PRINCIPAL COMPONENT ANALYSIS

- Aims of PCA
- PCA vs Johnson-Lindenstrauss Lemma
- Variance-Covariance Matrix
- PCA Objective: Reconstruction Error and Projected Variance
- PCA Objective Linear Algebraic Formulation
- Eigen Decomposition of Covariance Matrix
- Power Iteration Method
- Eigenfaces
- Limitation of PCA

Imdad ullah Khan

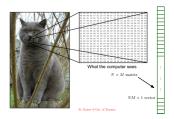
High Dimensional Data

High Dimensional Data is common in many applications

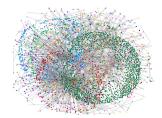
VSM representation of text

Utility matrix for recommenders

Multi-mega pixels images



Social networks as adjacency matrix

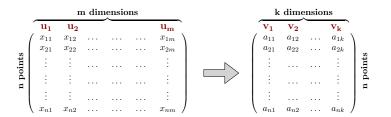


Curse of dimensionality

- In general as features increase redundancy also increases
 - more noise added to data than signal
- High dimensional data is hard to visualize and interpret
- Computationally challenging
 - Processing time
 - Storage capacity
 - Communication bandwidth
- Distance/Angle Concentration
- Nearest Neighbor Instability

Dimensionality Reduction

- The focus of dimensionality reduction through PCA are
- High dimensional data is hard to visualize and interpret
- The computational aspect of the curse
 - Processing time
 - Storage capacity
 - Communication bandwidth
- Our goal: reduce dimensionality of the dataset with low 'distortion'



Aims of PCA

- Low dimensional data visualization
- Get a sense of source of variations in data
- Understand pairwise correlation between attributes of data
- Reduce dimensions with little 'distortion'

- JL transform is data oblivious
 - Does not utilize structure in data
 - Computationally efficient
 - Can pre-compute transformation

- 1 PCA is data dependent
 - Fully exploits structure in data
 - Computationally expensive
 - Cannot pre-compute

- 1 JL transform is data oblivious
- 2 JL transform is randomized
 - Projects data onto random vectors

- 1 PCA is data dependent
- 2 PCA is deterministic
 - Projects onto vectors computed based on data

- JL transform is data oblivious
- 2 JL transform is randomized
- JL transform preserves pairwise distances between compressed points

- 1 PCA is data dependent
- 2 PCA is deterministic
- PCA attempts to keep compressed points almost the same as original

- JL transform is data oblivious
- 2 JL transform is randomized
- 3 JL transform preserves pairwise distances between compressed points
- 4 Coordinates in new space are meaningless
 - New bases are random axes

- 1 PCA is data dependent
- 2 PCA is deterministic
- PCA attempts to keep compressed points almost the same as original
- Coordinates in new space are meaningful
 - New bases are linear combination of old ones

- 1 JL transform is data oblivious
- 2 JL transform is randomized
- 3 JL transform preserves pairwise distances between compressed points
- 4 Coordinates in new space are meaningless
- Number of dimensions in new space depends on number of data points

•
$$k = \Omega(\log n) \implies (1 \pm \epsilon)$$

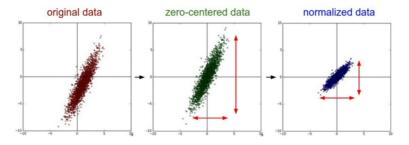
guarantee

- **1** PCA is data dependent
- 2 PCA is deterministic
- 3 PCA attempts to keep compressed points almost the same as original
- Coordinates in new space are meaningful
- Number of dimensions in new space depends on variation in the data
 - Can give very good results even for k = 2 or 3

PCA: Preprocessing

Important pre-processing steps for PCA to get that

- All coordinates have same scale and unit (or all be unitless)
- The mean (centroid) of data is **0** (all coordinates have mean 0)
- All coordinates have variance 1
- Achieved by z-score normalizing each coordinate
- z-score normalization of u_i is done by $u'_{ji} = \frac{u_{ji} \bar{u}_i}{\sigma_i}$, where \bar{u}_i is the mean and σ_i is the std-dev of the variable u_i



▷ Optional

Covariance and Correlation

Covariance helps understanding the relationships between variables For a dataset $X \subset \mathbb{R}^m$, with |X| = n (*n* points of dimensions *m*)

Covariance between variables \mathbf{u}_i and \mathbf{u}_j with means $\overline{u_i}$ and $\overline{v_i}$ is

$$COV(\mathbf{u}_i,\mathbf{u}_j) = COV(i,j) = \frac{1}{n} \sum_{\ell=1}^n (x_{\ell i} - \overline{u_i})(x_{\ell j} - \overline{u_j})$$

- $COV(\mathbf{u}_i, \mathbf{u}_j) < 0 \implies$ inverse proportionality
- $COV(\mathbf{u}_i, \mathbf{u}_j) > 0 \implies$ direct proportionality
- $COV(\mathbf{u}_i, \mathbf{u}_j) = 0 \implies$ no linear relation

Covariance and Correlation

Correlation

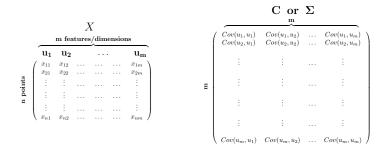
- Covariance value depends on magnitude and scale of the variables
- Correlation quantifies how strongly they are linearly related

$$\rho_{ij} = corr(\mathbf{u}_i, \mathbf{u}_j) = \frac{COV(\mathbf{u}_i, \mathbf{u}_j)}{\sigma_{u_i} \cdot \sigma_{u_j}}$$

- $\bullet \ \rho_{ij} \in [-1,1]$
- It is not affected by changes in scale of \mathbf{u}_i and \mathbf{u}_j
 - $ho_{ij} = -1 \implies$ perfect negative linear association
 - $\rho_{ij} = 1 \implies$ perfect positive linear association
 - $\rho_{ij} = 0 \implies$ no linear association
- For standardized data (mean 0 and variance 1) $\rho_{ij} = COV(\mathbf{u}_i, \mathbf{u}_j)$

Variance-Covariance Matrix

For a dataset $X \subset \mathbb{R}^m$, with |X| = n (*n* points of dimensions *m*) Variance-Covariance Matrix a $m \times m$ matrix *C* or Σ , $C_{ij} = COV(\mathbf{u}_i, \mathbf{u}_j)$



C is a symmetric matrix. For standardized dataset

- Entries on the principal diagonal (the variances) are 1
- Off diagonal entries are the pairwise correlations \quad i.e. $C=X^{ au}X$

PCA: Setup

Data $X = {\mathbf{x}_1, ..., \mathbf{x}_n} \subset \mathbb{R}^m$ viewed as rows of a $n \times m$ matrix Original variables are $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_m$ (standard bases vectors of \mathbb{R}^m) $\mathbf{x}_i \in X$ is linear combination of $\mathbf{u}_1, ..., \mathbf{u}_m$ ($x_{i1}, ..., x_{im}$ are coefficients)

$$\mathbf{x}_i = x_{i1}\mathbf{u}_1 + x_{i2}\mathbf{u}_2 + \ldots + x_{im}\mathbf{u}_m$$

Find a k-d representation $X' = \{\mathbf{x}'_1, \mathbf{x}'_2, \dots, \mathbf{x}'_n\}$ for X

Project X onto a k-d subspace spanned by bases vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k \subset \mathbb{R}^m$ \mathbf{x}'_i is a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_k$

$$\mathbf{x}'_i = a_{i1}\mathbf{v_1} + a_{i2}\mathbf{v_2} + \ldots + a_{ik}\mathbf{v_k}, \qquad a_{ij} = \langle x_i, \mathbf{v_j} \rangle = x_i \cdot \mathbf{v_j}$$

		n	n din	iensio	ns		k	dime	ensio	ns
	\mathbf{u}_1	\mathbf{u}_2				um	v ₁	\mathbf{v}_2		Vk
- (x_{11}	x_{12}				x_{1m}	(a ₁₁	a_{12}		a_{1k}
. [x_{21}	x_{22}				x_{2m}	a21	a_{22}		a_{2k}
bollis	÷	÷					1 :			÷
a	÷	÷				÷	1 :			÷
-	÷	÷				÷				1
	x_{n1}	x_{n2}				x_{nm}	\ a _{n1}	a_{n2}		ank i

PCA: Setup

Given X as a $n \times m$ matrix (rows are \mathbf{x}_i 's, columns are dimensions) Original variables are $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m$ (standard bases vectors of \mathbb{R}^m)

 $\mathbf{x}_i = x_{i1}\mathbf{u}_1 + x_{i2}\mathbf{u}_2 + \ldots + x_{in}\mathbf{u}_n$

Project X onto a k-d subspace spanned by bases vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k \subset \mathbb{R}^m$

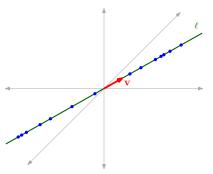
 $\mathbf{x}'_i = a_{i1}\mathbf{v_1} + a_{i2}\mathbf{v_2} + \ldots + a_{ik}\mathbf{v_k}, \qquad a_{ij} = \langle x_i, \mathbf{v_j} \rangle = x_i \cdot \mathbf{v_j}$

PCA Goals:

- Find the best vectors $\mathbf{v_1}, \dots, \mathbf{v_k} \subset \mathbb{R}^m$
- \blacksquare Avoid redundancy $\implies \textbf{v}_1, \ldots, \textbf{v}_k$ are orthonormal
- Need to formulate the objective (goodness measure)

Principal Component Analysis

As a warm-up exercise, suppose the m-d data lies on a line

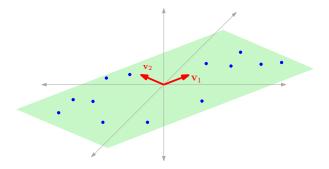


- Let **v** be the unit vector in direction of ℓ
- For $\mathbf{x_i} \in X$, let $f(\mathbf{x_i}) := \mathbf{v} \cdot \mathbf{x}$
- In this case, since $\mathbf{v} \cdot \mathbf{x}_i = \mathbf{x}_i$ (as \mathbf{x}_i lies on ℓ), we get

$$\forall i, j |||f(\mathbf{x}_i) - f(\mathbf{x}_j)|| = ||\mathbf{v} \cdot \mathbf{x}_i - \mathbf{v} \cdot \mathbf{x}_j|| = ||\mathbf{x}_i - \mathbf{x}_j||$$

Principal Component Analysis

If the *m*-d data lies on a *k*-d plane with orthonormal basis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$

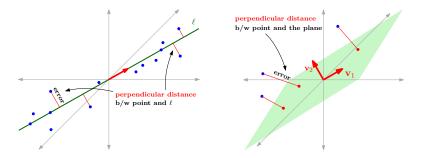


• Let **V** be the matrix with $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ as columns • For $\mathbf{x}_i \in X$, let $f(\mathbf{x}_i) := \mathbf{x}_i^T \mathbf{V}$, we get

$$\forall i, j ||| f(\mathbf{x}_i) - f(\mathbf{x}_j)|| = ||\mathbf{x}_i^T \mathbf{V} - \mathbf{x}_j^T \mathbf{V}|| = ||\mathbf{x}_i - \mathbf{x}_j||$$

In above cases, we get 0 error (no-distortion) dimensionality reduction

Principal Component Analysis



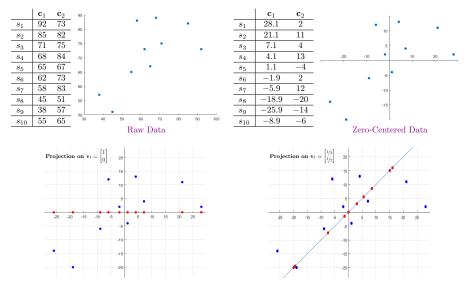
PCA finds the low dimensional space to which the data is close

- Similar to (multiple) linear regression, but
 - **1** Error there is vertical distance from subspace not perpendicular distance
 - **2** There no mention of \mathbf{v}_1, \ldots and their orthonormality
- PCA finds orthonormal vectors v₁,..., v_k spanning the subspace to which perpendicular distances from points in X are minimum

IMDAD ULLAH KHAN (LUMS)

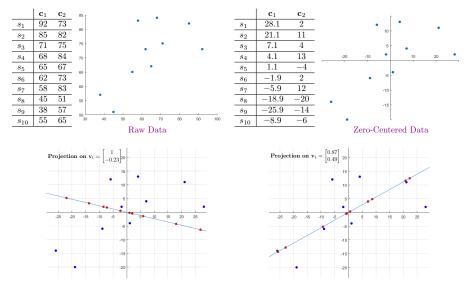
PCA: Example with k = 1

Represent 10 students records in 2 courses by one number



PCA: Example with k = 1

Represent 10 students records in 2 courses by one number



PCA: A Bigger Example

Record of 16 students in 4 courses (original and zero-centered)

	c ₁	c ₂	C 3	C 4
s_1	95	89	70	64
s ₂	91	91	71	70
s 3	79	77	65	58
S 4	76	74	68	69
S 5	76	69	65	64
s 6	78	68	65	64
S 7	79	70	47	42
s 8	62	61	47	46
S 9	68	63	88	88
s_{10}	68	67	90	89
s ₁₁	66	63	82	75
s ₁₂	66	67	78	70
s ₁₃	68	63	75	72
<i>s</i> ₁₄	64	63	76	70
S 15	53	46	79	72
<i>s</i> ₁₆	43	42	61	60

	\mathbf{c}_1	c ₂	C 3	C 4
s_1	24.3	21.9	-0.4	-3.1
s ₂	20.3	23.9	0.6	2.9
s 3	8.3	9.9	-5.4	-9.1
S 4	5.3	6.9	-2.4	1.9
S 5	5.3	1.9	-5.4	-3.1
s ₆	7.3	0.9	-5.4	-3.1
S 7	8.3	2.9	-23.4	-25.1
s 8	-8.8	-6.1	-23.4	-21.1
S 9	-2.8	-4.1	17.6	20.9
s_{10}	-2.8	-0.1	19.6	21.9
s_{11}	-4.8	-4.1	11.6	7.9
s ₁₂	-4.8	-0.1	7.6	2.9
s ₁₃	-2.8	-4.1	4.6	4.9
<i>s</i> ₁₄	-6.8	-4.1	5.6	2.9
s 15	-17.8	-21.1	8.6	4.9
<i>s</i> ₁₆	-27.8	-25.1	-9.4	-7.1

PCA: A Bigger Example

Data porjected on $\mathbf{v_1} = \begin{bmatrix} 0.6 & 0.6 & -0.4 & -0.4 \end{bmatrix}^T$

							a/ _ / a		
	c ₁	c ₂	c 3	c ₄	$a_{i1} = \langle s_i, \mathbf{v_1} \rangle$;, v1) v1	
<i>s</i> 1	24.3	21.9	-0.4	-3.1	28.7	17.5	16.5	-11.2	-11.1
<i>s</i> 2	20.3	23.9	0.6	2.9	24.7	15	14.2	-9.6	-9.5
<i>s</i> 3	8.3	9.9	-5.4	-9.1	16.3	9.9	9.4	-6.3	-6.3
<i>s</i> 4	5.3	6.9	-2.4	1.9	7.4	4.5	4.2	-2.9	-2.8
<i>s</i> 5	5.3	1.9	-5.4	-3.1	7.6	4.6	4.4	-3	-2.9
<i>s</i> 6	7.3	0.9	-5.4	-3.1	8.2	5	4.7	-3.2	-3.2
s 7	8.3	2.9	-23.4	-25.1	25.5	15.5	14.6	-9.9	-9.9
<i>s</i> 8	-8.8	-6.1	-23.4	-21.1	8.4	5.1	4.8	-3.3	-3.3
s 9	-2.8	-4.1	17.6	20.9	-18.9	-11.5	-10.8	7.4	7.3
<i>s</i> ₁₀	-2.8	-0.1	19.6	21.9	-17.8	-10.8	-10.2	6.9	6.9
s ₁₁	-4.8	-4.1	11.6	7.9	-12.8	-7.8	-7.3	5	4.9
<i>s</i> ₁₂	-4.8	-0.1	7.6	2.9	-7	-4.3	-4	2.7	2.7
<i>s</i> ₁₃	-2.8	-4.1	4.6	4.9	-7.7	-4.7	-4.4	3	3
<i>s</i> ₁₄	-6.8	-4.1	5.6	2.9	-9.7	-5.9	-5.6	3.8	3.8
s ₁₅	-17.8	-21.1	8.6	4.9	-28.1	-17.1	-16.1	10.9	10.9
s ₁₆	-27.8	-25.1	-9.4	-7.1	-24.9	-15.1	-14.3	9.7	9.6

- Compare s'_i with s_i
- Coordinates with big values are still bigger
- Coordinates with smaller values are somewhat smaller
- We saved 75% of storage. For s_i only need to save a_{i1}

PCA: A Bigger Example

Projection on plane spanned by $\mathbf{v_1} = \begin{bmatrix} 0.6 & 0.6 & -0.4 & -0.4 \end{bmatrix}^T$ and $\mathbf{v_2} = \begin{bmatrix} 0.4 & 0.4 & 0.6 & 0.6 \end{bmatrix}^T$

-	<i>c</i> ₁	<i>c</i> ₂	<i>c</i> 3	c4	a _{i1}	a _{i2}			$s'_i = a_{i1} \mathbf{v}$	$1 + a_{i2}v_2$	
<i>s</i> ₁	24.3	21.9	-0.4	-3.1	28.7	15.8	-	23.4	22.8	-1.8	-1.7
<i>s</i> ₂	20.3	23.9	0.6	2.9	24.7	19.3		22.3	21.9	1.8	1.9
<i>s</i> 3	8.3	9.9	-5.4	-9.1	16.3	-1.5		9.4	8.8	-7.2	-7.2
s ₄	5.3	6.9	-2.4	1.9	7.4	4.5	-	6.2	6	-0.2	-0.2
<i>s</i> 5	5.3	1.9	-5.4	-3.1	7.6	-2.3		3.8	3.4	-4.3	-4.3
<i>s</i> 6	7.3	0.9	-5.4	-3.1	8.2	-1.9		4.3	4	-4.3	-4.3
<i>s</i> ₇	8.3	2.9	-23.4	-25.1	25.5	-24.4	-	6.4	4.9	-24.3	-24.3
<i>s</i> 8	-8.8	-6.1	-23.4	-21.1	8.4	-32		-6.9	-8	-22.2	-22.2
s 9	-2.8	-4.1	17.6	20.9	-18.9	20.1		-4	-2.8	19.2	19.2
s ₁₀	-2.8	-0.1	19.6	21.9	-17.8	23.5	-	-2	-0.8	20.8	20.8
s ₁₁	-4.8	-4.1	11.6	7.9	-12.8	8.1		-4.7	-4.1	9.8	9.7
<i>s</i> ₁₂	-4.8	-0.1	7.6	2.9	-7	4.4		-2.6	-2.3	5.3	5.3
s ₁₃	-2.8	-4.1	4.6	4.9	-7.7	3	-	-3.6	-3.2	4.7	4.7
<i>s</i> ₁₄	-6.8	-4.1	5.6	2.9	-9.7	0.9		-5.6	-5.2	4.3	4.3
<i>s</i> ₁₅	-17.8	-21.1	8.6	4.9	-28.1	-7.1		-19.8	-19	6.7	6.7
s ₁₆	-27.8	-25.1	-9.4	-7.1	-24.9	-30.2		-26.5	-26.4	-8.2	-8.3

- Compare s'_i with s_i
- In general s'_i are closer to s_i
- We saved 50% of storage. For s_i only need to save a_{i1} and a_{i2}

PCA A Bigger Example

Projection	on hy	yperp	lane spanned by $\mathbf{v_1} = egin{bmatrix} 0.6 & -0.4 & -0.4 \end{bmatrix}^{\mathcal{T}}$,
$v_2 = [0.4]$	0.4	0.6	$\left[0.6 ight]^{\mathcal{T}}$, and $\mathbf{v_3}=\left[-0.7 0.7 0.1 -0.1 ight]^{\mathcal{T}}$

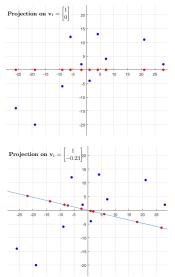
	<i>c</i> ₁	<i>c</i> ₂	<i>c</i> 3	<i>c</i> ₄
<i>s</i> ₁	24.3	21.9	-0.4	-3.1
<i>s</i> ₂	20.3	23.9	0.6	2.9
<i>s</i> 3	8.3	9.9	-5.4	-9.1
<i>s</i> 4	5.3	6.9	-2.4	1.9
<i>s</i> 5	5.3	1.9	-5.4	-3.1
<i>s</i> 6	7.3	0.9	-5.4	-3.1
s7	8.3	2.9	-23.4	-25.1
<i>s</i> 8	-8.8	-6.1	-23.4	-21.1
<i>s</i> 9	-2.8	-4.1	17.6	20.9
s ₁₀	-2.8	-0.1	19.6	21.9
s ₁₁	-4.8	-4.1	11.6	7.9
<i>s</i> ₁₂	-4.8	-0.1	7.6	2.9
s ₁₃	-2.8	-4.1	4.6	4.9
<i>s</i> ₁₄	-6.8	-4.1	5.6	2.9
s ₁₅	-17.8	-21.1	8.6	4.9
s ₁₆	-27.8	-25.1	-9.4	-7.1
-16	21.0	23.1	9.4	1.1

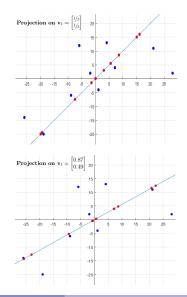
	а _{і1} v 1 + а _{і2}	$v_2 + a_{i3}v_3$	
24	22.2	-1.9	-1.6
20.5	23.7	2	1.5
8	10.2	-7.1	-7.5
5.6	6.6	-0.2	-0.3
5.4	1.8	-4.5	-4
7.4	0.8	-4.7	-3.8
8.1	3.1	-24.5	-24
-8.5	-6.3	-22	-22.5
-2.5	-4.3	19	19.5
-2.6	-0.3	20.8	20.7
-5	-3.8	9.8	9.7
-5	0.2	5.6	4.9
-2.7	-4.1	4.6	4.9
-6.9	-3.9	4.5	4
-18.1	-20.7	6.5	7
-27.5	-25.3	-8	-8.5
	$\begin{array}{r} 24\\ 20.5\\ 8\\ 5.6\\ 5.4\\ 7.4\\ 8.1\\ -8.5\\ -2.5\\ -2.6\\ -5\\ -5\\ -5\\ -5\\ -6.9\\ -18.1\end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- Compare *s*[']_i with *s*_i
- Each s'_i is almost the same as s_i
- We saved 25% of storage. For s_i only need to save a_{i1}, a_{i2} and a_{i3}

PCA Objective

Which vectors to project on ?

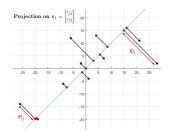




IMDAD ULLAH KHAN (LUMS)

PCA Objective

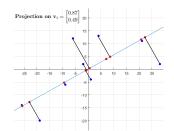
	c ₁	c ₂			a _{i1}	$a_{i1}v_1$			$\ s_i - s'_i\ $
s_1	28.1	2	5	\mathbf{s}_1'	15	15		e_1	18.5
s ₂	21.1	11		52	16	16		<i>e</i> ₂	7.1
s 3	7.1	4		53	5.5	5.5		e ₃	2.2
S 4	4.1	13	5	54	8.5	8.5		e_4	6.3
s 5	1.1	-4		55	-1.4	-1.4		<i>e</i> ₅	3.6
s ₆	-1.9	2	5	5 6	0	0		e_6	2.8
S 7	-5.9	12	5	57	3	3		<i>e</i> ₇	12.7
S 8	-18.9	-20		58	-19.4	-19.4		<i>e</i> ₈	0.8
S 9	-25.9	-14		59	-19.9	-19.9		<i>e</i> 9	8.4
s_{10}	-8.9	-6		5'10	-7.4	-7.4		e_{10}	2.1



Total Error (sum) = 64.3467

PCA Objective

	c ₁	c ₂			$a_{i1}\mathbf{v_1}$				$\ s_i - s'_i\ $
s_1	28.1	2	-	s_1'	22.3	12.4	-	e_1	11.9
s ₂	21.1	11	-	s_2'	20.8	11.6	•	e_2	0.7
s 3	7.1	4	-	s'_3	7.1	4		e_3	0
S 4	4.1	13	-	s'_4	8.7	4.8	-	e_4	9.4
s 5	1.1	-4	-	s_5'	-0.9	-0.5	-	e 5	4
s 6	-1.9	2	-	s_6'	-0.6	-0.3	•	e_6	2.7
S 7	-5.9	12	-	s '7	0.6	0.3		<i>e</i> ₇	13.4
s 8	-18.9	-20	-	s_8'	-22.9	-12.8	-	e_8	8.3
S 9	-25.9	-14	-	s_9'	-25.7	-14.3	•	e 9	0.4
s_{10}	-8.9	-6	-	s_{10}'	-9.3	-5.2		e_{10}	0.9



Total Error (sum) = 51.6030

Find a vector to project the data onto that results in minimum reconstruction error or minimum information loss

For $X = {\mathbf{x}_1, ..., \mathbf{x}_n} \subset \mathbb{R}^m$, Find a unit vector $\mathbf{v}_1 \in \mathbb{R}^m$ and get $X' = {\mathbf{x}'_i = \langle \mathbf{x}_i, \mathbf{v}_1 \rangle \mathbf{v}_1}$ that minimizes the total reconstruction error $\sum_{\mathbf{x}_i \in X} e_i := \sum_{\mathbf{x}_i \in X} ||\mathbf{x}_i - \mathbf{x}'_i|| = \sum_{\mathbf{x}_i \in X}$ (distance b/w \mathbf{x}_i and line spanned by \mathbf{v}_1)

 $\|\mathbf{x}_i - \mathbf{x}'_i\|$ is the perpendicular distance between \mathbf{x}_i and the line spanned by \mathbf{v}_1 or between \mathbf{x}_i and its projection on \mathbf{v}_1

Squared reconstruction error

- The algebra is easier and has a
- nice connection with variance in data

$$\underset{\mathbf{v}_{1},\|\mathbf{v}_{1}\|=1}{\arg\min}\sum_{\mathbf{x}_{i}\in\mathcal{X}}\|\mathbf{x}_{i}-\mathbf{x}_{i}'\|^{2} = \underset{\mathbf{v}_{1},\|\mathbf{v}_{1}\|=1}{\arg\min}\sum_{\mathbf{x}_{i}\in\mathcal{X}}(\text{dist } \mathbf{b}/\mathsf{w} \ \mathbf{x}_{i} \text{ and line spanned by } \mathbf{v}_{1})^{2}$$

$$\underset{\mathbf{v}_{1},\|\mathbf{v}_{1}\|=1}{\arg\min}\sum_{\mathbf{x}_{i}\in X}\|\mathbf{x}_{i}-\mathbf{x}_{i}'\|^{2} = \arg\min_{\mathbf{v}_{1},\|\mathbf{v}_{1}\|=1}\sum_{\mathbf{x}_{i}\in X}(\text{dist b/w }\mathbf{x}_{i} \text{ and line spanned by }\mathbf{v}_{1})^{2}$$

For \mathbf{x}_i and it's projection on \mathbf{v}_1

(dist b/w \mathbf{x}_i and span of \mathbf{v}_1)²

$$\|\mathbf{x}_i\|^2 - \langle \mathbf{x}_i, \mathbf{v}_1 \rangle^2$$

Phythogorus theorem

 $\mathbf{v}_{1} = (\mathbf{x}_{i}, \mathbf{v}_{1})$ $\mathbf{v}_{1} = (\mathbf{x}_{i}, \mathbf{v}_{1})$ \mathbf{x}'_{i}

 $\|\bm{x}_i\|^2$ is constant \implies minimizing LHS is maximizing $\langle \bm{x}_i, \bm{v_1} \rangle^2$

Thus the objective function of PCA (with k = 1) is

$$\underset{\mathbf{v}_1,\|\mathbf{v}_1\|=1}{\operatorname{arg\,max}} \sum_{\mathbf{x}_i \in X} \langle \mathbf{x}_i, \mathbf{v}_1 \rangle^2 = \underset{\mathbf{v}_1,\|\mathbf{v}_1\|=1}{\operatorname{arg\,max}} \sum_{\mathbf{x}_i \in X} a_{i1}^2$$

The objective function of PCA (with k = 1) is

$$\underset{\mathbf{v}_{1},\|\mathbf{v}_{1}\|=1}{\arg\min}\sum_{\mathbf{x}_{i}\in\mathcal{X}}\|\mathbf{x}_{i}-\mathbf{x}_{i}'\|^{2} = \underset{\mathbf{v}_{1},\|\mathbf{v}_{1}\|=1}{\arg\min}\sum_{\mathbf{x}_{i}\in\mathcal{X}}(\text{dist b/w }\mathbf{x}_{i}\text{ and line spanned by }\mathbf{v}_{1})^{2}$$

$$\begin{array}{ll} \mathsf{Equivalently,} & \arg\max_{\mathbf{v}_1, \|\mathbf{v}_1\|=1} \ \sum_{\mathbf{x}_i \in X} \langle \mathbf{x}_i, \mathbf{v}_1 \rangle^2 = \arg\max_{\mathbf{v}_1, \|\mathbf{v}_1\|=1} \ \sum_{\mathbf{x}_i \in X} a_{i1}^2 \end{array}$$

X is zero-centered $\implies \sum_{i=1}^{n} \mathbf{x}_{ij}^2 = \sigma_j^2$, variance in *j*th coordinate of X

By linearity of dot-product $(p \cdot (q + r) = p \cdot q + p \cdot r)$, we get

$$\sum_{i=1}^{n} a_{i1} = \sum_{i=1}^{n} \langle \mathbf{x}_i, \mathbf{v}_1 \rangle = \langle \sum_{i=1}^{n} \mathbf{x}_i, \mathbf{v}_1 \rangle = 0$$

 \therefore first term in dot product is 0

The projections a_{i1} 's are zero-centered and $\sum_{\mathbf{x}_i \in X} a_{i1}^2$ is variance in a_{i1} 's

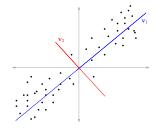
The objective function of PCA (with k = 1) is

$$\begin{aligned} \underset{\mathbf{v}_{1},\|\mathbf{v}_{1}\|=1}{\arg\min} & \sum_{\mathbf{x}_{i}\in\mathcal{X}} \|\mathbf{x}_{i}-\mathbf{x}_{i}'\|^{2} = \underset{\mathbf{v}_{1},\|\mathbf{v}_{1}\|=1}{\arg\min} & \sum_{\mathbf{x}_{i}\in\mathcal{X}} (\text{dist } b/w \ \mathbf{x}_{i} \text{ and line spanned by } \mathbf{v}_{1})^{2} \\ & \text{Equivalently,} & \arg\max_{\mathbf{v}_{1},\|\mathbf{v}_{1}\|=1} & \sum_{\mathbf{x}_{i}\in\mathcal{X}} \langle \mathbf{x}_{i},\mathbf{v}_{1} \rangle^{2} = \arg\max_{\mathbf{v}_{1},\|\mathbf{v}_{1}\|=1} & \sum_{\mathbf{x}_{i}\in\mathcal{X}} a_{i1}^{2} \end{aligned}$$

Objective of PCA (k = 1): Find direction of the most variance of X

This data has much higher variance in the direction of v_1 than in the direction of v_2

Thus PCA seeks v1



Project the dataset onto a k-dimensional hyperplane S so the sum of squared distances of points to S is minimum

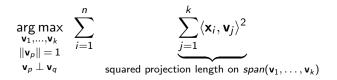
$$\argmin_{k\text{-d hyperplane }S} \sum_{\mathbf{x}_i \in X} \|\mathbf{x}_i - \mathbf{x}'_i\|^2 := \arg_{k\text{-d hyperplane }S} \sum_{\mathbf{x}_i \in X} (\text{distance b/w } \mathbf{x}_i \text{ and } S)^2$$

 \mathbf{x}'_i is the projection of $\mathbf{x}_i \in X$ on S

Equivalently, $\underset{k-\text{d hyperplane } S}{\operatorname{arg max}} \sum_{\mathbf{x}_i \in X} (\text{length of projection of } \mathbf{x}_i \text{ on } S)^2$

Represent S by orthonormal bases $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ Keeps algebra simple, length of projections of x is easy to compute

$$(\text{length of projection of } x_i \text{ on } S = span(\mathbf{v_1}, \dots, \mathbf{v_k}))^2 = \sum_{j=1}^k \langle x_i, \mathbf{v_j} \rangle^2$$



The vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ maximizing this objective are called the *top k* principal components of X

Problem: Principal Component Analysis

Given $X \subset \mathbb{R}^m$, |X| = n and an integer $k \ge 1$, find vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ to maximize the above objective and project X onto $\mathbf{v}_1, \ldots, \mathbf{v}_k$.

PCA Linear Algebraic Formulation (k = 1)

The objective function of PCA (with k = 1) is

$$\underset{\mathbf{v}_{1},\|\mathbf{v}_{1}\|=1}{\arg\min} \sum_{\mathbf{x}_{i}\in X} \|\mathbf{x}_{i}-\mathbf{x}_{i}'\|^{2} = \underset{\mathbf{v}_{1},\|\mathbf{v}_{1}\|=1}{\arg\min} \sum_{\mathbf{x}_{i}\in X} (\text{dist. b/w } \mathbf{x}_{i} \text{ and line spanned by } \mathbf{v}_{1})^{2}$$

$$\begin{array}{ll} \mathsf{Equivalently,} & \arg\max_{\mathbf{v}_1, \|\mathbf{v}_1\| = 1} \; \sum_{\mathbf{x}_i \in X} \langle \mathbf{x}_i, \mathbf{v}_1 \rangle^2 = \arg\max_{\mathbf{v}_1, \|\mathbf{v}_1\| = 1} \; \sum_{\mathbf{x}_i \in X} a_{i1}^2 \end{array}$$

Objective of PCA (k = 1): Find direction of the most variance of X

The projection of X on the unit vector
$$\mathbf{v}_1$$
 is $X\mathbf{v}_1 = \begin{bmatrix} \langle \mathbf{x}_1, \mathbf{v}_1 \rangle \\ \langle \mathbf{x}_2, \mathbf{v}_1 \rangle \\ \vdots \\ \langle \mathbf{x}_n, \mathbf{v}_1 \rangle \end{bmatrix}$

We want to maximize the sum of squares of this column vector

$$\sum_{\mathbf{x}_i \in X} \langle \mathbf{x}_i, \mathbf{v}_1 \rangle^2 = (X \mathbf{v}_1)^T X \mathbf{v}_1 = \mathbf{v}_1^T X^T X \mathbf{v}_1$$

PCA Linear Algebraic Formulation (k = 1)

PCA Objective (k = 1) $\triangleright C = X^T X$ covariance matrix

$$\underset{\mathbf{v}_1,\|\mathbf{v}_1\|=1}{\operatorname{arg\,max}} \sum_{\mathbf{x}_i \in X} \langle \mathbf{x}_i, \mathbf{v}_1 \rangle^2 := \underset{\mathbf{v}_1,\|\mathbf{v}_1\|=1}{\operatorname{arg\,max}} \mathbf{v}_1^T X^T X \mathbf{v}_1 := \underset{\mathbf{v}_1,\|\mathbf{v}_1\|=1}{\operatorname{arg\,max}} \mathbf{v}_1^T C \mathbf{v}_1$$

How to find the vector \mathbf{v}_1 ?

We first discuss the special case when covariance matrix is diagonal to get an understanding

PCA (k = 1): Diagonal Covariance Matrix

PCA (k = 1) Find the vector \mathbf{v}_1

S

$$\arg \max_{\mathbf{v}_{1}, \|\mathbf{v}_{1}\|=1} \sum_{\mathbf{x}_{i} \in X} \langle \mathbf{x}_{i}, \mathbf{v}_{1} \rangle^{2} := \arg \max_{\mathbf{v}_{1}, \|\mathbf{v}_{1}\|=1} \mathbf{v}_{1}^{T} X^{T} X \mathbf{v}_{1} := \arg \max_{\mathbf{v}_{1}, \|\mathbf{v}_{1}\|=1} \mathbf{v}_{1}^{T} C \mathbf{v}_{1}$$

$$pecial case: C \text{ is diagonal} \qquad \triangleright \text{ All correlations} = 0 \text{ (Not realistic)}$$

$$= \begin{bmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_{m} \end{bmatrix} \qquad \triangleright C \text{ is just a scaling linear transform}$$

Optimal solution \mathbf{v}_1 is standard basis vector of $\mathbb{R}^m \ \mathbf{e}_1 = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}^{\mathcal{T}}$

For any vector
$$\mathbf{u}\mathbb{R}^m$$
, $\|u\| = 1$ $\sum_{i=1}^m \lambda_i u_i^2 \leq \lambda_1 = \sum_{i=1}^m \lambda_i e_{1i}^2$

m

Assume $\lambda_1 > \lambda_2 > \ldots > \lambda_m$

 $\triangleright C_{ii} \geq 0$

m

Orthogonal Matrices

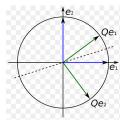
A real square matrix whose columns and rows are orthonormal vectors length of columns = 1 and columns pairs are orthogonal (dot-product = 0)

Properties of an orthogonal matrix Q

$$Q^{\mathrm{T}}Q = QQ^{\mathrm{T}} = I$$

$$Q^{-1} = Q^{T} \qquad \qquad \triangleright Q \text{ is necessarily invertible}$$

- Q preserves vector length i.e. $||Q\mathbf{v}|| = ||\mathbf{v}||$ (unitary transformation)
- Q only achieves a rotation, reflection or permutation of coordinates



For every real symmetric matrix the eigenvalues are real and the eigenvectors can be chosen real and orthonormal

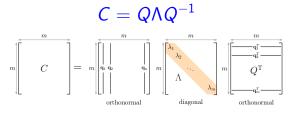
- Let $Q = \{\mathbf{q}_1, \dots, \mathbf{q}_m\}$ be the matrix with columns eigenvectors of C
- For $1 \le i \le m$, $C \mathbf{q}_i = \lambda_i \mathbf{q}_i$
- Q is an orhtogonal matrix

 $Q = \begin{bmatrix} | & | & | \\ \mathbf{q}_1 & \mathbf{q}_2 & \dots & \mathbf{q}_m \end{bmatrix} \qquad \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_m \end{bmatrix}$ $C = Q \Lambda Q^{-1}$

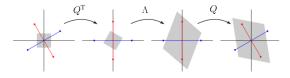
• Let $Q = \{\mathbf{q}_1, \dots, \mathbf{q}_m\}$ be the matrix with columns eigenvectors of C

• For
$$1 \le i \le m$$
, $C \mathbf{q}_i = \lambda_i \mathbf{q}_i$

Q is an orhtogonal matrix



So square symmetric matrices are rotation, scaling and rotation



PCA (k = 1): Find the vector \mathbf{v}_1

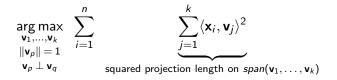
$\underset{\mathbf{v}_{1},\|\mathbf{v}_{1}\|=1}{\operatorname{arg max}} \sum_{\mathbf{x}_{i}\in\mathcal{X}} \langle \mathbf{x}_{i},\mathbf{v}_{1} \rangle^{2} := \underset{\mathbf{v}_{1},\|\mathbf{v}_{1}\|=1}{\operatorname{arg max}} \mathbf{v}_{1}^{T} X^{T} X \mathbf{v}_{1} := \underset{\mathbf{v}_{1},\|\mathbf{v}_{1}\|=1}{\operatorname{arg max}} \mathbf{v}_{1}^{T} C \mathbf{v}_{1}$ $C = Q \Lambda Q^{-1}$

 \mathbf{e}_1 is the direction of maximum stretch under Λ The direction \mathbf{v}_1 of max stretch under $C = Q\Lambda Q^T$ is such that $Q^T \mathbf{v}_1 = \mathbf{e}_1$ \mathbf{v}_1 get stretched the most under ΛQ^T and Q does not stretch or shrink it

$$Q^{\mathsf{T}} \mathbf{v}_1 = \mathbf{e}_1 \implies \mathbf{v}_1 = (Q^{\mathsf{T}})^{-1} \mathbf{e}_1 = Q \mathbf{e}_1$$

 $\mathbf{v}_1 = Q\mathbf{e}_1$ is the first column of Q or the leading eigenvector of CTo get the top k principal components we use the first k leading eigenvectors of C. This is very easy to see, again first in the case when Cis a diagonal matrix.

PCA (k > 1): Find the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$



 $C = Q \Lambda Q^{-1}$

 $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are the first k leading eigenvectors of C

This is easy to see, again first work it out in the case when C is diagonal

- Zero centering the data takes O(nm) (input scan)
- Covariance matrix: $O(m^2n) O(m^2)$ values each takes O(n) ops
- Eigen decomposition takes $O(m^3)$ time for a $m \times m$ matrix
- Transformation and dimensionality reduction require $n \times m \times k$ time
- Total runtime is $O(nm^2 + m^3)$.

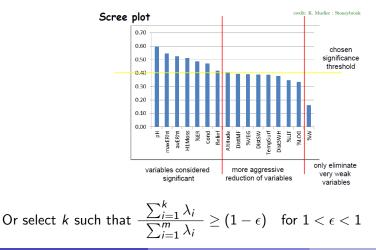
For large datasets computing C is computationally infeasible

Use SVD method to compute PCA to avoid computing C

Top eigenvectors of C can be computed using power iteration method

PCA - Number of components

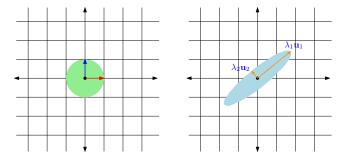
Depends on the task at hand – Same question as number of clusters Variance explained by \mathbf{q}_i is equal to λ_i Select k such that $\lambda_{k+1}, \ldots, \lambda_m$ are small



IMDAD ULLAH KHAN (LUMS)

Power Iteration Method

The top eigenvector of A is the direction of max stretch
 λ₁,...,λ_m eigenvalues of A ⇔ λ^r₁,...,λ^r_m eigenvalues of A^r
 Picture the transformation of the unit circle by A



The longest axis (major axis in 2d) corresponds to the top eigenvector The ellipse corresponding to A^k will be very long and very thin difference between axes will be amplified (λ_1^k vs λ_2^k)

Power Iteration Method

Power iteration method uses this intuition

- For a random unit vector **v** A(A(A...A(A(**v**)))) will be almost entirely in the direction of top eigenvector
- For large $k A^k$ maps almost all unit vectors close to longest ellipse axis

Algorithm Power Iteration to compute top eigenvector of $A = X^T X$

```
\mathbf{v}_0 \leftarrow \text{RANDOM-UNIT-VECTOR}() \triangleright Generate random direction i \leftarrow 1
```

while stopping criteria is not met do

$$\mathbf{v}_i \leftarrow A\mathbf{v}_{i-1}$$
$$\mathbf{v}_i \leftarrow \mathbf{v}_i / \|\mathbf{v}_i\|$$
$$i \leftarrow i+1$$

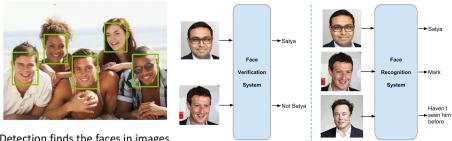
Normalize to get unit vector

- Stop: when $\|\mathbf{v}_i\| \|\mathbf{v}_{i-1}\| < \epsilon$
- Runtime depends on spectral gap λ₂/λ₁
- Can use repeated squaring to compute A^kv

Power Iteration Method

- **\blacksquare** To compute second eigenvector after the first, \mathbf{v}_1
- Project A onto v₁ and subtract it out
- The residual matrix $A' \leftarrow A A \mathbf{v}_1 \mathbf{v}_1^T$
- Row *i* of A' is $[\mathbf{a}_i \langle \mathbf{a}_i, \mathbf{v} 1 \rangle \mathbf{v}_i]$
- The top eigenvector of A' is second leading eigenvector of A
- For the bottom eigenvector (e.g. of the Laplacian matrix, that we use for spectral clustering), use the inverse power iteration method
- This follows from the fact that eigenvalues of A^k are $\lambda_1^k, \lambda_2^k, \ldots,$
- For k = -1, eigen values of the inverse A^{-1} of A are $1/\lambda_1, 1/\lambda_2, \ldots, ...$
- $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \implies 1/\lambda_1 \leq 1/\lambda_2 \leq \ldots \leq 1/\lambda_n$
- Thus, the power method on A^{-1} yields the smallest eigenpair
- With some linear algebra computing the inverse can be avoided
- To compute all eigenvectors the algorithm is called the QR algorithm

Classic application of PCA is image compression and face recognition



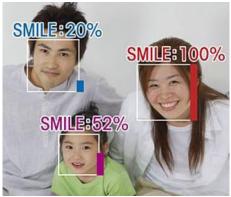
Detection finds the faces in images J. Niebles & R. Krishna @ Stanford

source: learnopency.com

Surveillance

GILLES SABRIE-THE NEW YORK TIMES/REDUX

Emotion and Expression Detection



J. Niebles & R. Krishna @ Stanford

Photo Album Organization

Facebook Auto Tag Suggestions

We've Suggested Tags for Your Photos

We've automatically grouped together similar pictures and suggested the names of friends who might appear in them. This lets you guickly label your photos and notify friends who are in this album.

Tag Your Friends

This will quickly label your photos and notify the friends you tag. Learn more

Who is this?

Who is this?

Who is this?

Who is this?

Who is this?

Francis Luu

Who is this?

Input Images

Dataset For each face there should be a few training examples

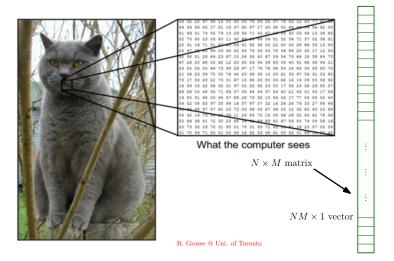
16-21	100	10.0	150	15 35	100	16 31	1: 31	15 81	and the
家を	家	Ser.	家の	際の	See.	家	家の	See.	State -
E.	10-1	T	No.	的	200	and and	250	N.	S
18	1 all	(1 a)	120	12	150	13.0		Re-	120
1	CE3	E.	ESE .	E	E	63	E	E)	12.0
No.	and and a	の二	100 m	and the	100 C	at 1	30	a an	all all
の間	E.	10 m	(Based	and a	10 m	の町	の間	の読	63
11-8	110	(0.0)	11	0.0	0.0	1	6-1)	9:0	6.0
E.	(Ca	50	(Ca	Co Co	(Ca	(ca)	630	(Ca	(de
eg)	B	3	00	S	3	65	6	6	9

All faces should be centered

IMDAD ULLAH KHAN (LUMS)

Principal Component Analysis

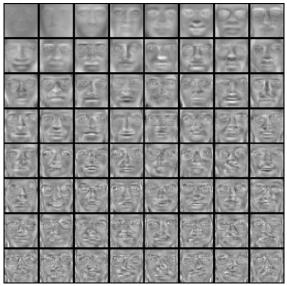
Represent images by vectors



Mean Face

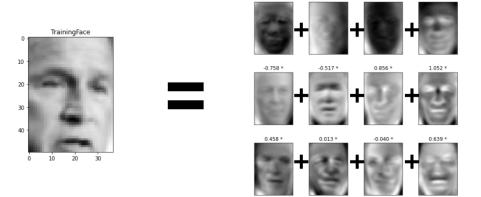
Mean face $\bar{\mathbf{x}}$

Top eigenvectors: u_1, \ldots, u_k (visualized as images - eigenfaces)



IMDAD ULLAH KHAN (LUMS)

Represent a face as a linear combination of top k eigenfaces



-2.076 *

-1.046 *

2.127 *

0.037 *

Effect of number of principal components on reconstruction

 $K=5 \qquad K=10 \qquad K=20 \qquad K=30 \qquad K=50 \qquad K=100 \qquad K=200 \qquad K=300 \qquad K=400 \qquad K=500 \qquad K=600 \qquad K=$

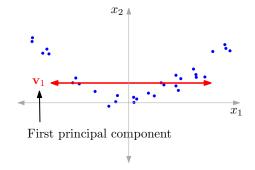
Face Recognition:

- Subtract the mean face from the given (test) face
- Project onto the same k principal components
- Use k-nearest neighbors (by the new representations) and make a prediction based on that

Face Detection:

- For a region R of the image, project R onto the principal components
- If the ℓ_2 distance of the new representation of R with R is not significant, then R is a face

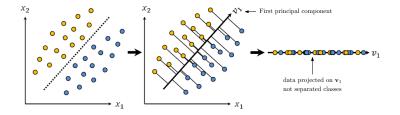
PCA does not capture non-linear relationships between attributes



PCA: Limitations

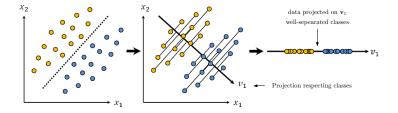
PCA does not take into account any class labels (a completely unsupervised approach)

- It does not necessarily help separate data based on classes
- reduced dimensional data may not lead to better classification



Linear Discriminant Analysis (LDA):

Seeks a projection that best discriminates the data



Linear Discriminant Analysis

Other dimensionality reduction methods that we will not study Linear Methods include

- Factor Analysis
- Independent Component Analysis: Seeks a projection that preserves as much information in the data as possible

Non-linear methods include

- Laplacian Eigenmaps
- ISOMAP
- **Local Linear Embedding** Embedding to low dimensional manifolds