Bic DATA ANALYTICS

PRINCIPAL COMPONENT ANALYSIS

m Aims of PCA

m PCA vs Johnson-Lindenstrauss Lemma

m Variance-Covariance Matrix

m PCA Objective: Reconstruction Error and Projected Variance
m PCA Objective Linear Algebraic Formulation

m Eigen Decomposition of Covariance Matrix

m Power lteration Method

m Eigenfaces

m Limitation of PCA
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High Dimensional Data

High Dimensional Data is common in many applications

VSM representation of text Utility matrix for recommenders
‘Wondering, she opened w ”1‘ m;’ 14 2‘ 32 |5 v;.
the door to the studio. uz 1 2 1 2 1 3
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SIS RS IREI s :
Multi-mega pixels images Social networks as adjacency matrix
%%
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Curse of dimensionality

m In general as features increase redundancy also increases

® more noise added to data than signal

High dimensional data is hard to visualize and interpret

Computationally challenging

m Processing time
m Storage capacity

m Communication bandwidth

Distance/Angle Concentration

Nearest Neighbor Instability
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Dimensionality Reduction

m The focus of dimensionality reduction through PCA are
m High dimensional data is hard to visualize and interpret
m The computational aspect of the curse

m Processing time

m Storage capacity

m Communication bandwidth

m Our goal: reduce dimensionality of the dataset with low ‘distortion’

m dimensions k dimensions
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Aims of PCA

m Low dimensional data visualization
m Get a sense of source of variations in data
m Understand pairwise correlation between attributes of data

m Reduce dimensions with little ‘distortion’
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PCA vs JL-Transform

JL transform is data oblivious PCA is data dependent
m Does not utilize structure in data m Fully exploits structure in data
m Computationally efficient m Computationally expensive
m Can pre-compute transformation m Cannot pre-compute
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PCA vs JL-Transform

JL transform is data oblivious PCA is data dependent
JL transform is randomized PCA is deterministic
m Projects data onto random m Projects onto vectors computed
vectors based on data
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PCA vs JL-Transform

JL transform is data oblivious
JL transform is randomized

JL transform preserves pairwise
distances between compressed
points

IMDAD ULLAH KHAN (LUMS)

PCA is data dependent
PCA is deterministic

PCA attempts to keep
compressed points almost the
same as original
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PCA vs JL-Transform

JL transform is data oblivious
JL transform is randomized

JL transform preserves pairwise
distances between compressed
points

Coordinates in new space are
meaningless

m New bases are random axes

PCA is data dependent
PCA is deterministic

PCA attempts to keep
compressed points almost the
same as original

Coordinates in new space are
meaningful

m New bases are linear combination
of old ones
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PCA vs JL-Transform

IMDAD ULLAH KHAN (LUMS)

JL transform is data oblivious
JL transform is randomized

JL transform preserves pairwise
distances between compressed
points

Coordinates in new space are
meaningless

Number of dimensions in new

space depends on number of

data points

mk=Qlogn) = (1+te)
guarantee

Principal Component Analysis

PCA is data dependent
PCA is deterministic

PCA attempts to keep
compressed points almost the
same as original

Coordinates in new space are
meaningful

Number of dimensions in new
space depends on variation in
the data

m Can give very good results even
for k=2o0r3
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PCA: Preprocessing

Important pre-processing steps for PCA to get that

m All coordinates have same scale and unit (or all be unitless)

m The mean (centroid) of data is 0 (all coordinates have mean 0)

m All coordinates have variance 1 > Optional
m Achieved by z-score normalizing each coordinate

UJ,—

a; _ .
*, where i; is the
o

m z-score normalization of u; is done by uj’-,- =
mean and o; is the std-dev of the variable u;

original data zero-centered data normalized data
» o : ;
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Covariance and Correlation

Covariance helps understanding the relationships between variables

For a dataset X C R™, with |X| = n (n points of dimensions m)

m Covariance between variables u; and u; with means @; and V; is

COV(uj,u;) = COV(i,j) = Z(Xg, ) (xej — Tj)

m COV(uj,u;) <0 = inverse proportionality
m COV(uj,u;) >0 = direct proportionality

m COV(uj,uj) =0 = no linear relation

IMDAD ULLAH KHAN (LUMS) Principal Component Analysis
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Covariance and Correlation

Correlation

m Covariance value depends on magnitude and scale of the variables

m Correlation quantifies how strongly they are linearly related

COV(U,‘,U_,')
. = corr(uj,u;) = ————~"1J/
Pij rr(uj, uj) -
B pj € [—1,1]
m It is not affected by changes in scale of u; and u;

m p; = —1 = perfect negative linear association
m p; =1 = perfect positive linear association

m p;j =0 = no linear association

m For standardized data (mean 0 and variance 1) p; = COV/(u;, u))
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Variance-Covariance Matrix

For a dataset X C R™, with |X| = n (n points of dimensions m)

Variance-Covariance Matrix a m x m matrix C or X, C;; = COV/(uj, u;)

Cor X
X -
. . Cov(uy,uy)  Cov(uy,ug) ... Cov(uy,uy)
m features/dimensions Cov(ug,uy)  Cov(uz,uz) ... Covlus,up)
u; Uz Um
Ty T2 e e . T
Tol T e e e Do
2 X .
=
E g
=
=
Tnl Tpz e e e Tpm
Cov(tm,u1) Covlmuz) .. Cov(tim,tm)

C is a symmetric matrix. For standardized dataset
m Entries on the principal diagonal (the variances) are 1

m Off diagonal entries are the pairwise correlations  i.e. C = XTX
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PCA: Setup

Data X = {x1,...,%xp} C R™ viewed as rows of a n x m matrix
Original variables are uj, uy, ..., uy (standard bases vectors of R™)

x; € X is linear combination of uy, ..., uym (X1, ..., Xin are coefficients)
Xj = Xj1u1 + Xjpu2 + ... + XjmUm

Find a k-d representation X’ = {x,x5,...,x],} for X
Project X onto a k-d subspace spanned by bases vectors vy,...,vg C R™

x! is a linear combination of vy, ..., vk

/
Xj = aj1v1 + aipV2 + ... + ajkVk, ajj = (Xj,Vvj) = X; - Vj
m dimensions k dimensions
u  uz U Vi V2 Vi
Ty T2 eee e e Tim ajy a1 ... Ak
T T . e . Tom ay axm ... ay
= =
K ::> B
a a
] ]
Tpl  Tnz oo e oo Tom Un1 Gz .. Gnk
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PCA: Setup

Given X as a n x m matrix (rows are x;'s, columns are dimensions)

Original variables are uj, uy, ..., uy, (standard bases vectors of R™)
X; = Xj1U1 + Xjou2 + ...+ XjpUp
Project X onto a k-d subspace spanned by bases vectors vy, ...,vx C R™

/
X; = aj1vi1 + ajpVo + ... + ajkVk, ajj = <X,',Vj> = Xj - Vj

m dimensions k dimensions
uup Ui Vi vz Vic
TR Tim ana an,
T an axn .. az,

=>

Tu Tz e - T A age auk

n points
n points

m Find the best vectors vq,...,vx C R™
PCA Goals: m Avoid redundancy = wvq, ...,V are orthonormal

m Need to formulate the objective (goodness measure)
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Principal Component Analysis

As a warm-up exercise, suppose the m-d data lies on a line

m Let v be the unit vector in direction of ¢
m For xj € X, let f(xj) :=v-x
m In this case, since v - x; = x; (as x; lies on £), we get
Vi, j I (xi) = FOg)IE = llv - xi — v xj]| =[x — x|
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Principal Component Analysis

If the m-d data lies on a k-d plane with orthonormal basis vy, vs, ...

Vo ° . o
. ° VVl
m Let V be the matrix with vi, vy, ..., v, as columns

m For x; € X, let f(x;) :=x]V, we get
Vi, j I (xi) = £l = [Ix7V =T V| = [lxi — x|

In above cases, we get 0 error (no-distortion) dimensionality reduction

IMDAD ULLAH KHAN (LUMS) Principal Component Analysis
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Principal Component Analysis

¢ perpendicular distance
b/w point and the plane \
.e,&' \/'

perpendicular distance
b/w point and ¢ .\

PCA finds the low dimensional space to which the data is close
m Similar to (multiple) linear regression, but
Error there is vertical distance from subspace not perpendicular distance
There no mention of vy, ... and their orthonormality

m PCA finds orthonormal vectors vy, ..., v, spanning the subspace to
which perpendicular distances from points in X are minimum
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PCA: Example with kK =1

Represent 10 students records in 2 courses by one number

S1
S2

84

5S4
S5
56
57
S8
S9

510
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PCA: Example with kK =1

Represent 10 students records in 2 courses by one number

Cc C2 85 . C1 C2
s1 92 73 © ° . 51 28.1 2 . M .
sy [ 85 82 s | 211 11 *
sy | 71 75 ¢ . . sy | 71 4 s
54 68 84 5 S4 4.1 13 20 a0 ° 10 0 °
ss |65 67 . S5 1.1 —4 N
s¢ | 62 T3 S6 —1.9 2 .« 7
s7 | 58 83 ® S7 —5.9 12 10
ss | 45 51 s sg | —18.9 —20 . .
so |38 57T . so | —25.0 —14
51055 65 ® ® o w® o = w sl =89 =6 .
Raw Data Zero-Centered Data
Projection on v; = [701_23}20 Projection on v; = [g 2;] »
15 . 15 . //
0 * i /
\'\'\ 5 . 5
s 20 45 10 5 05 2 2 5 20 5 A s 1 15w 2
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Record of 16 students in 4 courses (original and zero-centered)

C1 C2 C3 Ca
s1 95 89 70 64
S 91 91 71 70
3 79 77 65 58
s | 76 74 68 69
S5 7% 69 65 64
S6 78 68 65 64
s7 79 70 47 42
Sg 62 61 47 46
) 68 63 88 88
sio | 68 67 90 89
s11 | 66 63 82 75
S12 66 67 78 70
S13 68 63 75 72
s14 | 64 63 76 70
S15 53 46 79 72
sie | 43 42 61 60

IMDAD ULLAH KHAN (LUMS)

Ci1 C2 C3 Cy
s1 24.3 21.9 —0.4 -3.1
S 20.3 23.9 0.6 2.9
S3 8.3 9.9 —5.4 —-9.1
S 5.3 6.9 —2.4 1.9
S5 5.3 1.9 —5.4 —-3.1
Se 7.3 0.9 —5.4 —-3.1
S7 8.3 2.9 —-234 251
Sg —8.8 —6.1 —-234 -21.1
Sy —2.8 —4.1 17.6 20.9
S10 —2.8 —0.1 19.6 21.9
Si1 —4.8 —4.1 11.6 7.9
S12 —4.8 —-0.1 7.6 2.9
S13 —2.8 —4.1 4.6 4.9
S14 —6.8 —4.1 5.6 2.9
si5s | —17.8 —-21.1 8.6 4.9
s, | —27.8 —25.1 —94 7.1

Principal Component Analysis
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PCA: A Bigger Example

Data porjected on v; = [0.6 0.6 —0.4 —0.4

]T

c1 c c3 c4 an = (si,v1) st = (si,v)v1
s1 24.3 21.9 —0.4 —3.1 28.7 17.5 16. —11.2 —11.1
) 20.3 23.9 0.6 2.9 24.7 15 14.2 —9.6 —9.5
s3 8.3 9.9 —5.4 —9.1 16.3 9.9 9.4 —6.3 —6.3
sS4 5.3 6.9 —2.4 1.9 7.4 4.5 4.2 —2.9 —2.8
S5 5.3 1.9 —5.4 —3.1 7.6 4.6 4.4 -3 —2.9
S6 7.3 0.9 —5.4 —3.1 8.2 5 4.7 —3.2 —3.2
s7 8.3 2.9 —23.4 —25.1 25.5 15.5 14.6 —9.9 —9.9
sg —8.8 —6.1 —23.4 —21.1 8.4 5.1 4.8 —3.3 —3.3
S9 —2.8 —4.1 17.6 20.9 —18.9 —11.5 —10.8 7.4 7.3
510 —2.8 —0.1 19.6 21.9 —17.8 —10.8 —10.2 6.9 6.9
s11 —4.8 —4.1 11.6 7.9 —12.8 —7.8 —7.3 5 4.9
S —138 —0.1 756 2.9 =7 —13 —7 2.7 2.7
513 —2.8 —4.1 4.6 4.9 —-7.7 —4.7 —4.4 3 3
S14 —6.8 —4.1 5.6 2.9 —9.7 —5.9 —5.6 3.8 3.8
S15 —17.8 —21.1 8.6 4.9 —28.1 —17.1 —16.1 10.9 10.9
516 —27.8 —25.1 —9.4 —7.1 —24.9 —15.1 —14.3 9.7 9.6
m Compare s/ with s;
m Coordinates with big values are still bigger
m Coordinates with smaller values are somewhat smaller

m We saved 75% of storage. For s; only need to save aj;

IMDAD ULLAH KHAN (LUMS)
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PCA: A Bigger Example

Projection on plane spanned by vi = [0.6 0.6 —0.4 —0.4] T and

v2=1[04 04 06 0.6

]T

a [ S [ aj1 ap s = aj1v1 + apva

s 24.3 21.9 —0.4 —3.1 28.7 15.8 23.4 22.8 —1.8 —1.7
B 20.3 23.9 0.6 2.9 24.7 19.3 22.3 21.9 1.8 1.9
s3 8.3 9.9 —5.4 —9.1 16.3 —1.5 9.4 8.8 —7.2 —7.2
sy 5.3 6.9 —2.4 1.9 7.4 4.5 6.2 6 —0.2 —0.2
S5 5.3 1.9 —b5.4 —3.1 7.6 —2.3 3.8 3.4 —4.3 —4.3
S 7.3 0.9 —5.4 —3.1 8.2 —1.9 4.3 4 —4.3 —4.3
s7 8.3 2.9 —23.4 —25.1 25.5 —24.4 6.4 4.9 —24.3 —24.3
S8 —8.8 —6.1 —23.4 —21.1 8.4 —32 —6.9 —8 —22.2 —22.2
EY —2.8 —4.1 17.6 20.9 —18.9 20.1 —4 —2.8 19.2 19.2
s10 —2.8 —0.1 19.6 21.9 —17.8 23.5 —2 —0.8 20.8 20.8
S11 —4.8 —4.1 11.6 7.9 —12.8 8.1 —4.7 —4.1 9.8 9.7
s12 —4.8 —0.1 7.6 2.9 —7 4.4 —2.6 —2.3 5.3 5.3
s13 —2.8 —4.1 4.6 4.9 —7.7 3 —3.6 —3.2 4.7 4.7
s4 | —68 —41 56 2.9 —9.7 0.9 —5.6 —5.2 73 73
S15 —17.8 —21.1 8.6 4.9 —28.1 —7.1 —19.8 —19 6.7 6.7
S16 —27.8 —25.1 —9.4 —7.1 —24.9 —30.2 —26.5 —26.4 —8.2 —8.3

m Compare s/ with s;

m In general s/ are closer to s;

m We saved 50% of storage. For s; only need to save a;; and ajp,
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PCA A Bigger Example

Projection on hyperplane spanned by vi = [0.6 0.6 —0.4 —0.4] T

,and vy =[-0.7 07 0.1 —0.1

]T

ai1v1 + aipva + ai3v3

T
v2=[04 04 06 0.6
c1 2 c3 cs
s1 24.3 21.9 —0.4 —3.1
» | 203 236 06 7.0
5 83 9.9 —54 01
sS4 5.3 6.9 —2.4 1.9
S5 5.3 1.9 —5.4 —3.1
% 73 0.0 —54 —31
S7 8.3 2.9 —23.4 —25.1
sg —8.8 —6.1 —23.4 —21.1
w | 28 —41 176 200
510 —2.8 —0.1 19.6 21.9
su | —48 41 116 7.9
s | —48  —01 76 2.9
513 | —2.8 41 76 7.9
su | =68 —41 56 2.9
S5 | —17.8  —21.1 56 7.9
s | 278 051 04 71
m Compare s/ with s;

m Each s/ is almost the same as s;

m We saved 25% of storage. For s; only need to save a1, ap» and aj3

IMDAD ULLAH KHAN (LUMS)

s 24 22.2 —1.9 —1.6
4 20.5 23.7 2 1.5
s 8 10.2 —7.1 —7.5
A 5.6 6.6 —0.2 —0.3
s 5.4 1.8 —4.5 —4
se 7.4 0.8 —4.7 —3.8
s7 8.1 3.1 —24.5 —24
sg —8.5 —6.3 —22 —22.5
sg —2.5 —4.3 19 19.5
ER —2.6 —0.3 20.8 20.7
Ef —5 —3.8 9.8 9.7
Ef —5 0.2 5.6 4.9
s13 —2.7 —4.1 4.6 4.9
EA —6.9 —3.9 4.5 4
s;s | —181  —20.7 6.5 7
sig | —271.5 =253 —8 —8.5

Principal Component Analysis
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PCA Objective

Which vectors to project on ?

1 v
Projection on v, = Projection on v; = .
J 1= o 20 ol R )
15 15—
. .
. ° .
10
5 .
. .
25 20 -15 10 5 5 10 15 20 25 % 2 A5 E 5
.
. 5 .
-10 13-
/
. a5 ¢ 15-
. 20 o-
/
e
Projectios 3 Projection on v, = |05
rojection on v; = 4
i 1= 023 o 1 o) 2
15 15
. .
. . .
0 10
s . s
. . .
s 2 5 0 s R 5 2 5 0 3 )
. .
. 5 5
0 10
.
15 a5
. 20 . 20
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PCA Objective

C1 C2 dilVi ||S,' — S ||
s1 28.1 2 s 15 15 e 18.5
S 21.1 11 s 16 16 e 7.1
s | 7.1 g s | 55 55 & 2.2
54 4.1 13 oA 8.5 8.5 e 6.3
S5 1.1 —4 st —1.4 —-1.4 es 3.6
S6 —1.9 2 S 0 0 e 2.8
57 -5.9 12 s 3 3 e 12.7
Sg —-18.9 -20 S —19.4 —-194 €g 0.8
Sy —259 -—14 sS4 —19.9 -19.9 € 8.4
s;o | —89 —6 sjo | —74 7.4 el 2.1

y
Projection on v; = [,ﬂ »

\ s
e/ 20

IMDAD ULLAH KHAN (LUMS)
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\ Total Error (sum) = 64.3467
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PCA Objective

C1 C aiiVvi ||$,' — S,/H
S1 28.1 2 s 22.3 12.4 € 11.9
S 21.1 11 Sé 20.8 11.6 e 0.7
s3 7.1 4 s} 7.1 4 e 0
s 4.1 13 A 8.7 4.8 e 9.4
S5 1.1 —4 st -0.9 -0.5 es 4
S6 —-1.9 2 S —-0.6 -0.3 € 2.7
Sy —-5.9 12 s 0.6 0.3 €7 13.4
Sg —18.9 —20 S —229 -—12.8 e 8.3
s | 250 _14 s | 257 _143 o 0.4
s10 —-8.9 —6 Slo -9.3 —-5.2 €10 0.9
Projection on v, — [gj;} »
" _—
AN . e T Total Error (sum) = 51.6030
M
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PCA Objective (k = 1)

Find a vector to project the data onto that results in minimum
reconstruction error or minimum information loss

For X = {x1,...,%x,} CR™, Find a unit vector vi € R™ and get
X' = {x} = (x;,v1)v1} that minimizes the total reconstruction error

Z e = Z |xi — xi|| = Z (distance b/w x; and line spanned by v;)
x,-EX X,'EX X,'EX

|x; — x!|| is the perpendicular distance between x; and the line spanned by
vi or between x; and its projection on v

m The algebra is easier and has a

Squared reconstruction error - . . . . .
m nice connection with variance in data

arg min Z |xi—x}||> = argmin Z(dist b/w x; and line spanned by v;)?
vi,[vill=1, cx vifvill=1 e
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PCA Objective (k = 1)

arg min E [|x;—x||? = arg min E (dist b/w x; and line spanned by v1)?
vi[vill=1, cx vi[vill=1  ex

For x; and it's projection on v

e; = distance
b/w x; and line
i

(dist b/w x; and span of v;)?

"

1i]* = (xi,v1)?
Phythogorus theorem r
l|x;||? is constant == minimizing LHS is maximizing (x;, vi)?

Thus the objective function of PCA (with k = 1) is
arg max Z (xj,v1)? = arg max Z a3

V1,||V1H:1 XIEX V1,|IV1H:1 XIEX
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PCA Objective (k = 1)

The objective function of PCA (with k =1) is

arg min E |xi—x}||> = argmin E (dist b/w x; and line spanned by v;)?
vi[vill=1, cx vilvill=1 , cx

Equivalently,  arg max E (xj,v1)? = arg max E a%
vi[vill=1 e vi[vill=1 T ex

X is zero-centered = Y1 x5 =07,

variance in jth coordinate of X
By linearity of dot-product (p-(q+r)=p-q+p-r), we get

n

Zail = Z<Xi,V1> = (in,w) =0
i=1 i=1

i=1
*.* first term in dot product is 0

The projections a;1's are zero-centered and a% is variance in aj1's
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PCA Objective (k = 1)

The objective function of PCA (with k =1) is

arg min E [|x;—x||? = arg min E (dist b/w x; and line spanned by v;)?
vi[vill=1, cx vilvill=1 , cx

Equivalently,  arg max E (xj,v1)? = arg max E a%
vi[vill=1 e vi[vill=1 T ex

Objective of PCA (k = 1): Find direction of the most variance of X

This data has much higher
variance in the direction of vy
than in the direction of vy

Thus PCA seeks vy
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PCA Objective (k > 1)

Project the dataset onto a k-dimensional hyperplane S so the sum of
squared distances of points to S is minimum

arg min xi—xi[|? == argmin distance b/w x; and S)?
1

k-d hyperplane S k-d hyperplane S

x;€X x;€X

x’ is the projection of x; € X on S

Equivalently, arg max Z(Iength of projection of x; on S)?
k-d hyperplane S XX

Represent S by orthonormal bases vy, va, ..., vy
Keeps algebra simple, length of projections of x is easy to compute

k
(length of projection of x; on S = span(vy, ... ,vk))2 = Z(x,-,vj>2
j=1

IMDAD ULLAH KHAN (LUMS) Principal Component Analysis
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PCA Objective (k > 1)

n

k
arg max E E (x;,v;)?
Vi,...,Vk i—1 j*l
llvpll =1 ~—_——
vp Lvg squared projection length on span(vi, ..., vk)

The vectors vy, ..., Vv, maximizing this objective are called the top k
principal components of X

Problem: Principal Component Analysis

Given X C R™, |X| = n and an integer k > 1, find vectors vy, ..., vk to
maximize the above objective and project X onto vy, ..., vg.
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PCA Linear Algebraic Formulation (k = 1)

The objective function of PCA (with k =1) is
arg min Z [|x;—x||? = arg min Z(dist. b/w x; and line spanned by v1)?

vi[vill=1, cx vi[vill=1  ex
. 2 2
Equivalently,  arg max (xj,v1)° = arg max an
vi[vill=1 e vilvill=1 e

Objective of PCA (k = 1): Find direction of the most variance of X

(x1,v1)

o . . (x2,v1)
The projection of X on the unit vector vy is Xvi; =

<Xn7 V]_>
We want to maximize the sum of squares of this column vector

3 xivn)? = (Xu) X = v XTXw
X,'EX
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PCA Linear Algebraic Formulation (k = 1)

PCA Objective (k = 1) > C = XTX covariance matrix

arg max E (x;,v1)? := argmax v{ X7 Xv; := argmax v{ Cvy
vi[vill=1 o ex vi,[|vi[|=1 vi,[jve[|=1

How to find the vector v1?

We first discuss the special case when covariance matrix is diagonal to get
an understanding
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PCA (k = 1): Diagonal Covariance Matrix
PCA (k = 1) Find the vector vy

arg max g (x;,v1)? := argmax v{ X7 Xv; := argmax v{ Cvy

vi[vill=1 ex vi,[jvi =1 vi,[jve[|=1

Special case: C is diagonal > All correlations = 0 (Not realistic)
A 0 ... 0
0 X ... O o o

=1 . . ) > C is just a scaling linear transform

0 0 ... Anm

Assume)\lzx\gz...z)\m DCUZO

Optimal solution v is standard basis vector of R e; = [1 0 ... 0] T J

m m
For any vector uR", |lu|| =1 Z)\,-u,-2 <\ = Z)\;efi
i=1 i=1
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Orthogonal Matrices

A real square matrix whose columns and rows are orthonormal vectors
length of columns = 1 and columns pairs are orthogonal (dot-product = 0)

Properties of an orthogonal matrix Q

= QTQ=QQT =1/

m Ql=QT7 > Q is necessarily invertible
m @ preserves vector length i.e. ||Qv|| = ||v|| (unitary transformation)

m Q@ only achieves a rotation, reflection or permutation of coordinates

[=2)
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Eigen Decomposition of C

For every real symmetric matrix the eigenvalues are real and the
eigenvectors can be chosen real and orthonormal

m Let @ ={q1,...,qm} be the matrix with columns eigenvectors of C
mForl1<i<m, Cq;=\gq

m @ is an orhtogonal matrix

. | A
g 92 ... qm AN= ..
. | Am

C=QAQ !

O
I
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Eigen Decomposition of C

mlet Q={qy,...
mForl<i<m, Cqi=M\gq

m @ is an orhtogonal matrix

m

C=QAQ!

m m

orthonormal

So square symmetric matrices are rotation, scaling and rotation

B

A
— =

a| m
‘ A

|

diagonal

Q

— T\

m
af’
af’

o
an,

orthonormal

N
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Eigen Decomposition of C

PCA (k = 1): Find the vector v;

arg max E (xi,v1)? := argmax v{ X7 Xv; := argmax v{ Cv;
vi[vill=1  ex vi,[jve[|=1 vi,[jvi]|=1

C=QAQ™

e is the direction of maximum stretch under A
The direction vi of max stretch under C = QAQT is such that QTv; = e;
vy get stretched the most under AQT and @ does not stretch or shrink it

RTvi=e; = vi=(Q")le; = Qe;

vi = Qey is the first column of @ or the leading eigenvector of C

To get the top k principal components we use the first k leading
eigenvectors of C. This is very easy to see, again first in the case when C
is a diagonal matrix.
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Eigen Decomposition of C

PCA (k > 1): Find the vectors vi, ..., v

n k
arg max g E (xi,v})?
Vi,.--5Vk . .
i=1 j=1
llvpll =1 ——
Vp Lvg squared projection length on span(vi,...,vk)
C=QAQ"

Vi,...,Vg are the first k leading eigenvectors of C

This is easy to see, again first work it out in the case when C is diagonal
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PCA - Algorithm

X ERVM — X — X —X—— ( XTX — O = QAQT — Y «+ XQ

Input Data zero-centering covariance matrix eigen decomposition Projection

Zero centering the data takes O(nm) (input scan)

]
m Covariance matrix: O(m?n) — O(m?) values each takes O(n) ops
m Eigen decomposition takes O(m?) time for a m x m matrix

(]

Transformation and dimensionality reduction require n X m x k time
m Total runtime is O(nm? + m3).

For large datasets computing C is computationally infeasible
Use SVD method to compute PCA to avoid computing C

Top eigenvectors of C can be computed using power iteration method
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PCA - Number of components

Depends on the task at hand — Same question as number of clusters

Variance explained by q; is equal to A;
Select k such that A\gy1,...,An are small

Scree plot

credit: K. Mueller : Stoneybrool

chosen
significance
threshold

1<)
o
s
%ER I
Cond NSNS —————

Altitude —
Disth] e ——
Distsvy | ———

Or select k such that
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geE 3
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X . . only eliminate
variables considered more aggressive K
significant reduction of variables very wea
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Power lteration Method

m The top eigenvector of A is the direction of max stretch
B \i, ..., Ay eigenvalues of A <= Aj,..., ], eigenvalues of A"

Picture the transformation of the unit circle by A

A11

The longest axis (major axis in 2d) corresponds to the top eigenvector

The ellipse corresponding to AX will be very long and very thin difference
between axes will be amplified (AX vs \%)
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Power lteration Method

Power iteration method uses this intuition

m For a random unit vector v A(A(A...A(A(v)))) will be almost entirely
in the direction of top eigenvector

m For large k AX maps almost all unit vectors close to longest ellipse axis

Algorithm Power lteration to compute top eigenvector of A = X7 X

Vg ¢~ RANDOM-UNIT-VECTOR() > Generate random direction
i1
while stopping criteria is not met do
V; < AV,'_]_
Vi < Vi/|vil > Normalize to get unit vector
i—i+1
m Stop: when |[|v;|| — [[vi_1] <€

m Runtime depends on spectral gap *2/x
m Can use repeated squaring to compute AXv
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Power lteration Method

To compute second eigenvector after the first, vy

Project A onto vi and subtract it out

The residual matrix A’ < A — Avyv/]

Row i of A" is [a; — (aj,v — L)v;

The top eigenvector of A’ is second leading eigenvector of A

For the bottom eigenvector (e.g. of the Laplacian matrix, that we use
for spectral clustering), use the inverse power iteration method

This follows from the fact that eigenvalues of AX are Ak, )\’2‘, RN
For k = —1, eigen values of the inverse A~1 of A are 1/x;,1/x, ...,
AM>X> .2 = YUn<Yn< o <Y,

Thus, the power method on A™! yields the smallest eigenpair

With some linear algebra computing the inverse can be avoided

To compute all eigenvectors the algorithm is called the QR algorithm
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PCA Case Study: Eigenfaces

Classic application of PCA is image compression and face recognition

R i —
! —> —>Satya
—Satya i -
Face H Face
Verification | —> Recognition |—Mark
System H l System
—>Not Satya | Haven't
i —seen him
! before
Detection finds the faces in images — :
J. Niebles & R. Krishna @ Stanford source: learnopencv.com
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Face Detection and Recognition Applications

Surveillance

v % ) 7
GILLES SABRIE— THE NEW YORK TIMES/REDUX
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Face Detection and Recognition Applications

Emotion and Expression Detection

-

J. Niebles & R. Krishn
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Face Detection and Recognition Applications

Photo Album Organization
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Face Detection and Recognition Applications

Facebook Auto Tag Suggestions

We've Suggested Tags for Your Photos

We've automatically grouped together similar pictures and suggested the names of friends who might
appear in them. This lets you quickly label your photos and notify friends who are in this album

Tag Your Friends

This will quickly label your photos and natify the friends you tag. Learn more

Francis Luu
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PCA Case Study: Eigenfaces

Input Images

Dataset For each face there should be a few training examples
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PCA Case Study: Eigenfaces

Represent images by vectors

§3 51 39 69 16 93 30 98 €3 93 33 01

hat the computer sees

N x M matrix

NM x 1 vector |—

R. Grosse @ Uni. of Toronto —
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PCA Case Study: Eigenfaces

Mean Face

Mean face x
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PCA Case Study: Eigenfaces

Top eigenvectors: uy, . .., uy (visualized as images - eigenfaces)
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PCA Case Study: Eigenfaces

Represent a face as a linear combination of top k eigenfaces

TrainingFace

0.458 * 0.013 * 0.639 *

NEEE
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PCA Case Study: Eigenfaces

Effect of number of principal components on reconstruction

K=5 K=10 K=20 K=30 K=30 K=100  K=200 K=300 K=400 K=500 K=600
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PCA Case Study: Eigenfaces

Face Recognition:

m Subtract the mean face from the given (test) face
m Project onto the same k principal components

m Use k-nearest neighbors (by the new representations) and make a
prediction based on that
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PCA Case Study: Eigenfaces

Face Detection:

m For a region R of the image, project R onto the principal components

m If the ¢, distance of the new representation of R with R is not
significant, then R is a face
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PCA: Limitations

PCA does not capture non-linear relationships between attributes

T2 A

First principal component

\J
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PCA: Limitations

PCA does not take into account any class labels (a completely
unsupervised approach)

It does not necessarily help separate data based on classes

reduced dimensional data may not lead to better classification

R <— First principal component

»WVI

data projected on v,
not separated classes

X1
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Linear Discriminant Analysis

Linear Discriminant Analysis (LDA):

Seeks a projection that best discriminates the data

data projected on vy

well-sepearated classes
- ——OIDOMO—@OD— V)

V1 <«— Projection respecting classes

X1
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Linear Discriminant Analysis

Other dimensionality reduction methods that we will not study

Linear Methods include

m Factor Analysis

m Independent Component Analysis: Seeks a projection that
preserves as much information in the data as possible

Non-linear methods include

m Laplacian Eigenmaps
= ISOMAP
m Local Linear Embedding Embedding to low dimensional manifolds
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