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Data Stream Model
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Data Stream

Stream Processing: Analytics on a continuous stream of data items

The goal is to draw meaningful analytics from the stream subject to

m Single Pass: process each item exactly once (common requirement)

m Limited Memory: poly-logarithmic space (in length of stream or
domain)

m Constant per item processing: near real time

m Arbitrary arrival order: No assumption on distribution or order of
items
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Outline

Characteristics of data streams !

m Huge volumes of continuous data, possibly infinite

Fast changing and requires fast, real-time response
m Data stream captures nicely our data processing needs of today

m Random access is expensive

Single scan algorithm (can only have one look)

Store only the summary of the data seen thus far

m Most stream data are at pretty low-level or multi-dimensional in
nature, needs multi-level and multi-dimensional processing

!Based on Han & Kamber, Data Mining Concepts & Techniques, 2nd Ed.
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Stream Model of Computation

Motwani, PODS (2002)

Memory: poly(1/e, logN)
Query/Update Time: poly(1l/e, logN)

N: # items so far, or window size

Data Stream

£: error parameter
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Data Stream

Stream data is fundamentally different than traditional datasets?

Traditional Data (DBMS) Data Stream

Persistent storage Transient stream(s)

One-time query Continuous query

Random access Sequential access

Unbounded disk storage Bounded main memory

Only current state matters Arrival-order is critical

No real time services Real-time requirements

Low update rate Possibly multi-GB arrival rate (dynamic & fast)
Mixed granularity Data at fine granularity

’R. Motwani, PODS (2002)
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Data Stream Processing Model

m Since streams are long (potentially unbounded) exact algorithms with
limited memory are possible only for a few simple queries

m .. we design approximate algorithms (they often suffice)

(¢, 6)-approximate algorithm

m A : an algorithm to compute f(S) > (a function of stream)
m A(S) : output of Aon S

mFore>0, 0<40<1, Aisan (¢ )-approximation algorithm if

Pr[A(S) — f(S)| > €f(S)] < 0o

IMDAD ULLAH KHAN (LUMS) Data Stream 7/73



Data Stream

Application

f Approximate Answer
Query @ f to @ with

Continuous Data Stream f probabilistic guarantees

potentially unbounded

Stream
- EEEE - . - Processing
Engine

GigaBytes

Possibly multiple I
(parallel) streams

Memory KilOByteS
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Data Stream: Applications
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Application Domains

Stream data comes in many domains and has various applications3

m Telecommunication calling records

m Business: credit card transaction flows

Network monitoring and traffic engineering

Financial market: stock exchange

Engineering & industrial processes: power supply & manufacturing

m Sensor, monitoring & surveillance: video streams, RFIDs

Security monitoring
m Web logs and Web page click streams

m Massive data sets (even saved but random access is too expensive)

®Based on Han & Kamber, Data Mining Concepts & Techniques, 2nd Ed.
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Applications: Sensor Networks

Wireless Sensor Network

Sensor
Node Vibration

m Sensor nodes collect unlimited amount of data

have very limited computation power and memory

m Limited battery power constrain communication of all collected data

m 1 bit transmission consumes power ~ to executing 800 instructions*

Streaming algorithm deployed onto nodes are ideally suited for
drawing analytics from sensed data

*Madden et.al. (2002)
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Application: Network Monitoring & Management

Network Monitoring and Management

.

Internet.

source: Wikipedia

NetFlow: A Cisco tool for network administrators (performance metrics, security
analysis, detection and forensics). For each Flow it reports (logs)

m Network Interface m Source/Destination port
m Source/Destination IP Addresses m TCP Flags
m |P Protocol m Total packets/bytes in flow
m AT&T Processes over 567 billion flow records per day® > ~ 15 PBytes

m Detects and characterizes approximately 500 anomalies per day

5Fred Stinger (AT&T) FloCon (2017) Netflow Collection and Analysis ..
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Application: Network Monitoring & Management

Network Monitoring and Management

Application Area Queries
m Traffic Engineering m How many bytes sent b/w IP-1 and IP-27
m Traffic Monitoring m How many IP addresses are active?
m Volume estimation & analysis m Top 100 IP’s by traffic volume
m Load Balancing m Average duration of IP session?
m Efficient Resource Utilization m Meidan number of bytes in each IP session
m (D)DOS Attack Detection m Find sessions that transmitted > 1k bytes
m SLA Voilation m Find sessions with duration > twice average

m List all IP's with a sudden spike in traffic

m List all IP involved in more than 1k sessions
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Application: Click Stream Analysis

Web Click Stream Analysis: tracking and analysis of websites visits

Google Analytics
Erpor < | E1nmi vancad Segri At veis

L Intalligence °*

A Visitors. Dashboard Dec 9, 2011 - Jan 8, 2012

= Traffic Sources

() content =
oo vk B==
[ Custom Reporting

My Customizations. O e R e

2 Custom Ropors

Mo 3,731 Visits ~ 67.49% Bounce Rate
e S 6,812 Pageviews VA 00:02:02 Avg. Time on Site
] T 1.83 PagesiVisit A 58.11% % New Visits

Figure credit: Alex Smola @Yahoo research & ANU

m Stream of user clicks on websites (tracked via cookies)
m Find hot links, frequent IP’s, click probability
m Enhanced customer experience & conversion rates

m Digital marketing — Up-selling and cross-selling
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Application: Query Stream Analysis

Search Queries Stream:

Figure credit: Alex Smola @Yahoo research & ANU

machine learning 1.00 data mining 3.20

Search Volumg index Google Trends

7.50

Discover trends and patterns

KEYWORDS QUERIES
Relevant keywords for website - e —
beckpack Tor kids

st Beckpack for callegs

Estimate keywords CPC (cost per click) T

kincsrgarteners nee?

u
u
m Estimate competition scores or difficulty
[
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Application: AMI

Energy consumption Analysis:

Real Time Usage

Energy Now

&\ -

£ 500 Watts

E=m

m Electricity consumption data from AMI (Automatic Metering Interface)
m Find average hourly load, load surges, anamoly
m Short term load forecast (total or for individual consumer)

m ldentify faults, drops, failures
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Application: Time Series

Financial Time Series:

NASDAQ Composite (*IXIC) # Add to Portfolio

2,676.56 +2.34(0.09%) sns
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m Time stamped real time (multiple) stock data
m Need near real time prediction

m Algorithmic Trading
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Application: Query Execution Plan

Query Execution Plan can be optimized using a synopsis of the database

Suppose we have data of n = 1M people in a database and the query
SELECT * from Table WHERE 25 < age < 35 and 54 < weight < 60
Runtime of brute force execution is 2n comparisons

Suppose we have the following synopsis of distribution of an attribute

Age Freq
% Weight _ Freq.
- (V)
21-30 10% 0-20 20%
== 2 21-40 25%
1-40 129
z3¢1 - 53 13;> 41-60 10%
“ST-60 2% 61-80 15%
- 0
61-70 20% 81+  30%
71+ 5% First filter on Weight, then on age

First filter on Age, then on weight Runtime: 1.1n

Runtime: 1.22n
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Synopsis
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Stream Model of Computation

Stream § := a1,a2,33,...,am > m may be unknown
Each a; € [n]

Goal: Compute a function of the stream S (e.g. mean, median, number of
distinct elements, frequency moments..)

Subject to
m Single pass, read each element of S only once sequentially
m Per item processing time O(1)
m Use memory polynomial in O(Y/e, 1/s,log n)

m Return (¢, d)-randomized approximate solution
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Data Stream: Synopsis

Fundamental Methodology: Keep a synopsis of the stream and answer
query based on it. Update synopsis after examining each item in O(1)

Synopsis: Succinct summary of the stream (so far) (poly-log bits)

Families of Synopsis

Application

m Sliding Window

r Approximate Answer
Query @ to @ with

m Random Sam p|e Continuous Data Stream probabilistic guarantees
potentially unbounded \J r

H Stream

u HlStOgram EEEEEE - mEm |:> Processing
. Engine
W. | GigaBytes
u avelets Possibly multiple ﬁ
(parallel) streams

- Sketch Memory KiloBytes
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Synopsis Based Exact Stream Computation

m Length of S (m): Computed by storing a running counter

m Sum of S: Computed by storing a running sum

m Mean of §: Computed from sum and length of S

m Variance of §: Computed from sum, sum of square, and length of S

Var(X) = E(X?) — (E(X))?
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Synopsis Based Exact Stream Computation

Missing Element

m n— 1 unique integers are streamed in from [n]

m Find the missing integer?

m Trivial to find it if we use n bits

m A better solution is to save sum S of the stream > O(log n) bits
m The missing integer is n(n+1)/2 — §

m Can do it in exactly log n bits by storing the parity sum of each bits

The final parity sum is the missing integer
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Synopsis Based Exact Stream Computation

Two Missing Elements

® n — 2 unique integers are streamed in from [n]

m Find the missing integers?

m Trivial to find it if we use n bits

m Save sum of 1st and 2nd powers of stream elements > O(log n) bits

m The missing integers are solution to 2 unknowns and two equations

Readily generalizes to k missing elements
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Data Stream: Sliding Window

Synopsis: Sliding Window

Keep the last w elements as synopsis (w is length of window)

On input a; (i > w), aj_, expires and a; added to window

Can be used for queries like mean, sum, variance, count of
pre-specified element(s) (e.g. non-zero, even)

Extended to compute approximate median, and k-median

aiy a2 asz a4
Il Ol E OO =-—-———— >
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Data Stream: Random Sample

Synopsis: Random Sample

m Keep a “representative” subset of the stream

m Approximately compute query answer on sample (with appropriate
scaling etc.)

Stream elements in an arbitrary order Random Sample

== —

IMDAD ULLAH KHAN (LUMS) Data Stream 26/73



Data Stream: Random Sample

Sample a random element from array A of length n

m Generate a random number r € [0, n]

m Return A[[r]]

Qe

[efee] | [ [ |

‘ ‘au‘alz‘

> A[/] with prob 1/n

> r < RAND() X n

Sample random element (by weight) from array A > A[i] with prob. wi/w

m Generate a random number r € [0, 37 w;]

m Return A[/]

> r < RAND() x W,
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if Wi_1<r<W,

wy | wg w3 | wy wil | wi2
ai | az | az a4 ail ai2
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t f ——t f f f f f f t f
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|

Data Stream

i .
j=1 Wj
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Data Stream: Random Sample

Sample a random element from the stream S > a; with prob. 1/m

m If m is known, use algorithm for sampling from array. For unknown m

Algorithm : Reservoir Sampling (S)
R+ a > R (reservoir) maintains the sample
for i >2do
Pick a; with probability /i
Replace with current element in R

Prob. that a; is in the sample Ry, (m: stream length or query time)

= Pr that a; was selected at time 7 X Pr that a; survived in R until time m

% e

j=i+1
:lx,/é/ x%lxéﬂx...xm/2xm/l—l
v 11 142 143 m~1 m m
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Data Stream: Random Sample

Sample k random elements from the stream S > a; with prob. k/m

Algorithm : Reservoir Sampling (S, k)
R« aj,an,...,ak > R (reservoir) maintains the sample
for i > k+1do
Pick a; with probability /i
If a; is picked, replace with it a randomly chosen element in R

Prob. that a; is in the sample R,, (m: stream length or query time)

= Pr that a; was selected at time 7 X Pr that a; survived in R untill time m

; 11 (- (5}))

xz./'zlxl%2x ><m/12><m/41—£

1 142 13 m~<1 m m

X

K|~

k
i
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Data Stream: Histogram and Wavelets

Synopsis: Histogram
m The synopsis is some summary statistics (e.g. frequency, mean) of
groups (subsets, buckets) in streams values
m Equi-width histogram
m Equidepth histogram
m V-optimal histogram

m Multi-dimensional histogram
Synopsis: Wavelets

m Essentially histograms of features (coefficients) in the frequency
domain representation of the stream
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Linear Sketch for Frequency
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Data Stream: Linear Sketch

m Sample is a general purpose synopsis
m Process sample only — no advantage from observing the whole stream
m Sketches are specific to a particular purpose (query)

m Sketches (also histograms and wavelets) take advantage from the fact
the processor see the whole stream (though can't remember all)
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Data Stream: Linear Sketch

A linear sketch interprets the stream as defining the frequency vector

R
160.39.142.2 3
18.9.22.69 2
80.97.56.20 2

Often we are interested in functions of the frequency vector from a stream

1]2]3 n
S: aj,a9,a3,a4,...,a4, F: Al plfl - - 2
a; € [TL} fi = Hai €S : a; =j}| (frequency of jin S)

S: 2,56,7,821,2,7,55,4,2,8,8,9,5,6,4,4,2,5,5

12|34 |5|6]|7]|8]|9
FomTsTols]el2]231
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Stream: Frequency Moments

S =< aj,aas,...,am > a;e[n]

f; : frequency of i in S F={f,f...,f}
n

Fo = £0 > number of distinct elements
i=1
n

Fi= > f > length of stream, m
i=1
n

F = f2 > second frequency moment
i=1
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Data Stream: Linear Sketch

Synopsis: Linear Sketches

Linear sketch is a synopsis that can be computed as a linear transform of F

m Best suited for data streams, highly parallelizable

m Very good for our problems of computing norms of F

m Can be readily extended to variations of the basic stream model

polylog(n, m) { sketch matrix }

IMDAD ULLAH KHAN (LUMS)

Data Stream

F

-[

sketch vector
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Data Stream Model: Time Series Model

Time Series Model

Every stream item gives the current frequency of an element (F|[a;])
Stream items are a; = (j, ¢;) and it means F[j] < ¢;

For stream S : (7,3), (3,3),(2,9),(7,2),(9,1),(3,1)

The final frequency vector will be

F =

m Used to measure link-bandwidth or energy consumption over time

m Very useful if there are multiple streams (e.g. stock prices for
different companies
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Data Stream Model: Cash-Register Model

Cash-Register Model aka Arrivals-Only Stream

Every stream item is an increment to a frequency.

Stream items are a; = (j, ¢;) and it means F[j] + F[j]+ ¢ ¢ >1
For stream S : (7,3), (3,3),(2,9),(7,2),(9,1),(3,1)

The final frequency vector will be

1 2 3 4 5 6 7 8 9

0/9/4|/0/0|0]|5]|0]1

F =

Can be used e.g. for packet counts in every flow
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Data Stream Model: Turnstile Model

Turnstile Model aka Arrivals and Departures Stream

Every stream item is an update to a frequency
Stream items are a; = (j, ¢;) and it means F[j] + F[j] + ¢ =>1%
For stream S : (7,3),(3,3),(2,9), (7, -2),(9,1), (3, -1)

The final frequency vector will be

F =

Generally, model has restriction of F[-] > 0
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Universal hash functions

Hash functions/table is an efficient way to implement the Dictionary ADT

Hash functions map keys A C U to m buckets labeled {0,1,2,..., m— 1}
A is not known in advance and |A| = n
Desired properties from hashing

m Fewer collisions

m Small range (m)
m Small space complexity to store hash function

m Easy to evaluate hash value for any key

A family of hash functions H is 2-universal if

f distinct k V) Pr |h(x)=h < —
or any distinct keys x,y € U, heRrH [ (x) (y)] <
Source of randomness is picking h (at random) from the family
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Universal hash functions

A family of hash functions H is 2-universal if

1
f distinct k U Pr |h(x)=h < —
or any distinct keys x,y € U , heRrH [ (x) ()/)] m

Linear Congruential Generators for U = Z

m Pick a prime number p > m
m For any two integersaand b (1<a<p-—-1),(0<b<p-1)
m A hash function h,p, : U — [m] is defined as

hap(x) = (ax + b) (mod p) (mod m)

Hi={h,p 1 1<a<p—1,0<b<p—1}is2-universal )

Picking a random h € H amounts to picking random a and b
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Count-Min Sketch
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Count-Min Sketch

m Count-Min sketch (Cormode & Muthukrishnan 2005) for frequency estimates
m Cannot store frequency of every elements

m Store total frequency of random groups (elements in hash buckets)

Algorithm : Count-Min Sketch (k, ¢, )

COUNT <— ZEROS(k) > sketch consists of k integers
Pick a random h : [n] — [k] from a 2-universal family H
On input a;

COUNT[h(a;)] < counTt[h(a;)] + 1 D> increment count at index h(a;)
On query j > query: F[j]=7

return COUNT[h(J)]
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Count-Min Sketch

Algorithm : Count-Min Sketch (k, ¢, d)

COUNT < ZEROS(k) > sketch consists of k integers
Pick a random h : [n] — [k] from a 2-universal family H
On input a;

couNT[h(a;)] + count[h(a;)] +1 > increment count at index h(a;)
On query j > query: F[j] =7

return COUNT[h(j)]

S: 2,5,6,7,8,2,1,2,7,5,5,4,2,8,8,9,5,6,4,4,2,5,5

1 2 3

. 5+2 | 4—————— Sketch
COUNT : 1+2 | 346 | Tt

<«+—— Mapping by
h:{1,2,...,8,9} — {1,2,3}
123456 7]8]9
True
: - .

F: 1/5/013[6(2]|2]3]1 Frequencies
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Count-Min Sketch

Ikzz/e

m Large k means better estimate (smaller groups) but more space

1 2 3 4 5

f3 f f2
count| % L :

fn fa
h(-)

1234 n
AR In
fi = {ai €S8 :a; =34} (frequency of j in S)

m f;: estimate for f; — output of algorithm

IMDAD ULLAH KHAN (LUMS)
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Count-Min Sketch

m k= 2/6
m Large k means better estimate but more space

[ 6 estimate for f; — output of algorithm

Bounds on £ : (idea)

frequency

-0
v

F
3 n
h(-)
COUNT : ‘., °.‘ .. . ... <«—Sketch
Good case Bad case

IMDAD ULLAH KHAN (LUMS) Data Stream
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Count-Min Sketch
| | k = 2/6

m Large k means better estimate but more space

[ 6 estimate for f; — output of algorithm

Bounds on £ : (idea)

oY
v
O <h

m Other elements that hash to h(j) contribute to f;

Prf < fi+elFln] > 3
| |

X = f—f > Excess in f; (error)
B X = Zie[n]\j fi + Ln(iy=h(j) > 1condition 1S indicator of condition
1 €
E(X) = ]E( > ff'lhm—ho)) = 2 firg < X IFlh-5
i€[n\j i€[n]\j i€[n]\j

m By Markov inequality we get the bound
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Count-Min Sketch

Idea: Amplify the probability of the basic count-min sketch
Keep t over-estimates, t = log(1/s), k = 2/e and return their minimum

Unlikely that all t functions hash j with very frequent elements

Algorithm : Count-Min Sketch (k,¢,0)

COUNT <— ZEROS(t X k) > sketch consists of t rows of k integers
Pick t random functions hy, ..., h: : [n] — [k] from a 2-universal family
On input a;

for r=1to t do
CcOUNT|r][h,(a;)] < counT[r][h.(a;)] + 1
> increment COUNT[r] at index h.(a;)
On query j > query: F[j] =7
return ll\gdlgt counT|r][h,(j)]
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Count-Min Sketch

S: 2,5,6,7,821,2,7,55,4,2,8,8,9,5,6,4,4,2,5,5

() T I !
1 2 3
o+1+2] 346 | 207

COUNT : Sketch
0+24+2|1+5+6[3+3+1

ha(") | | |
Lefz]sfafsfolrn|s]o] e
Fi s o]s]6]2]2]8]1] ™ meqences
On input a
hl(a) ht(a)
TINZ [ 3N NN\ | F
COUNT[ 1 1
COUNT[2 \ \ ST
COUNT[ 3 \ 1 \
COUNT'[t][-] \ \'+1
On query a MIN, count| ¢ [ hi(a)]
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Count-Min Sketch

6‘_

> 1

m For every r, other elements that hash to h,(j) contribute to 5

f; < f+¢|F|1 with probability at least 1 —§

m Xj, : contribution of other elements to Count[r][h,(j)]

m Pr[X; >¢€|F|1] < 3 fork=2

m Theevent fi > fi+e|Flly is V1<r<t X, > €|F|s
= PrvrX >elFl:] < (3)°

mt=log(3) = Pr[VrX;>elF|1] < (%)Iogl/é _ 5

m Count-Min sketch is an (e[| F||1, §)-additive approximation algorithm
m Space required is k - t integers = O(1/clog(1/s) log n) (plus constant)

IMDAD ULLAH KHAN (LUMS) Data Stream 49 /73



The Count Sketch
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The Count Sketch

m In Count-Min sketch error in frequency estimate accumulates (group total)
m The Count Sketch > Charikar, Chen, Farach-Colton (2002)

m A frequency estimate where errors in a group cancel each other

Algorithm : Count Sketch (k,¢,0)

Pick a random h : [n] — [k] from a 2-universal family H

Pick a random g : [n] — {—1,1} from a 2-universal family
COUNT <— ZEROS(k) > sketch consists of k integers
On input a;

coUNT[h(a;)] « counT[h(a;)] + g(a;)

> increment or decrement, depending on value of g(a;) COUNT at index h(a;)

On query j > query: F[j] =7
return g(j) x COUNT[h(j)]
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Count Sketch

Algorithm : Count Sketch (k,¢, d)

Pick a random h : [n] — [k] from a 2-universal family H

Pick a random g : [n] — {—1,1} from a 2-universal family
COUNT < ZEROS(k)
On input a;

CcoUNT[h(a;)] - coUNT[h(a;)] + g(ai)

> sketch consists of k integers
On query j

> increment or decrement, depending on value of g(a;) COUNT at index h(a;)
return g(j) x couNT[h(j)]

> query: F[j] =7
S:

2,5,6,7,8,2,1,2,7,5,5,4,2,8,8,9,5,6,4,4,2,5,5

<«————— Sketch
-3-1
/ i

-<«+——— Mapping by
\\
I
1 2 3 4 5 7
F:

hi{1,2,...,8,9} — {1,2,3}
6 7
115|013

IMDAD ULLAH KHAN (LUMS)

True
-—

Frequencies
Data Stream
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The Count Sketch

| | k = 3/62

m f;: estimate for f; — output of algorithm

IMDAD ULLAH KHAN (LUMS)

1 2 3 5
9(3)fs +f +fa
COUNT | + + +
9(n) fn +fa
h(-)
1 2 3 4 n
AANRE fn

fi = {ai €S :a;=j}| (frequency of jin S)

Data Stream




The Count Sketch
3/

m k=
6- estimate for f; — output of algorithm

Bounds on 6

E(f) = £
COUNT[h(j)] = Xicrn fi - 8(7) - Ln(iy=h(j)

80) 3 6 £(0) Lny-ng) = 80 )(f(J)g(j) + % heal) ey

= f()(e())* + .E[Z‘i\j fi-&(1Ng() - Ln(y=n() = FU) + ,e[Z‘N fi - g(1)g() Lagiy=n())

= E(f) =1 E(1n()=h()) = % and E(g()g())) =
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The Count Sketch

3¢

m k=
6- estimate for f; — output of algorithm

Bounds on 6

E(f) = f
B Var(f;) < HIF2 > Read notes
Pr(lfi = fi| = €l Fll2] < v/s

m substitute k = 3/&2 and use Chebychev inequality
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Count Sketch

Probability Amplification

Algorithm : Count Sketch (k,¢,0)

COUNT <— ZEROS(t X k) > sketch consists of t rows of k integers
Pick t random functions hy, ..., h; : [n] — [k] from a 2-universal family
Pick t random functions g1, ..., 8 : [n] — {—1,1} from a 2-uni. family
On input a;

forr=1tot do

CcOUNT|r][h,(a;)] < counT[r][hr(ai)] + g-(ai)
> inc/dec COUNT[r] at index h,(a;)

On query j > query: F[j]=7
return MEDIAN g,(j) x cOUNT[r][h,(j)]
1<r<t
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Count Sketch

Keep t unbiassed estimates, t = log(1/s), k = 3/2. Their median is a
good estimate, unless at least t/2 estimates are very bad

B E(f) =1

On input a
ha(a) hu(a)
T1\2 [3 %
COUNT[1][- -
count|[2][- \ \ hES!
counT[3][ \ AN}
(1()I!N'l;[t][-] \ \'—1
On query @ MED; gl( ) count[ ][ hi(a)]

|f: — £| < €||F||2 with probability at least 1 — & > Uses Chernoff bound

m Count sketch is an (¢||F||2,9) additive approximation algorithm

m Space required is k - t integers =

IMDAD ULLAH KHAN (LUMS)

Data Stream
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AMS Sketch
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Estimate F, : AMS Algorithm

m The AMS Sketch (Alon, Mathias, Szegedy, 1996)

m A sketch to estimate F, (paper has other algorithms for higher moments)

S=<ai,a,a3,...,am > a,-e[n]

fi: frequency of iin S F={A,h,...,f}

n
Fo = > f,-2 > second frequency moment
i=1
Easy to compute if we store F > O(n) space
Canstore i +fh +...+ 1, > O(1) space

Also easy (fi + o+ ...+ f,)?
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Estimate F, : AMS Algorithm

Fpr = 3 7
i=1
Canstore A +fh+...+ 1, > O(1) space

(L +f + ...+ f,)? can be computed by the following algorithm

Algorithm:

for each a; € S
X<+ X+1

return X2

X? = (A+fh+...+h)?
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Estimate F, : AMS Algorithm

n

Foo= S f2 = 2+ +... +f2 > We want this
i—1

(A+h+...+1)? > Easy but overestimate

(hth+h+h)? =+ 6+ 6 +& +2hh+hAf+hf+Afy + hi + i)

error

(A-fh+h—hQ)f = 2+ 8+ + 0 +2A-hh+hifs—hh—Afi+his— A1)
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Estimate F, : AMS Algorithm

Algorithm (AMS):

g:[n—{-1,+1} > random hash function

for each a; € S
X+~ X —|—g(a,~)

return X2

X = fg(l)+ fg(2) +... + fg(n)
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Estimate F, : AMS Algorithm

X? = (fig(l)+ hg(2)+... + fng(”))z

E[X? = [Z(fg( 2] + B[S fe(he)]

I#
— [Zfﬂ + E| Y fifg(ig())]
i#j
= R + Y fifiE[g(g()] = F

i#j

E[X?] = R, )




Estimate F, : AMS Algorithm

X2 = (fig(1) + Hg(2) + ...+ fug(n))? E[X?] = F,

Var(X2) = E[X*] — (E[X?])?

IE[X4] — E[Z(f;g(i))“+6§_(ﬁg(i)2’5’g(j))2] ..

other terms: E[g(i)g(/)g(k)g(/)] = E[g(i)*())g(k)] = E[g(i)’g(j)] =0
> 4-wise independence




Amplifying the probability of basic AMS Sketch
m Keep k = 8/ x log(1/s) estimates, X1, Xa, ..., Xk

m Return X: median of log(1/s) averages of groups of 8/ estimates

Algorithm : AMS sketch to estimate F; of S (e, 9)
Pick k = 8/ x log(1/s) random hash functions gj : [n] — {—1,+1}
X < ZEROS(k) > sketch consists of k integer
On input a;
forj=1— k do
X[ < XUI + gj(ai)

return X: median of log(1/s) means of groups of 8/ estimates (X[]?)

t =8/ estimates t = 8/c* estimates t =8/ estimates ¢ = 8/c* estimates
mean mean mean mean
il

median

IMDAD ULLAH KHAN (LUMS) Data Stream 65/73



Amplifying the probability of basic AMS Sketch

m Keep k = 8/ x log(1/s) estimates, X1, Xa, ..., Xk

m Return X: median of log(1/s) averages of groups of 2/ estimates

t = 8/* estimates ¢ = 8/ estimates t = 8/* estimates ¢t = 8/¢* estimates
BRI Dl [~ = = = = [[[-[II[
mean mean mean mean
il
median
2] _ 2 2
L] ]E[XJ] =k Var(XJ-) < 2F;
~ . v 5 >
m E[X]] = F Var(X;) < €/aF3

= Pr[|)~<j —F| > ng] < Vé'f()?j)/ég2 =1/4 > Chebyshev Inequality
mPr(|X—Fl > eR)| <6
The last inequality uses the Chernoff bound. For X to deviate this much
from F, at least half of )N(J have to deviate more than that
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Linear Transformation View of AMS Sketch

Algorithm : AMS sketch to estimate f> of S

Pick k random hash functions g : [n] — {—1,+1}
X < ZEROS(k)
On input a;
for j=1— k do
X[ XU+ gj(ai)

> sketch consists of 1 integer

g=801) g | ... ] | & ] A
P
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Linear Transformation View of AMS Sketch

Algorithm : AMS sketch to estimate f> of S

Pick k random hash functions g : [n] — {—1,+1}
X < ZEROS(k)
On input a;
for j=1— k do
X[ XU+ gj(ai)

> sketch consists of 1 integer

g=[+1[-1[]... [ [+1] f
f
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Linear Transformation View of AMS Sketch

Algorithm : AMS sketch to estimate f> of S

Pick k random hash functions g : [n] — {—1,+1}
X < ZEROS(k)
On input a;
for j=1— k do
X[ XU+ gj(ai)

> sketch consists of 1 integer

F X
G= +1 | -1 ... +1 f X
1| 1] .. —1 A X,
fa
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Linear Transformation View of AMS Sketch

Algorithm : AMS sketch to estimate f> of S

Pick k random hash functions g : [n] — {—1,+1}
X < ZEROS(k)
On input a;
for j=1— k do
X[ XU+ gj(ai)

> sketch consists of 1 integer

F X
+1 | -1 ... +1 f X
G —'1 -1 ... —.1 % X,
-1 +1 -1 : Xi
2
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Estimate F, : AMS Algorithm
F X
+1 | -1 +1 fi X1
G- -11| -1 -1 5 X,
111 1 _ )ék
2

>\~||—l

r[|)_(—F2|>eF2} < 0

With probability at leat 1 —§

IMDAD uULLAH KHAN (LUMS)

n

vk

k n
1
-9 # < 3% < 1+ 7
i=1 i=1 i=1
1
VIE=9lFlz < —=X]2 < V(1 +¢€)lF-2
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Estimate F, : AMS Algorithm

F X
1] -1 [ ... +1 A X
-1 [ -1 [ ... -1 % X

G_

-1 [ +1 —1 X
fn

V(A =9[Fll2 < \}EHXHz < V(@ + ]2

G is a random linear transformation reduces the dimension of F while
preserving its £, norm

Since G is linear it is easy to see that given U,V € R"

1 1
whp |26l — | 7GVI> ~ U= V],
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Johnson-Lindenstrauss Lemma

m Given V = {vi,vo,...,v,} C R?

For any € € (0,1/2), there is a linear map  : RY s R*

k = clogn/e2 such that for any u,v € V

(I =e)llu—vlz < [[f(u) = F(v)l2 < (1+€)[u—vl2

This map can be obtained very easily

m Let M be a k x d matrix, with M;; € N'(0,1), then
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