
Big Data Analytics

Principal Component Analysis

Aims of PCA

PCA vs Johnson-Lindenstrauss Lemma

Variance-Covariance Matrix

PCA Objective: Reconstruction Error and Projected Variance

PCA Objective Linear Algebraic Formulation

Eigen Decomposition of Covariance Matrix

Power Iteration Method

Eigenfaces

Limitation of PCA

Imdad ullah Khan
Imdad ullah Khan (LUMS) Principal Component Analysis 1 / 64

High Dimensional Data

High Dimensional Data is common in many applications

VSM representation of text

Bengfort,, Bilbro & Ojeda: Applied Text Analysis with Python

Utility matrix for recommenders

?

Multi-mega pixels images

N ×M matrix

NM × 1 vector

...

...

...

R. Grosse @ Uni. of Toronto

Social networks as adjacency matrix

Imdad ullah Khan (LUMS) Principal Component Analysis 2 / 64

Curse of dimensionality

In general as features increase redundancy also increases

more noise added to data than signal

High dimensional data is hard to visualize and interpret

Computationally challenging

Processing time

Storage capacity

Communication bandwidth

Distance/Angle Concentration

Nearest Neighbor Instability

Imdad ullah Khan (LUMS) Principal Component Analysis 3 / 64

Dimensionality Reduction

The focus of dimensionality reduction through PCA are

High dimensional data is hard to visualize and interpret

The computational aspect of the curse

Processing time

Storage capacity

Communication bandwidth

Our goal: reduce dimensionality of the dataset with low ‘distortion’

x11 x12 x1m
x21 x22 x2m
...

...
...

...
...

...
...

...
...

xn1 xn2 xnm

a11 a12 . . . a1k
a21 a22 . . . a2k
...

...
...

...
...

...
an1 an2 . . . ank

m dimensions︷ ︸︸ ︷ k dimensions︷ ︸︸ ︷

n
p
o
in
ts

n
p
o
in
ts

u1 u2 um v1 v2 vk

Imdad ullah Khan (LUMS) Principal Component Analysis 4 / 64

Aims of PCA

Low dimensional data visualization

Get a sense of source of variations in data

Understand pairwise correlation between attributes of data

Reduce dimensions with little ‘distortion’

Imdad ullah Khan (LUMS) Principal Component Analysis 5 / 64

PCA vs JL-Transform

1 JL transform is data oblivious

Does not utilize structure in data

Computationally efficient

Can pre-compute transformation

1 PCA is data dependent

Fully exploits structure in data

Computationally expensive

Cannot pre-compute

Imdad ullah Khan (LUMS) Principal Component Analysis 6 / 64

PCA vs JL-Transform

1 JL transform is data oblivious

2 JL transform is randomized

Projects data onto random
vectors

1 PCA is data dependent

2 PCA is deterministic

Projects onto vectors computed
based on data

Imdad ullah Khan (LUMS) Principal Component Analysis 7 / 64

PCA vs JL-Transform

1 JL transform is data oblivious

2 JL transform is randomized

3 JL transform preserves pairwise
distances between compressed
points

1 PCA is data dependent

2 PCA is deterministic

3 PCA attempts to keep
compressed points almost the
same as original

Imdad ullah Khan (LUMS) Principal Component Analysis 8 / 64

PCA vs JL-Transform

1 JL transform is data oblivious

2 JL transform is randomized

3 JL transform preserves pairwise
distances between compressed
points

4 Coordinates in new space are
meaningless

New bases are random axes

1 PCA is data dependent

2 PCA is deterministic

3 PCA attempts to keep
compressed points almost the
same as original

4 Coordinates in new space are
meaningful

New bases are linear combination
of old ones

Imdad ullah Khan (LUMS) Principal Component Analysis 9 / 64

PCA vs JL-Transform

1 JL transform is data oblivious

2 JL transform is randomized

3 JL transform preserves pairwise
distances between compressed
points

4 Coordinates in new space are
meaningless

5 Number of dimensions in new
space depends on number of
data points

k = Ω(log n) =⇒ (1± ϵ)
guarantee

1 PCA is data dependent

2 PCA is deterministic

3 PCA attempts to keep
compressed points almost the
same as original

4 Coordinates in new space are
meaningful

5 Number of dimensions in new
space depends on variation in
the data

Can give very good results even
for k = 2 or 3

Imdad ullah Khan (LUMS) Principal Component Analysis 10 / 64

PCA: Preprocessing

Important pre-processing steps for PCA to get that

All coordinates have same scale and unit (or all be unitless)

The mean (centroid) of data is 0 (all coordinates have mean 0)

All coordinates have variance 1 ▷ Optional

Achieved by z-score normalizing each coordinate

z-score normalization of ui is done by u′ji =
uji−ūi
σi

, where ūi is the
mean and σi is the std-dev of the variable ui

Imdad ullah Khan (LUMS) Principal Component Analysis 11 / 64

Covariance and Correlation

Covariance helps understanding the relationships between variables

For a dataset X ⊂ Rm, with |X | = n (n points of dimensions m)

Covariance between variables ui and uj with means ui and vi is

COV (ui ,uj) = COV (i , j) =
1

n

n∑
ℓ=1

(xℓi − ui)(xℓj − uj)

COV (ui ,uj) < 0 =⇒ inverse proportionality

COV (ui ,uj) > 0 =⇒ direct proportionality

COV (ui ,uj) = 0 =⇒ no linear relation

Imdad ullah Khan (LUMS) Principal Component Analysis 12 / 64

Covariance and Correlation

Correlation

Covariance value depends on magnitude and scale of the variables

Correlation quantifies how strongly they are linearly related

ρij = corr(ui ,uj) =
COV (ui ,uj)

σui .σuj

ρij ∈ [−1, 1]

It is not affected by changes in scale of ui and uj

ρij = −1 =⇒ perfect negative linear association

ρij = 1 =⇒ perfect positive linear association

ρij = 0 =⇒ no linear association

For standardized data (mean 0 and variance 1) ρij = COV (ui ,uj)

Imdad ullah Khan (LUMS) Principal Component Analysis 13 / 64

Variance-Covariance Matrix

For a dataset X ⊂ Rm, with |X | = n (n points of dimensions m)

Variance-Covariance Matrix a m ×m matrix C or Σ, Cij = COV (ui ,uj)

x11 x12 x1m
x21 x22 x2m
...

...
...

...
...

...
...

...
...

xn1 xn2 xnm

m features/dimensions︷ ︸︸ ︷

n
p
o
in
ts

X

u1 u2 um. . .

C or Σ

Cov(u1, u1) Cov(u1, u2) . . . Cov(u1, um)
Cov(u2, u1) Cov(u2, u2) . . . Cov(u2, um)

...
... . . .

...

...
... . . .

...

...
... . . .

...

...
... . . .

...

Cov(um, u1) Cov(um, u2) . . . Cov(um, um)

m︷ ︸︸ ︷

m

C is a symmetric matrix. For standardized dataset

Entries on the principal diagonal (the variances) are 1

Off diagonal entries are the pairwise correlations i.e. C = XTX

Imdad ullah Khan (LUMS) Principal Component Analysis 14 / 64

PCA: Setup

Data X = {x1, . . . , xn} ⊂ Rm viewed as rows of a n ×m matrix

Original variables are u1,u2, . . . ,um (standard bases vectors of Rm)

xi ∈ X is linear combination of u1, . . . ,um (xi1, . . . , xim are coefficients)

xi = xi1u1 + xi2u2 + . . .+ ximum

Find a k-d representation X ′ = {x′1, x′2, . . . , x′n} for X
Project X onto a k-d subspace spanned by bases vectors v1, . . . , vk ⊂ Rm

x′i is a linear combination of v1, . . . , vk

x′i = ai1v1 + ai2v2 + . . .+ aikvk, aij = ⟨xi , vj⟩ = xi · vj

x11 x12 x1m
x21 x22 x2m
...

...
...

...
...

...
...

...
...

xn1 xn2 xnm

a11 a12 . . . a1k
a21 a22 . . . a2k
...

...
...

...
...

...
an1 an2 . . . ank

m dimensions︷ ︸︸ ︷ k dimensions︷ ︸︸ ︷

n
p
o
in
ts

n
p
o
in
ts

u1 u2 um v1 v2 vk

Imdad ullah Khan (LUMS) Principal Component Analysis 15 / 64

PCA: Setup

Given X as a n ×m matrix (rows are xi ’s, columns are dimensions)

Original variables are u1,u2, . . . ,um (standard bases vectors of Rm)

xi = xi1u1 + xi2u2 + . . .+ xinun

Project X onto a k-d subspace spanned by bases vectors v1, . . . , vk ⊂ Rm

x′i = ai1v1 + ai2v2 + . . .+ aikvk, aij = ⟨xi , vj⟩ = xi · vj

x11 x12 x1m
x21 x22 x2m
...

...
...

...
...

...
...

...
...

xn1 xn2 xnm

a11 a12 . . . a1k
a21 a22 . . . a2k
...

...
...

...
...

...
an1 an2 . . . ank

m dimensions︷ ︸︸ ︷ k dimensions︷ ︸︸ ︷

n
p
o
in
ts

n
p
o
in
ts

u1 u2 um v1 v2 vk

PCA Goals:
Find the best vectors v1, . . . , vk ⊂ Rm

Avoid redundancy =⇒ v1, . . . , vk are orthonormal

Need to formulate the objective (goodness measure)

Imdad ullah Khan (LUMS) Principal Component Analysis 16 / 64

Principal Component Analysis

As a warm-up exercise, suppose the m-d data lies on a line

`

v

Let v be the unit vector in direction of ℓ

For xi ∈ X , let f (xi) := v · x

In this case, since v · xi = xi (as xi lies on ℓ), we get

∀i , j ∥f (xi)− f (xj)∥ = ∥v · xi − v · xj∥ = ∥xi − xj∥
Imdad ullah Khan (LUMS) Principal Component Analysis 17 / 64

Principal Component Analysis

If the m-d data lies on a k-d plane with orthonormal basis v1, v2, . . . , vk

v1

v2

Let V be the matrix with v1, v2, . . . , vk as columns

For xi ∈ X , let f (xi) := xTi V, we get

∀i , j ∥f (xi)− f (xj)∥ = ∥xTi V − xj
TV∥ = ∥xi − xj∥

In above cases, we get 0 error (no-distortion) dimensionality reduction

Imdad ullah Khan (LUMS) Principal Component Analysis 18 / 64

Principal Component Analysis

`

v1
v2

b/w point and `

erro
r

perpendicular distance

b/w point and the plane

error

perpendicular distance

PCA finds the low dimensional space to which the data is close

Similar to (multiple) linear regression, but

1 Error there is vertical distance from subspace not perpendicular distance

2 There no mention of v1, . . . and their orthonormality

PCA finds orthonormal vectors v1, . . . , vk spanning the subspace to
which perpendicular distances from points in X are minimum

Imdad ullah Khan (LUMS) Principal Component Analysis 19 / 64

PCA: Example with k = 1

Represent 10 students records in 2 courses by one number

c1 c2
s1 92 73
s2 85 82
s3 71 75
s4 68 84
s5 65 67
s6 62 73
s7 58 83
s8 45 51
s9 38 57
s10 55 65

c1 c2
s1 28.1 2
s2 21.1 11
s3 7.1 4
s4 4.1 13
s5 1.1 −4
s6 −1.9 2
s7 −5.9 12
s8 −18.9 −20
s9 −25.9 −14
s10 −8.9 −6

Raw Data Zero-Centered Data

Projection on v1 =

[
1
0

]
Projection on v1 =

[
1/2
1/2

]

Imdad ullah Khan (LUMS) Principal Component Analysis 20 / 64

PCA: Example with k = 1

Represent 10 students records in 2 courses by one number

c1 c2
s1 92 73
s2 85 82
s3 71 75
s4 68 84
s5 65 67
s6 62 73
s7 58 83
s8 45 51
s9 38 57
s10 55 65

c1 c2
s1 28.1 2
s2 21.1 11
s3 7.1 4
s4 4.1 13
s5 1.1 −4
s6 −1.9 2
s7 −5.9 12
s8 −18.9 −20
s9 −25.9 −14
s10 −8.9 −6

Raw Data Zero-Centered Data

Projection on v1 =

[
1

−0.23

]
Projection on v1 =

[
0.87
0.49

]

Imdad ullah Khan (LUMS) Principal Component Analysis 21 / 64

PCA: A Bigger Example

Record of 16 students in 4 courses (original and zero-centered)

c1 c2 c3 c4
s1 95 89 70 64

s2 91 91 71 70

s3 79 77 65 58

s4 76 74 68 69

s5 76 69 65 64

s6 78 68 65 64

s7 79 70 47 42

s8 62 61 47 46

s9 68 63 88 88

s10 68 67 90 89

s11 66 63 82 75

s12 66 67 78 70

s13 68 63 75 72

s14 64 63 76 70

s15 53 46 79 72

s16 43 42 61 60

c1 c2 c3 c4
s1 24.3 21.9 −0.4 −3.1

s2 20.3 23.9 0.6 2.9

s3 8.3 9.9 −5.4 −9.1

s4 5.3 6.9 −2.4 1.9

s5 5.3 1.9 −5.4 −3.1

s6 7.3 0.9 −5.4 −3.1

s7 8.3 2.9 −23.4 −25.1

s8 −8.8 −6.1 −23.4 −21.1

s9 −2.8 −4.1 17.6 20.9

s10 −2.8 −0.1 19.6 21.9

s11 −4.8 −4.1 11.6 7.9

s12 −4.8 −0.1 7.6 2.9

s13 −2.8 −4.1 4.6 4.9

s14 −6.8 −4.1 5.6 2.9

s15 −17.8 −21.1 8.6 4.9

s16 −27.8 −25.1 −9.4 −7.1

Imdad ullah Khan (LUMS) Principal Component Analysis 22 / 64

PCA: A Bigger Example

Data porjected on v1 =
[
0.6 0.6 −0.4 −0.4

]T
c1 c2 c3 c4

s1 24.3 21.9 −0.4 −3.1
s2 20.3 23.9 0.6 2.9
s3 8.3 9.9 −5.4 −9.1
s4 5.3 6.9 −2.4 1.9
s5 5.3 1.9 −5.4 −3.1
s6 7.3 0.9 −5.4 −3.1
s7 8.3 2.9 −23.4 −25.1
s8 −8.8 −6.1 −23.4 −21.1
s9 −2.8 −4.1 17.6 20.9
s10 −2.8 −0.1 19.6 21.9
s11 −4.8 −4.1 11.6 7.9
s12 −4.8 −0.1 7.6 2.9
s13 −2.8 −4.1 4.6 4.9
s14 −6.8 −4.1 5.6 2.9
s15 −17.8 −21.1 8.6 4.9
s16 −27.8 −25.1 −9.4 −7.1

ai1 = ⟨si , v1⟩
28.7
24.7
16.3
7.4
7.6
8.2
25.5
8.4

−18.9
−17.8
−12.8
−7
−7.7
−9.7
−28.1
−24.9

s′i = ⟨si , v1⟩v1
17.5 16.5 −11.2 −11.1
15 14.2 −9.6 −9.5
9.9 9.4 −6.3 −6.3
4.5 4.2 −2.9 −2.8
4.6 4.4 −3 −2.9
5 4.7 −3.2 −3.2

15.5 14.6 −9.9 −9.9
5.1 4.8 −3.3 −3.3

−11.5 −10.8 7.4 7.3
−10.8 −10.2 6.9 6.9
−7.8 −7.3 5 4.9
−4.3 −4 2.7 2.7
−4.7 −4.4 3 3
−5.9 −5.6 3.8 3.8
−17.1 −16.1 10.9 10.9
−15.1 −14.3 9.7 9.6

Compare s ′i with si

Coordinates with big values are still bigger

Coordinates with smaller values are somewhat smaller

We saved 75% of storage. For si only need to save ai1

Imdad ullah Khan (LUMS) Principal Component Analysis 23 / 64

PCA: A Bigger Example

Projection on plane spanned by v1 =
[
0.6 0.6 −0.4 −0.4

]T
and

v2 =
[
0.4 0.4 0.6 0.6

]T
c1 c2 c3 c4

s1 24.3 21.9 −0.4 −3.1
s2 20.3 23.9 0.6 2.9
s3 8.3 9.9 −5.4 −9.1
s4 5.3 6.9 −2.4 1.9
s5 5.3 1.9 −5.4 −3.1
s6 7.3 0.9 −5.4 −3.1
s7 8.3 2.9 −23.4 −25.1
s8 −8.8 −6.1 −23.4 −21.1
s9 −2.8 −4.1 17.6 20.9
s10 −2.8 −0.1 19.6 21.9
s11 −4.8 −4.1 11.6 7.9
s12 −4.8 −0.1 7.6 2.9
s13 −2.8 −4.1 4.6 4.9
s14 −6.8 −4.1 5.6 2.9
s15 −17.8 −21.1 8.6 4.9
s16 −27.8 −25.1 −9.4 −7.1

ai1 ai2
28.7 15.8
24.7 19.3
16.3 −1.5
7.4 4.5
7.6 −2.3
8.2 −1.9
25.5 −24.4
8.4 −32

−18.9 20.1
−17.8 23.5
−12.8 8.1
−7 4.4
−7.7 3
−9.7 0.9
−28.1 −7.1
−24.9 −30.2

s′i = ai1v1 + ai2v2
23.4 22.8 −1.8 −1.7
22.3 21.9 1.8 1.9
9.4 8.8 −7.2 −7.2
6.2 6 −0.2 −0.2
3.8 3.4 −4.3 −4.3
4.3 4 −4.3 −4.3
6.4 4.9 −24.3 −24.3
−6.9 −8 −22.2 −22.2
−4 −2.8 19.2 19.2
−2 −0.8 20.8 20.8
−4.7 −4.1 9.8 9.7
−2.6 −2.3 5.3 5.3
−3.6 −3.2 4.7 4.7
−5.6 −5.2 4.3 4.3
−19.8 −19 6.7 6.7
−26.5 −26.4 −8.2 −8.3

Compare s ′i with si

In general s ′i are closer to si

We saved 50% of storage. For si only need to save ai1 and ai2

Imdad ullah Khan (LUMS) Principal Component Analysis 24 / 64

PCA A Bigger Example

Projection on hyperplane spanned by v1 =
[
0.6 0.6 −0.4 −0.4

]T
,

v2 =
[
0.4 0.4 0.6 0.6

]T
, and v3 =

[
−0.7 0.7 0.1 −0.1

]T
c1 c2 c3 c4

s1 24.3 21.9 −0.4 −3.1
s2 20.3 23.9 0.6 2.9
s3 8.3 9.9 −5.4 −9.1
s4 5.3 6.9 −2.4 1.9
s5 5.3 1.9 −5.4 −3.1
s6 7.3 0.9 −5.4 −3.1
s7 8.3 2.9 −23.4 −25.1
s8 −8.8 −6.1 −23.4 −21.1
s9 −2.8 −4.1 17.6 20.9
s10 −2.8 −0.1 19.6 21.9
s11 −4.8 −4.1 11.6 7.9
s12 −4.8 −0.1 7.6 2.9
s13 −2.8 −4.1 4.6 4.9
s14 −6.8 −4.1 5.6 2.9
s15 −17.8 −21.1 8.6 4.9
s16 −27.8 −25.1 −9.4 −7.1

ai1v1 + ai2v2 + ai3v3
s′1 24 22.2 −1.9 −1.6

s′2 20.5 23.7 2 1.5

s′3 8 10.2 −7.1 −7.5

s′4 5.6 6.6 −0.2 −0.3

s′5 5.4 1.8 −4.5 −4

s′6 7.4 0.8 −4.7 −3.8

s′7 8.1 3.1 −24.5 −24

s′8 −8.5 −6.3 −22 −22.5

s′9 −2.5 −4.3 19 19.5

s′10 −2.6 −0.3 20.8 20.7

s′11 −5 −3.8 9.8 9.7

s′12 −5 0.2 5.6 4.9

s′13 −2.7 −4.1 4.6 4.9

s′14 −6.9 −3.9 4.5 4

s′15 −18.1 −20.7 6.5 7

s′16 −27.5 −25.3 −8 −8.5

Compare s ′i with si

Each s ′i is almost the same as si

We saved 25% of storage. For si only need to save ai1, ai2 and ai3

Imdad ullah Khan (LUMS) Principal Component Analysis 25 / 64

PCA Objective

Which vectors to project on ?

Projection on v1 =

[
1
0

]
Projection on v1 =

[
1/2
1/2

]

Projection on v1 =

[
1

−0.23

]
Projection on v1 =

[
0.87
0.49

]

Imdad ullah Khan (LUMS) Principal Component Analysis 26 / 64

PCA Objective

c1 c2
s1 28.1 2

s2 21.1 11

s3 7.1 4

s4 4.1 13

s5 1.1 −4

s6 −1.9 2

s7 −5.9 12

s8 −18.9 −20

s9 −25.9 −14

s10 −8.9 −6

ai1v1
s ′1 15 15

s ′2 16 16

s ′3 5.5 5.5

s ′4 8.5 8.5

s ′5 −1.4 −1.4

s ′6 0 0

s ′7 3 3

s ′8 −19.4 −19.4

s ′9 −19.9 −19.9

s ′10 −7.4 −7.4

∥si − s ′i ∥
e1 18.5

e2 7.1

e3 2.2

e4 6.3

e5 3.6

e6 2.8

e7 12.7

e8 0.8

e9 8.4

e10 2.1

ei

ej

Projection on v1 =

[
1/2
1/2

]

Total Error (sum) = 64.3467

Imdad ullah Khan (LUMS) Principal Component Analysis 27 / 64

PCA Objective

c1 c2
s1 28.1 2

s2 21.1 11

s3 7.1 4

s4 4.1 13

s5 1.1 −4

s6 −1.9 2

s7 −5.9 12

s8 −18.9 −20

s9 −25.9 −14

s10 −8.9 −6

ai1v1
s ′1 22.3 12.4

s ′2 20.8 11.6

s ′3 7.1 4

s ′4 8.7 4.8

s ′5 −0.9 −0.5

s ′6 −0.6 −0.3

s ′7 0.6 0.3

s ′8 −22.9 −12.8

s ′9 −25.7 −14.3

s ′10 −9.3 −5.2

∥si − s ′i ∥
e1 11.9

e2 0.7

e3 0

e4 9.4

e5 4

e6 2.7

e7 13.4

e8 8.3

e9 0.4

e10 0.9

Projection on v1 =

[
0.87
0.49

]

Total Error (sum) = 51.6030

Imdad ullah Khan (LUMS) Principal Component Analysis 28 / 64

PCA Objective (k = 1)

Find a vector to project the data onto that results in minimum
reconstruction error or minimum information loss

For X = {x1, . . . , xn} ⊂ Rm, Find a unit vector v1 ∈ Rm and get

X ′ = {x′i = ⟨xi , v1⟩v1} that minimizes the total reconstruction error∑
xi∈X

ei :=
∑
xi∈X
∥xi − x′i∥ =

∑
xi∈X

(distance b/w xi and line spanned by v1)

∥xi − x′i∥ is the perpendicular distance between xi and the line spanned by
v1 or between xi and its projection on v1

Squared reconstruction error ∵
The algebra is easier and has a

nice connection with variance in data

argmin
v1,∥v1∥=1

∑
xi∈X
∥xi−x′i∥2 = argmin

v1,∥v1∥=1

∑
xi∈X

(dist b/w xi and line spanned by v1)
2

Imdad ullah Khan (LUMS) Principal Component Analysis 29 / 64

PCA Objective (k = 1)

argmin
v1,∥v1∥=1

∑
xi∈X
∥xi−x′i∥2 = argmin

v1,∥v1∥=1

∑
xi∈X

(dist b/w xi and line spanned by v1)
2

For xi and it’s projection on v1

(dist b/w xi and span of v1)
2

=

∥xi∥2 − ⟨xi , v1⟩2

Phythogorus theorem

ei =

x′
i

distance

‖x
i
‖

ai1
= 〈xi,v

1〉

xi

v1

b/w xi and line

`

∥xi∥2 is constant =⇒ minimizing LHS is maximizing ⟨xi , v1⟩2

Thus the objective function of PCA (with k = 1) is

argmax
v1,∥v1∥=1

∑
xi∈X
⟨xi , v1⟩2 = argmax

v1,∥v1∥=1

∑
xi∈X

a2i1

Imdad ullah Khan (LUMS) Principal Component Analysis 30 / 64

PCA Objective (k = 1)

The objective function of PCA (with k = 1) is

argmin
v1,∥v1∥=1

∑
xi∈X
∥xi−x′i∥2 = argmin

v1,∥v1∥=1

∑
xi∈X

(dist b/w xi and line spanned by v1)
2

Equivalently, argmax
v1,∥v1∥=1

∑
xi∈X
⟨xi , v1⟩2 = argmax

v1,∥v1∥=1

∑
xi∈X

a2i1

X is zero-centered =⇒
∑n

i=1 x
2
ij = σ2

j , variance in jth coordinate of X

By linearity of dot-product (p · (q+ r) = p · q+ p · r), we get

n∑
i=1

ai1 =
n∑

i=1

⟨xi , v1⟩ = ⟨
n∑

i=1

xi , v1⟩ = 0

∵ first term in dot product is 0

The projections ai1’s are zero-centered and
∑

xi∈X a2i1 is variance in ai1’s

Imdad ullah Khan (LUMS) Principal Component Analysis 31 / 64

PCA Objective (k = 1)

The objective function of PCA (with k = 1) is

argmin
v1,∥v1∥=1

∑
xi∈X
∥xi−x′i∥2 = argmin

v1,∥v1∥=1

∑
xi∈X

(dist b/w xi and line spanned by v1)
2

Equivalently, argmax
v1,∥v1∥=1

∑
xi∈X
⟨xi , v1⟩2 = argmax

v1,∥v1∥=1

∑
xi∈X

a2i1

Objective of PCA (k = 1): Find direction of the most variance of X

This data has much higher
variance in the direction of v1
than in the direction of v2

Thus PCA seeks v1

v1

v2

Imdad ullah Khan (LUMS) Principal Component Analysis 32 / 64

PCA Objective (k > 1)

Project the dataset onto a k-dimensional hyperplane S so the sum of
squared distances of points to S is minimum

argmin
k-d hyperplane S

∑
xi∈X
∥xi−x′i∥2 := argmin

k-d hyperplane S

∑
xi∈X

(distance b/w xi and S)2

x′i is the projection of xi ∈ X on S

Equivalently, argmax
k-d hyperplane S

∑
xi∈X

(length of projection of xi on S)2

Represent S by orthonormal bases v1, v2, . . . , vk
Keeps algebra simple, length of projections of x is easy to compute

(
length of projection of xi on S = span(v1, . . . , vk)

)2
=

k∑
j=1

⟨xi , vj⟩2

Imdad ullah Khan (LUMS) Principal Component Analysis 33 / 64

PCA Objective (k > 1)

argmax
v1,...,vk
∥vp∥= 1

vp ⊥ vq

n∑
i=1

k∑
j=1

⟨xi , vj⟩2︸ ︷︷ ︸
squared projection length on span(v1, . . . , vk)

The vectors v1, . . . , vk maximizing this objective are called the top k
principal components of X

Problem: Principal Component Analysis

Given X ⊂ Rm, |X | = n and an integer k ≥ 1, find vectors v1, . . . , vk to
maximize the above objective and project X onto v1, . . . , vk .

Imdad ullah Khan (LUMS) Principal Component Analysis 34 / 64

PCA Linear Algebraic Formulation (k = 1)

The objective function of PCA (with k = 1) is

argmin
v1,∥v1∥=1

∑
xi∈X
∥xi−x′i∥2 = argmin

v1,∥v1∥=1

∑
xi∈X

(dist. b/w xi and line spanned by v1)
2

Equivalently, argmax
v1,∥v1∥=1

∑
xi∈X
⟨xi , v1⟩2 = argmax

v1,∥v1∥=1

∑
xi∈X

a2i1

Objective of PCA (k = 1): Find direction of the most variance of X

The projection of X on the unit vector v1 is Xv1 =

⟨x1, v1⟩
⟨x2, v1⟩

...
⟨xn, v1⟩

We want to maximize the sum of squares of this column vector∑

xi∈X
⟨xi , v1⟩2 = (Xv1)

TXv1 = vT1 X
TXv1

Imdad ullah Khan (LUMS) Principal Component Analysis 35 / 64

PCA Linear Algebraic Formulation (k = 1)

PCA Objective (k = 1) ▷ C = XTX covariance matrix

argmax
v1,∥v1∥=1

∑
xi∈X
⟨xi , v1⟩2 := argmax

v1,∥v1∥=1
vT1 X

TXv1 := argmax
v1,∥v1∥=1

vT1 Cv1

How to find the vector v1?

We first discuss the special case when covariance matrix is diagonal to get
an understanding

Imdad ullah Khan (LUMS) Principal Component Analysis 36 / 64

PCA (k = 1): Diagonal Covariance Matrix

PCA (k = 1) Find the vector v1

argmax
v1,∥v1∥=1

∑
xi∈X
⟨xi , v1⟩2 := argmax

v1,∥v1∥=1
vT1 X

TXv1 := argmax
v1,∥v1∥=1

vT1 Cv1

Special case: C is diagonal ▷ All correlations = 0 (Not realistic)

C =

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λm

 ▷ C is just a scaling linear transform

Assume λ1 ≥ λ2 ≥ . . . ≥ λm ▷ Cij ≥ 0

Optimal solution v1 is standard basis vector of Rm e1 =
[
1 0 . . . 0

]T
For any vector uRm, ∥u∥ = 1

m∑
i=1

λiu
2
i ≤ λ1 =

m∑
i=1

λie
2
1i

Imdad ullah Khan (LUMS) Principal Component Analysis 37 / 64

Orthogonal Matrices

A real square matrix whose columns and rows are orthonormal vectors
length of columns = 1 and columns pairs are orthogonal (dot-product = 0)

Properties of an orthogonal matrix Q

QTQ = QQT = I

Q−1 = QT ▷ Q is necessarily invertible

Q preserves vector length i.e. ∥Qv∥ = ∥v∥ (unitary transformation)

Q only achieves a rotation, reflection or permutation of coordinates

Imdad ullah Khan (LUMS) Principal Component Analysis 38 / 64

Eigen Decomposition of C

For every real symmetric matrix the eigenvalues are real and the
eigenvectors can be chosen real and orthonormal

Let Q = {q1, . . . ,qm} be the matrix with columns eigenvectors of C

For 1 ≤ i ≤ m, C qi = λi qi

Q is an orhtogonal matrix

Q =

q1 q2 . . . qm

 Λ =

λ1

. . .

λm

C = QΛQ−1

Imdad ullah Khan (LUMS) Principal Component Analysis 39 / 64

Eigen Decomposition of C

Let Q = {q1, . . . ,qm} be the matrix with columns eigenvectors of C

For 1 ≤ i ≤ m, C qi = λi qi

Q is an orhtogonal matrix

C = QΛQ−1

Λ

m

λ1

λm

λ2

. . .

diagonal

m

m

m

orthonormal

q1 q2 qn

orthonormal

m

m

qT
1

qT
2

qT
m

QT=

m

m C

So square symmetric matrices are rotation, scaling and rotation

QT Λ Q

Imdad ullah Khan (LUMS) Principal Component Analysis 40 / 64

Eigen Decomposition of C

PCA (k = 1): Find the vector v1

argmax
v1,∥v1∥=1

∑
xi∈X
⟨xi , v1⟩2 := argmax

v1,∥v1∥=1
vT1 X

TXv1 := argmax
v1,∥v1∥=1

vT1 Cv1

C = QΛQ−1

e1 is the direction of maximum stretch under Λ
The direction v1 of max stretch under C = QΛQT is such that QTv1 = e1
v1 get stretched the most under ΛQT and Q does not stretch or shrink it

QTv1 = e1 =⇒ v1 = (QT)−1e1 = Qe1

v1 = Qe1 is the first column of Q or the leading eigenvector of C
To get the top k principal components we use the first k leading
eigenvectors of C . This is very easy to see, again first in the case when C
is a diagonal matrix.

Imdad ullah Khan (LUMS) Principal Component Analysis 41 / 64

Eigen Decomposition of C

PCA (k > 1): Find the vectors v1, . . . , vk

argmax
v1,...,vk
∥vp∥= 1

vp ⊥ vq

n∑
i=1

k∑
j=1

⟨xi , vj⟩2︸ ︷︷ ︸
squared projection length on span(v1, . . . , vk)

C = QΛQ−1

v1, . . . , vk are the first k leading eigenvectors of C

This is easy to see, again first work it out in the case when C is diagonal

Imdad ullah Khan (LUMS) Principal Component Analysis 42 / 64

PCA - Algorithm

Y ← XQC = QΛQTC ← XTXX ← X − xX ∈ Rn×m

Input Data zero-centering covariance matrix eigen decomposition Projection

Zero centering the data takes O(nm) (input scan)

Covariance matrix: O(m2n) – O(m2) values each takes O(n) ops

Eigen decomposition takes O(m3) time for a m ×m matrix

Transformation and dimensionality reduction require n ×m × k time

Total runtime is O(nm2 +m3).

For large datasets computing C is computationally infeasible

Use SVD method to compute PCA to avoid computing C

Top eigenvectors of C can be computed using power iteration method

Imdad ullah Khan (LUMS) Principal Component Analysis 43 / 64

PCA - Number of components

Depends on the task at hand – Same question as number of clusters
Variance explained by qi is equal to λi

Select k such that λk+1, . . . , λm are small

credit: K. Mueller : Stoneybrook

Or select k such that

∑k
i=1 λi∑m
i=1 λi

≥ (1− ϵ) for 1 < ϵ < 1

Imdad ullah Khan (LUMS) Principal Component Analysis 44 / 64

Power Iteration Method

The top eigenvector of A is the direction of max stretch

λ1, . . . , λm eigenvalues of A ⇐⇒ λr
1, . . . , λ

r
m eigenvalues of Ar

Picture the transformation of the unit circle by A

λ1u1

λ2u2

The longest axis (major axis in 2d) corresponds to the top eigenvector

The ellipse corresponding to Ak will be very long and very thin difference
between axes will be amplified (λk

1 vs λk
2)

Imdad ullah Khan (LUMS) Principal Component Analysis 45 / 64

Power Iteration Method

Power iteration method uses this intuition

For a random unit vector v A(A(A . . .A(A(v)))) will be almost entirely
in the direction of top eigenvector

For large k Ak maps almost all unit vectors close to longest ellipse axis

Algorithm Power Iteration to compute top eigenvector of A = XTX

v0 ← random-unit-vector() ▷ Generate random direction

i ← 1

while stopping criteria is not met do

vi ← Avi−1

vi ← vi /∥vi∥ ▷ Normalize to get unit vector

i ← i + 1

Stop: when ∥vi || − ∥vi−1∥ < ϵ

Runtime depends on spectral gap λ2/λ1

Can use repeated squaring to compute Akv

Imdad ullah Khan (LUMS) Principal Component Analysis 46 / 64

Power Iteration Method

To compute second eigenvector after the first, v1

Project A onto v1 and subtract it out

The residual matrix A′ ← A− Av1vT1
Row i of A′ is [ai − ⟨ai , v − 1⟩vi
The top eigenvector of A′ is second leading eigenvector of A

For the bottom eigenvector (e.g. of the Laplacian matrix, that we use
for spectral clustering), use the inverse power iteration method

This follows from the fact that eigenvalues of Ak are λk
1 , λ

k
2 , . . . ,

For k = −1, eigen values of the inverse A−1 of A are 1/λ1, 1/λ2, . . . ,.

λ1 ≥ λ2 ≥ . . . ≥ λn =⇒ 1/λ1 ≤ 1/λ2 ≤ . . . ≤ 1/λn

Thus, the power method on A−1 yields the smallest eigenpair

With some linear algebra computing the inverse can be avoided

To compute all eigenvectors the algorithm is called the QR algorithm

Imdad ullah Khan (LUMS) Principal Component Analysis 47 / 64

PCA Case Study: Eigenfaces

Classic application of PCA is image compression and face recognition

source: learnopencv.comJ. Niebles & R. Krishna @ Stanford

Imdad ullah Khan (LUMS) Principal Component Analysis 48 / 64

Face Detection and Recognition Applications

Surveillance

GILLES SABRIE—THE NEW YORK TIMES/REDUX

Imdad ullah Khan (LUMS) Principal Component Analysis 49 / 64

Face Detection and Recognition Applications

Emotion and Expression Detection

J. Niebles & R. Krishna @ Stanford

Imdad ullah Khan (LUMS) Principal Component Analysis 50 / 64

Face Detection and Recognition Applications

Photo Album Organization

J. Niebles & R. Krishna @ Stanford
Imdad ullah Khan (LUMS) Principal Component Analysis 51 / 64

Face Detection and Recognition Applications

Facebook Auto Tag Suggestions

Imdad ullah Khan (LUMS) Principal Component Analysis 52 / 64

PCA Case Study: Eigenfaces

Input Images
Dataset For each face there should be a few training examples

All faces should be centered
Imdad ullah Khan (LUMS) Principal Component Analysis 53 / 64

PCA Case Study: Eigenfaces

Represent images by vectors

N ×M matrix

NM × 1 vector

...

...

...

R. Grosse @ Uni. of Toronto

Imdad ullah Khan (LUMS) Principal Component Analysis 54 / 64

PCA Case Study: Eigenfaces

Mean Face

Mean face x̄

Imdad ullah Khan (LUMS) Principal Component Analysis 55 / 64

PCA Case Study: Eigenfaces

Top eigenvectors: u1, . . . , uk (visualized as images - eigenfaces)

Imdad ullah Khan (LUMS) Principal Component Analysis 56 / 64

PCA Case Study: Eigenfaces

Represent a face as a linear combination of top k eigenfaces

Imdad ullah Khan (LUMS) Principal Component Analysis 57 / 64

PCA Case Study: Eigenfaces

Effect of number of principal components on reconstruction

Imdad ullah Khan (LUMS) Principal Component Analysis 58 / 64

PCA Case Study: Eigenfaces

Face Recognition:

Subtract the mean face from the given (test) face

Project onto the same k principal components

Use k-nearest neighbors (by the new representations) and make a
prediction based on that

Imdad ullah Khan (LUMS) Principal Component Analysis 59 / 64

PCA Case Study: Eigenfaces

Face Detection:

For a region R of the image, project R onto the principal components

If the ℓ2 distance of the new representation of R with R is not
significant, then R is a face

Imdad ullah Khan (LUMS) Principal Component Analysis 60 / 64

PCA: Limitations

PCA does not capture non-linear relationships between attributes

x1

x2

v1

First principal component

Imdad ullah Khan (LUMS) Principal Component Analysis 61 / 64

PCA: Limitations

PCA does not take into account any class labels (a completely
unsupervised approach)

It does not necessarily help separate data based on classes

reduced dimensional data may not lead to better classification

First principal component

data projected on v1

not separated classes

Imdad ullah Khan (LUMS) Principal Component Analysis 62 / 64

Linear Discriminant Analysis

Linear Discriminant Analysis (LDA):

Seeks a projection that best discriminates the data

Projection respecting classes

data projected on v1

well-sepearated classes

Imdad ullah Khan (LUMS) Principal Component Analysis 63 / 64

Linear Discriminant Analysis

Other dimensionality reduction methods that we will not study

Linear Methods include

Factor Analysis

Independent Component Analysis: Seeks a projection that
preserves as much information in the data as possible

Non-linear methods include

Laplacian Eigenmaps

ISOMAP

Local Linear Embedding Embedding to low dimensional manifolds

Imdad ullah Khan (LUMS) Principal Component Analysis 64 / 64

