points lie in the 2d plane

Data Compression

Space reqtt for A: n ×m

Store the matrix U and V

Space reqtt: k(n +m)
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Low rank approximation

Data may not be in a k-d subspace,

but it may be lying ‘close by’ to a low dimensional subspace

We say data is approximately low rank

May not get A = UV T – would like to find U and V so A ≃ UV T

v1

v2

all data points lie close to the 2d plane

Imdad ullah Khan (LUMS) Matrix Factorization and svd 10 / 44



Low rank approximation

May not get A = UV T – would like to find U and V so A ≃ UV T

Need a goodness measure to assess A ≃ UV T

n∑
i=1

∥ai −
k∑

j=1

uijvj∥2 =: ∥A− UV T∥2F

For a matrix M, ∥M∥F =
√∑

i ,j M
2
ij is the Frobenius norm of M

The optimization problem of finding the best low rank approximation for A

argmin
V ∈ Rk×m, U ∈ Rn×k

∥A− UV T∥2F
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Why expect low rank structure

Data is not necessarily described by the attributes in which it is measured

I am going to show you two examples with dependencies between columns

These examples are adapted from real-world data
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Why expect low rank structure

Housing Data

ID Beds Baths
Living
sq-ft

Lot
sq-ft

Floors
Garage
Cars

List
Price

Sale
Price

1 1 1 870 1100 1 0 31630 31544
2 1 1 1080 1400 1 0 35920 35916
3 2 1 1250 1500 1 0 48250 48025
4 2 1 1285 1550 1 0 48965 48738
5 2 2 1460 1800 2 1 67540 67633
6 3 2 1560 1800 1 0 68440 68763
7 3 2 1630 1900 2 1 79870 79533
8 3 2 2050 2500 2 1 88450 88054
9 3 2.5 2120 2600 2 2 102380 102576
10 4 2 2360 2800 2 1 103640 103892
11 4 2.5 2500 3000 2 1 109000 109523
12 4 2.5 2570 3100 2 1 110430 110393
13 4 3 2710 3300 3 2 125790 125945
14 5 2 2880 3400 2 2 133120 133503
15 5 2.5 2880 3400 3 2 135620 136124
16 5 2.5 3300 4000 3 2 144200 144365
17 5 3 3650 4500 3 2 153850 154444
18 5 3 3720 4600 3 3 165280 165439

List-Price = 10k× bed +5k×baths +9× liv-sqFT +8× Lot +10k× Cars

Sale Price = (1± 0.02)× List Price
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Why expect low rank structure

Housing Data : Rank of this matrix is not 8 Some linear dependencies
are shown (there may be others including non-linear)

ID Beds Baths
Living
sq-ft

Lot
sq-ft

Floors
Garage
Cars

List
Price

Sale
Price

1 1 1 870 1100 1 0 31630 31544
2 1 1 1080 1400 1 0 35920 35916
3 2 1 1250 1500 1 0 48250 48025
4 2 1 1285 1550 1 0 48965 48738
5 2 2 1460 1800 2 1 67540 67633
6 3 2 1560 1800 1 0 68440 68763
7 3 2 1630 1900 2 1 79870 79533
8 3 2 2050 2500 2 1 88450 88054
9 3 2.5 2120 2600 2 2 102380 102576
10 4 2 2360 2800 2 1 103640 103892
11 4 2.5 2500 3000 2 1 109000 109523
12 4 2.5 2570 3100 2 1 110430 110393
13 4 3 2710 3300 3 2 125790 125945
14 5 2 2880 3400 2 2 133120 133503
15 5 2.5 2880 3400 3 2 135620 136124
16 5 2.5 3300 4000 3 2 144200 144365
17 5 3 3650 4500 3 2 153850 154444
18 5 3 3720 4600 3 3 165280 165439

List-Price = 10k× bed +5k×baths +9× liv-sqFT +8× Lot +10k× Cars

Sale Price = (1± 0.02)× List Price
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Why expect low rank structure

Shirt Dimension Many measurements (chest and waist circumferences,
sleeve and back lengths) for shirt

In market shirts are marked with collar measurement only

Chest Back Waist Sleeve

104 81 98 67

107 81 100 67

110 82 102 67

113 82 104 67

116 83 106 68

120 83 110 68

124 84 114 68

128 84 118 68

132 85 122 68

136 85 126 68
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Why expect low rank structure

Shirt Dimension The collar feature is a linear combination of other
features. The data actually lies in a one dimensional space

Chest Back Waist Sleeve Collar
104 81 98 67 37

107 81 100 67 38

110 82 102 67 39

113 82 104 67 40

116 83 106 68 41

120 83 110 68 42

124 84 114 68 43

128 84 118 68 44

132 85 122 68 45

136 85 126 68 46

Collar =0.44× Chest +0.015× Back −0.2× Waist +0.153× Sleeve
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Singular Value Decomposition
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Singular Value Decomposition

Theorem

Any n ×m matrix can be written as a product of three matrices

A = U ΣV T

U is a n × n orthogonal matrix (columns are orthonormal)

V is a m ×m orthogonal matrix

Σ is a n×m diagonal matrix, with non-negative entries and entries at
the main diagonal are sorted from highest value to lowest

A Un

m

n= V T

mn

m

Σn

m

σ1

σk

σ2

. . .

orthonormal
non-negative

diagonal orthonormal

u1 u2 un

vT
1

vT
2

vT
m
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Singular Value Decomposition

Theorem (Compact SVD)

Any n×m matrix with rank r ≤ min{m, n} can be written as a product of
three matrices, A = UΣV T

U is a n × r orthogonal matrix (columns are orthonormal)

V is a r × r orthogonal matrix

Σ is a r ×m diagonal matrix, with non-negative entries and entries at
the main diagonal are sorted from highest value to lowest

A Un

m

n= V T

r

Σ

σ1

σr

σ2

. . .

orthonormal

non-negative
diagonal orthonormal

vT
1

r

r r

u1 ur

m

vT
r
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Singular Value Decomposition

SVD: A = UΣV T

U is orthogonal – its columns are called left singular vectors

V is orthogonal – its columns are called right singular vectors

Diagonal entries of Σ are called singular values

Any transformation is a rotation followed by scaling followed by a rotation

v1

v2 i

j

σ1i

σ2j

σ1u1

σ2u2

V T Σ U

A
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Rank k Approximation from SVD
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Spectral decomposition of a matrix

From SVD of A ∈ Rn×m we can get spectral decomposition of A

i.e. Express A as linear combination of r rank-1 matrices (outer products
of singular vectors) – coefficients are the corresponding singular values

A = UΣV T ⇔ A =

min{m,n}∑
ℓ=1

σℓ uℓ ◦ vTℓ

A

U

n

m

n=

V T

m

r

Σ

r

r

σr

. . .
un

vT
m

An

m

=

σ1
σ2
σ3

u2 u3

vT
3

vT
2

vT
1

vT
3

vT
1 vT

2

u2 u3

u1

u1

+ + + · · ·

σ2 σ3σ1

r
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Truncated SVD

A = UΣV T

A =
r∑

ℓ=1

σℓ uℓ ◦ vTℓ
A

U

n

m

n=

V T

m

r

Σ

r

r

...

A1
n

m

' +

r

. . . ...

Ak =
k∑̀
=1
σ`u` ◦ vT` +

r∑
`=k+1

σ`u` ◦ vT`

Set to 0 (truncate) the last r − k singular values (σk+1 to σr )
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Truncated SVD

Uk ∈ Rn×k : the first k left singular vectors (the first k columns of U)

Σk ∈ Rk×k : the first k singular values

V T
k be the first k right singular vectors

Ak =
k∑

ℓ=1

σℓuℓ ◦ vTℓ +
r∑

ℓ=k+1

σℓuℓ ◦ vTℓ = UkΣkV
T
k

Ak

U

n

m

n=

V T

r

Σ

σr

. . .

r

r r

u1 ur

m

vT
r

u2 uk

vT
1

vT
2

vT
k

σ1
σ2

σk

Σk
V T
k

Uk
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Rank-k approximation from Truncated SVD

The optimization problem of finding the best low rank approximation for A

argmin
V ∈ Rk×m, U ∈ Rn×k

∥A− UV T∥2F

Theorem

Ak is the best rank-k approximation to A, i.e. it is the solution to the
above optimization problem

More formally,

the U in the above problem would be Uk

√
Σk

and V would be
√
ΣkV

T
k

If k is not part of input, then k can be chosen as we discussed for number
of principal components (scree plot, elbow method etc.)
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Applications of SVD
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SVD Applications

Matrix Completion - extrapolate missing values of a matrix

Interpretation of SVD

Approximate A in terms of k “concepts” or “latent factors”

Singular vectors Uk and V T
k are numeric representations of rows and

columns of concepts

Singular values Σk measure strength of these concepts

ith row of U represents a data item (ith row of A) as a linear
combination of the rows of concepts (with coefficients Σ)

jth column of V T represents a dimension (jth columns of A) as a
linear combination of the columns of concepts (with coefficient Σ)
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SVD Application: Recommenders

Recall the recommendation system problem

Given a matrix R – users (rows) ratings for items (columns), predict R(i , j)

?
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SVD Application: Recommenders

Given n ×m matrix R For k ≪ m, n, Find

n × k matrix P and k ×m matrix Q such that

R = PQ

Generally, for very small k , we seek

R ≃ PQ

n

m

×

'n×m

R
P Q

PT
i Qj ' Rij

n× k

k ×m
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SVD Application: Recommenders

Given n ×m matrix R For k ≪ m, n, Find

n × k matrix P and k ×m matrix Q such that

R ≃ PQ

n
m

×

'n×m

R
P Q

PT
i Qj ' Rij

n× k

k ×m

This is a classic optimization problem can be solved as

min
P∈Rn×k

Q∈Rm×k

∑
(i ,j)

(
Rij − PiQ

T
j

)2
+ λ

(
∥P∥2F + ∥Q∥2F

)︸ ︷︷ ︸
regularization term
avoids overfitting
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SVD Application: Recommenders

Matrix Factorization for Recommenders R ≃ PQ

P : k-dim representation of users in a latent feature space Rk

Q : k-dim representation of items latent feature space

PiQ
T
j : interaction between user i and item j – approximation of Rij

?

QT

P

u
se
r
la
te
n
t
fe
a
tu

re
s

items latent features
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SVD Application: Recommenders

diagram adapted from Cho-Jui Hsieh @ UCLA

Names are dummy

2d view of
latent feature space
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SVD Application: Recommenders

diagram adapted from Cho-Jui Hsieh @ UCLA

latent feature space

Users and movies mapped to
Points are coordinates

( 2-dim P and Q)

of users and movies
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SVD Application: Recommenders

Using SVD to get R = PQ

u
se
rs

items

u
se
r
la
te
n
t
fe
a
tu
re
s

items latent features
×

'rating matrix

R P Q
P = Uk

√
Σk

Q =
√

Σk V
T
k

Rk

U

n

m

n=

V T

r

Σ

σr

. . .

r

r r

u1 ur

m

vT
r

u2 uk

vT
1

vT
2

vT
k

σ1
σ2

σk

Σk
V T
k

Uk

PT
i Qj ' Rij
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SVD Application: Recommenders

SVD is not the best approach to factorize rating matrix

Typically R will have many values missing

SVD will adjust U, Σ and V to the 0’s or any default values

One can try other default values

matrix average, row averages, column averages, anova

SVD performs good if R is close to rank-k and has few missing values
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SVD Application

Classic data science applications of of SVD are

Latent Semantic Analysis – the basis of Word Embedding
(particularly word2vec)

Latent Semantic Indexing (when used in information retrieval). LSA
is widely used in many text analytics applications

source: datacamp,com
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SVD Application: LSA

Uk

k

ΣkV
T
k

Term-Document Incidence Matrix, X Low rank approximation of X via SVD



x11 x12 . . . . . . . . . x1n
x21 x22 . . . . . . . . . x2n
...

... . . . . . . . . .
...

...
... . . . . . . . . .

...
...

... . . . . . . . . .
...

xm1 xm2 . . . . . . . . . xmn



documents︷ ︸︸ ︷
te

rm
s

Y Z

∥X − YZT∥F is minimum (amongst rank k matrices)

On average every entry Xij ≃ yaizTi

yazTi ≃ 1 when doci contains terma

ya and zi is the ath row of Y and ith columns of ZT
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SVD Application: LSA

ya

zi

zj

doci and docj both contains terma =⇒ yazTi ≃ yazTj ≃ 1

zi and zj both have high dot product with ya (low cosine distance)

If doci and docj contain many terms, in common, they will have
small angle between them (high dot-product)

If terms a and b appear in many common documents, then ya and yb
will have higher dot products
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SVD Application: LSA

Alternative Interpretation:

Y and Z represent k abstract concepts (latent factors)

the ath row of Y represent term a as linear combin. of the k concepts

Columns of ZT represent docs as linear combin. of the k concepts

Uk
ΣkV

T
k

Term-Document Incidence Matrix, X Low rank approximation of X via SVD



x11 x12 . . . . . . . . . x1n
x21 x22 . . . . . . . . . x2n
...

... . . . . . . . . .
...

...
... . . . . . . . . .

...
...

... . . . . . . . . .
...

xm1 xm2 . . . . . . . . . xmn



documents︷ ︸︸ ︷

te
rm

s

Y Z

k Topics

ya(i): How much term a associates with

zj(i): How much doc i belongs to
the Topic i
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SVD Application: LSA

LSA embeds terms into the k-d space ( rows of Y are the representation)

source: datacamp,com
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SVD Application: Data denoising

Data denoising

If true underlying data in A is low-rank, Truncated SVD of A might throw
out a significant amount of noise and little ground truth data (the signal)

The resulting approximate data might be a cleaner, more informative and
better version of A

Especially, if singular values have a good elbow structure, (smaller singular
values will more likely correspond to the added noise in data)

Noisy image Denoised image

rank k
approximation

SVD
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SVD and Eigendecomposition

SVD and eigen-decomposition are related but there are differences

Not every matrix has an eigen-decomposition (not even every square
matrix). Any matrix (even rectangular) has an SVD

In eigen-decomposition A = XΛX−1, that is, the eigen-basis is not
always orthogonal. The basis of singular vectors is always orthogonal

In SVD we have two singular-spaces (right and left)

Computing the SVD of a matrix is more numerically stable
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SVD and Eigendecomposition

For n × n real symmetric real matrix A

A = UΣV T A = XΛX−1

In this case we must have the following

U,V ,X are orthonormal matrices

Λ and Σ are diagonal matrices with values in decreasing orders
(eigenvalues and singular values, respectively )

U and V are the left and right singular matrices of A, respectively

X are eigenvectors of A
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SVD and Eigendecomposition

PCA using SVD

ATA = (UΣVT)TUΣVT = (VT)TΣTUTUΣVT = VΣΣV T = VΣ2VT

V contains eigenvectors of C = ATA

Note we get it directly from A = UΣV T without having to explicitly
compute the covariance matrix.

For large dataset and large dimensions computing C is already
computationally expensive

So SVD provides another way of computing the principal components

Recall that principal components are eigenvectors of ATA (if A is the
data matrix with each data point as a row and each dimension as a
column). Eigenvalues are just the square roots of the singular values
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