DATA STREAMS

- Stream: Motivation and Applications
- Data Stream: Model of Computation
- Synopsis and Synopsis based exact stream computation
- Sliding Window, Sample, Histogram and Wavelets
- Linear Sketches
- Count-Min Sketch
- Count Sketch
- AMS Sketch

Imdad ullah Khan

Data Stream Model

Stream Processing: Analytics on a continuous stream of data items

The goal is to draw meaningful analytics from the stream subject to

- Single Pass: process each item exactly once (common requirement)
- Limited Memory: poly-logarithmic space (in length of stream or domain)
- Constant per item processing: near real time
- Arbitrary arrival order: No assumption on distribution or order of items

Characteristics of data streams ¹

- Huge volumes of continuous data, possibly infinite
- Fast changing and requires fast, real-time response
- Data stream captures nicely our data processing needs of today
- Random access is expensive
- Single scan algorithm (can only have one look)
- Store only the summary of the data seen thus far
- Most stream data are at pretty low-level or multi-dimensional in nature, needs multi-level and multi-dimensional processing

¹Based on Han & Kamber, Data Mining Concepts & Techniques, 2nd Ed.

Stream Model of Computation

Stream data is fundamentally different than traditional datasets²

Traditional Data (DBMS)	Data Stream
Persistent storage	Transient stream(s)
One-time query	Continuous query
Random access	Sequential access
Unbounded disk storage	Bounded main memory
Only current state matters	Arrival-order is critical
No real time services	Real-time requirements
Low update rate	Possibly multi-GB arrival rate (dynamic & fast)
Mixed granularity	Data at fine granularity

²R. Motwani, PODS (2002)

Data Stream Processing Model

- Since streams are long (potentially unbounded) exact algorithms with limited memory are possible only for a few simple queries
- ... we design approximate algorithms (they often suffice)

$\begin{array}{l} (\epsilon, \delta) \text{-approximate algorithm} \\ \bullet \ \mathcal{A} : \text{ an algorithm to compute } f(\mathcal{S}) & \triangleright \text{ (a function of stream)} \\ \bullet \ \mathcal{A}(\mathcal{S}) : \text{ output of } \mathcal{A} \text{ on } \mathcal{S} \\ \bullet \ \text{For } \epsilon > 0, \ 0 \leq \delta \leq 1 \ , \ \mathcal{A} \text{ is an } (\epsilon, \delta) \text{-approximation algorithm if} \\ Pr[|\mathcal{A}(\mathcal{S}) - f(\mathcal{S})| > \epsilon f(\mathcal{S})] \leq \delta \end{array}$

Data Stream: Applications

Application Domains

Stream data comes in many domains and has various applications³

- Telecommunication calling records
- Business: credit card transaction flows
- Network monitoring and traffic engineering
- Financial market: stock exchange
- Engineering & industrial processes: power supply & manufacturing
- Sensor, monitoring & surveillance: video streams, RFIDs
- Security monitoring
- Web logs and Web page click streams
- Massive data sets (even saved but random access is too expensive)

³Based on Han & Kamber, Data Mining Concepts & Techniques, 2nd Ed.

Applications: Sensor Networks

- Sensor nodes collect unlimited amount of data
- have very limited computation power and memory
- Limited battery power constrain communication of all collected data
- lacksquare 1 bit transmission consumes power \sim to executing 800 instructions⁴
- Streaming algorithm deployed onto nodes are ideally suited for drawing analytics from sensed data

⁴Madden et.al. (2002)

Application: Network Monitoring & Management

Network Monitoring and Management

NetFlow: A Cisco tool for network administrators (performance metrics, security analysis, detection and forensics). For each Flow it reports (logs)

- Network Interface
- Source/Destination IP Addresses
- IP Protocol

- Source/Destination port
- TCP Flags
- Total packets/bytes in flow
- AT&T Processes over 567 billion flow records per day⁵ $ho \sim 15$ PBytes
- Detects and characterizes approximately 500 anomalies per day

IMDAD ULLAH KHAN (LUMS)

Data Stream

⁵Fred Stinger (AT&T) FloCon (2017) Netflow Collection and Analysis ..

Application: Network Monitoring & Management

Network Monitoring and Management

Application Area

- Traffic Engineering
- Traffic Monitoring
- Volume estimation & analysis
- Load Balancing
- Efficient Resource Utilization
- (D)DOS Attack Detection
- SLA Voilation

Queries

- How many bytes sent b/w IP-1 and IP-2?
- How many IP addresses are active?
- Top 100 IP's by traffic volume
- Average duration of IP session?
- Meidan number of bytes in each IP session
- Find sessions that transmitted > 1k bytes
- Find sessions with duration > twice average
- List all IP's with a sudden spike in traffic
- List all IP involved in more than 1k sessions

Application: Click Stream Analysis

Web Click Stream Analysis: tracking and analysis of websites visits

- Stream of user clicks on websites (tracked via cookies)
- Find hot links, frequent IP's, click probability
- Enhanced customer experience & conversion rates
- Digital marketing Up-selling and cross-selling

Search Queries Stream:

- Discover trends and patterns
- Relevant keywords for website
- Estimate competition scores or difficulty
- Estimate keywords CPC (cost per click)

Energy consumption Analysis:

- Electricity consumption data from AMI (Automatic Metering Interface)
- Find average hourly load, load surges, anamoly
- Short term load forecast (total or for individual consumer)
- Identify faults, drops, failures

Application: Time Series

Financial Time Series:

- Time stamped real time (multiple) stock data
- Need near real time prediction
- Algorithmic Trading

Application: Query Execution Plan

Query Execution Plan can be optimized using a synopsis of the database Suppose we have data of n = 1M people in a database and the query SELECT * from Table WHERE $25 \le age \le 35$ and $54 \le weight \le 60$ **Runtime of brute force execution** is 2n comparisons

Suppose we have the following synopsis of distribution of an attribute

Age	Freq
0 - 10	7%
11 - 20	8%
21 - 30	10%
31 - 40	12%
41 - 50	13%
51 - 60	25%
61 - 70	20%
71 +	5%

First filter on Age, tl	hen on w	eight
-------------------------	----------	-------

Runtime: 1.22n

Weight	Freq.
0 - 20	20%
21 - 40	25%
41 - 60	10%
61 - 80	15%
81+	30%

First filter on Weight, then on age

Runtime: 1.1n

Stream Model of Computation

Stream $\mathcal{S} := a_1, a_2, a_3, \dots, a_m$ Each $a_i \in [n]$

Goal: Compute a function of the stream \mathcal{S} (e.g. mean, median, number of distinct elements, frequency moments..)

Subject to

- Single pass, read each element of $\mathcal S$ only once sequentially
- Per item processing time O(1)
- Use memory polynomial in $O(1/\epsilon, 1/\delta, \log n)$
- **Return** (ϵ, δ) -randomized approximate solution

 \triangleright *m* may be unknown

Data Stream: Synopsis

Fundamental Methodology: Keep a synopsis of the stream and answer query based on it. Update synopsis after examining each item in O(1)

Synopsis: Succinct summary of the stream (so far) (poly-log bits)

Families of Synopsis

- Sliding Window
- Random Sample
- Histogram
- Wavelets
- Sketch

Synopsis Based Exact Stream Computation

- Length of S(m): Computed by storing a running counter
- **Sum of** S: Computed by storing a running sum
- Mean of \mathcal{S} : Computed from sum and length of \mathcal{S}
- **variance of** \mathcal{S} : Computed from sum, sum of square, and length of \mathcal{S}

$$Var(X) = E(X^2) - (E(X))^2$$

Missing Element

- n-1 unique integers are streamed in from [n]
- Find the missing integer?
- Trivial to find it if we use *n* bits
- A better solution is to save sum S of the stream $\triangleright O(\log n)$ bits
- The missing integer is n(n+1)/2 S
- Can do it in exactly log *n* bits by storing the parity sum of each bits
- The final parity sum is the missing integer

Two Missing Elements

- n-2 unique integers are streamed in from [n]
- Find the missing integers?
- Trivial to find it if we use *n* bits
- Save sum of 1st and 2nd powers of stream elements $\triangleright O(\log n)$ bits
- The missing integers are solution to 2 unknowns and two equations
- Readily generalizes to k missing elements

Synopsis: Sliding Window

- Keep the last w elements as synopsis (w is length of window)
- On input a_i $(i \ge w)$, a_{i-w} expires and a_i added to window
- Can be used for queries like mean, sum, variance, count of pre-specified element(s) (e.g. non-zero, even)
- Extended to compute approximate median, and k-median

Synopsis: Random Sample

- Keep a "representative" subset of the stream
- Approximately compute query answer on sample (with appropriate scaling etc.)

Data Stream: Random Sample

Sample a random element from array A of length n
ightarrow A[i] with prob 1/n• Generate a random number $r \in [0, n]$ $ightarrow r \leftarrow RAND() \times n$ • Return $A[\lceil r \rceil]$

Sample random element (by weight) from array $A \triangleright A[i]$ with prob. w_i/w

Generate a random number $r \in [0, \sum_{j=1}^{n} w_i] \quad \triangleright r \leftarrow \text{RAND}() \times W_n$ Return A[i] if $W_{i-1} \le r < W_i$

Data Stream: Random Sample

Sample a random element from the stream $S \implies a_i$ with prob. 1/m

If m is known, use algorithm for sampling from array. For unknown m

Algorithm : Reservoir Sampling (S)	
$R \leftarrow a_1$	$\triangleright R$ (reservoir) maintains the sample
for $i \ge 2$ do	
Pick a_i with probability $1/i$	
Replace with current element in R	

Prob. that a_i is in the sample R_m (*m*: stream length or query time)

$$= \underbrace{\Pr \text{ that } a_i \text{ was selected at time } i}_{1i} \times \underbrace{\Pr \text{ that } a_i \text{ survived in } R \text{ until time } m}_{j=i+1}$$

$$= \frac{1}{i} \times \underbrace{\frac{i}{i+1} \times \frac{i+1}{i+2} \times \frac{i+2}{i+3}}_{i+3} \times \ldots \times \frac{m-2}{m-1} \times \frac{m-1}{m} = \frac{1}{m}$$

Data Stream: Random Sample

Sample k random elements from the stream S> a_i with prob. k/mAlgorithm : Reservoir Sampling (S, k) $R \leftarrow a_1, a_2, \dots, a_k$ > R (reservoir) maintains the samplefor $i \ge k + 1$ doPick a_i with probability k/iIf a_i is picked, replace with it a randomly chosen element in R

Prob. that a_i is in the sample R_m (m: stream length or query time)

 $= \underbrace{\Pr \text{ that } a_i \text{ was selected at time } i}_{k} \times \underbrace{\Pr \text{ that } a_i \text{ survived in } R \text{ untill time } m}_{j=i+1} \left(1 - \left(\frac{k}{j} \times \frac{1}{k}\right)\right)$ $= \frac{k}{i} \times \underbrace{\frac{i}{i+1}}_{i+1} \times \underbrace{\frac{i+1}{i+2}}_{i+2} \times \underbrace{\frac{i+2}{i+3}}_{i+3} \times \dots \times \underbrace{\frac{m-2}{m-1}}_{m-1} \times \frac{m-1}{m} = \frac{k}{m}$

Synopsis: Histogram

- The synopsis is some summary statistics (e.g. frequency, mean) of groups (subsets, buckets) in streams values
 - Equi-width histogram
 - Equidepth histogram
 - V-optimal histogram
 - Multi-dimensional histogram

Synopsis: Wavelets

 Essentially histograms of features (coefficients) in the frequency domain representation of the stream

Linear Sketch for Frequency

Data Stream: Linear Sketch

- Sample is a general purpose synopsis
- Process sample only no advantage from observing the whole stream
- Sketches are specific to a particular purpose (query)
- Sketches (also histograms and wavelets) take advantage from the fact the processor see the whole stream (though can't remember all)

Data Stream: Linear Sketch

A linear sketch interprets the stream as defining the frequency vector

Often we are interested in functions of the frequency vector from a stream

$$\mathcal{S} : a_1, a_2, a_3, a_4, \dots, a_m \mathbf{F} : \begin{bmatrix} 1 & 2 & 3 & & n \\ f_1 & f_2 & f_3 & & \dots & f_n \end{bmatrix}$$

$$a_i \in [n] \qquad f_j = |\{a_i \in \mathcal{S} : a_i = j\}| \quad (\text{frequency of } j \text{ in } \mathcal{S} \)$$

$$\begin{aligned} \mathcal{S} &: & 2, 5, 6, 7, 8, 2, 1, 2, 7, 5, 5, 4, 2, 8, 8, 9, 5, 6, 4, 4, 2, 5, 5 \\ \mathbf{F} &: & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline 1 & 5 & 0 & 3 & 6 & 2 & 2 & 3 & 1 \\ \hline \end{aligned}$$

Stream: Frequency Moments

$$\mathcal{S} = \langle a_1, a_2, a_3, \ldots, a_m \rangle$$
 $a_i \in [n]$

 f_i : frequency of *i* in S $\mathbf{F} = \{f_1, f_2, \dots, f_n\}$

$$F_0 := \sum_{i=1}^n f_i^0$$

$$F_1 := \sum_{i=1}^n f_i$$

$$F_2 := \sum_{i=1}^n f_i^2$$

▷ number of distinct elements

 \triangleright length of stream, *m*

▷ second frequency moment

Synopsis: Linear Sketches

Linear sketch is a synopsis that can be computed as a linear transform of ${\bf F}$

- Best suited for data streams, highly parallelizable
- Very good for our problems of computing norms of F
- Can be readily extended to variations of the basic stream model

Time Series Model

Every stream item gives the current frequency of an element $(\mathbf{F}[a_i])$

Stream items are $a_i = \langle j, c_i \rangle$ and it means $\mathbf{F}[j] \leftarrow c_i$

For stream \mathcal{S} : $\langle 7, 3 \rangle, \langle 3, 3 \rangle, \langle 2, 9 \rangle, \langle 7, 2 \rangle, \langle 9, 1 \rangle, \langle 3, 1 \rangle$

The final frequency vector will be

$$\mathbf{F} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline 0 & 9 & 1 & 0 & 0 & 0 & 2 & 0 & 1 \end{bmatrix}$$

- Used to measure link-bandwidth or energy consumption over time
- Very useful if there are multiple streams (e.g. stock prices for different companies
Data Stream Model: Cash-Register Model

Cash-Register Model aka Arrivals-Only Stream

Every stream item is an increment to a frequency.

Stream items are $a_i = \langle j, c_i \rangle$ and it means $\mathbf{F}[j] \leftarrow \mathbf{F}[j] + c_i$ $c_i \ge 1$

For stream S : $\langle 7, 3 \rangle$, $\langle 3, 3 \rangle$, $\langle 2, 9 \rangle$, $\langle 7, 2 \rangle$, $\langle 9, 1 \rangle$, $\langle 3, 1 \rangle$

The final frequency vector will be

$$\mathbf{F} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline 0 & 9 & 4 & 0 & 0 & 0 & 5 & 0 & 1 \end{bmatrix}$$

Can be used e.g. for packet counts in every flow

Data Stream Model: Turnstile Model

Turnstile Model aka Arrivals and Departures Stream

Every stream item is an update to a frequency

Stream items are $a_i = \langle j, c_i \rangle$ and it means $\mathbf{F}[j] \leftarrow \mathbf{F}[j] + c_i$ $c_i \ge 1$

For stream \mathcal{S} : $\langle 7, 3 \rangle, \langle 3, 3 \rangle, \langle 2, 9 \rangle, \langle 7, -2 \rangle, \langle 9, 1 \rangle, \langle 3, -1 \rangle$

The final frequency vector will be

Generally, model has restriction of $\mathbf{F}[\cdot] \ge 0$

Universal hash functions

Hash functions/table is an efficient way to implement the Dictionary ADT Hash functions map keys $A \subset U$ to m buckets labeled $\{0, 1, 2, ..., m-1\}$ A is not known in advance and |A| = n

Desired properties from hashing

- Fewer collisions
- Small range (m)
- Small space complexity to store hash function
- Easy to evaluate hash value for any key

for any distinct keys $x, y \in U$, $\Pr_{h \in_R \mathcal{H}} [h(x) = h(y)] \leq \frac{1}{m}$

Source of randomness is picking h (at random) from the family

Data Stream

A family of hash functions ${\mathcal H}$ is 2-universal if

for any distinct keys $x, y \in U$, $Pr_{h \in_R \mathcal{H}} [h(x) = h(y)] \leq \frac{1}{m}$

Linear Congruential Generators for $U = \mathbb{Z}$

- Pick a prime number p > m
- For any two integers a and b $(1 \le a \le p-1)$, $(0 \le b \le p-1)$
- A hash function $h_{a,b}: U \mapsto [m]$ is defined as

 $h_{a,b}(x) = (ax + b) \pmod{p} \pmod{m}$

 $\mathcal{H} := \{h_{a,b} : 1 \le a \le p - 1, 0 \le b \le p - 1\}$ is 2-universal

Picking a random $h \in \mathcal{H}$ amounts to picking random a and b

- Count-Min sketch (Cormode & Muthukrishnan 2005) for frequency estimates
- Cannot store frequency of every elements
- Store total frequency of random groups (elements in hash buckets)

Algorithm : Count-Min Sketch (k, ϵ, δ) COUNT \leftarrow ZEROS(k)> sketch consists of k integersPick a random $h : [n] \mapsto [k]$ from a 2-universal family \mathcal{H} On input a_i COUNT $[h(a_i)] \leftarrow$ COUNT $[h(a_i)] + 1$ > increment count at index $h(a_i)$ On query j> query: $\mathbf{F}[j] = ?$ return COUNT[h(j)]

Data Stream

• $k = 2/\epsilon$

- Large k means better estimate (smaller groups) but more space
- \tilde{f}_j : estimate for f_j output of algorithm

- $k = 2/\epsilon$
- Large k means better estimate but more space
- \tilde{f}_j : estimate for f_j output of algorithm

Bounds on \tilde{f}_j : (idea)

- $k = 2/\epsilon$
- Large k means better estimate but more space
- \tilde{f}_j : estimate for f_j output of algorithm

Bounds on \tilde{f}_j : (idea)

1 $ilde{f} \geq f_j$ • Other elements that hash to h(j) contribute to $ilde{f_j}$

$$Pr\left[\tilde{f}_{j} \leq f_{j} + \epsilon ||F||_{1}\right] \geq \frac{1}{2}$$

$$X_{j} = \tilde{f}_{j} - f_{j} \qquad \triangleright \text{ Excess in } \tilde{f}_{j} \text{ (error)}$$

$$X_{j} = \sum_{i \in [n] \setminus j} f_{i} \cdot 1_{h(i) = h(j)} \qquad \triangleright 1_{condition} \text{ is indicator of condition}$$

$$\mathbb{E}(X_{j}) = \mathbb{E}\left(\sum_{i \in [n] \setminus j} f_{i} \cdot 1_{h(i) = h(j)}\right) = \sum_{i \in [n] \setminus j} f_{i} \cdot \frac{1}{k} \leq \sum_{i \in [n] \setminus j} ||F||_{1} \cdot \frac{\epsilon}{2}$$

By Markov inequality we get the bound

Idea: Amplify the probability of the basic count-min sketch Keep t over-estimates, $t = \log(1/\delta)$, $k = 2/\epsilon$ and return their minimum Unlikely that all t functions hash j with very frequent elements

Algorithm : Count-Min Sketch (k, ϵ, δ) COUNT \leftarrow ZEROS $(t \times k)$ \triangleright sketch consists of t rows of k integers Pick t random functions $h_1, \ldots, h_t : [n] \mapsto [k]$ from a 2-universal family On input a_i for r = 1 to t do $\operatorname{COUNT}[r][h_r(a_i)] \leftarrow \operatorname{COUNT}[r][h_r(a_i)] + 1$ \triangleright increment COUNT[r] at index $h_r(a_i)$ On query *j* \triangleright query: $\mathbf{F}[i] = ?$ **return** MIN COUNT $[r][h_r(j)]$ $1 \le r \le t$

1 $\tilde{f}_j \geq f_j$

- For every r, other elements that hash to $h_r(j)$ contribute to \tilde{f}_j
- 2 $\tilde{f}_j \leq f_j + \epsilon \|F\|_1$ with probability at least 1δ
 - X_{jr} : contribution of other elements to Count[r][h_r(j)]

•
$$\Pr\left[X_{jr} \geq \epsilon \|F\|_1\right] \leq \frac{1}{2}$$
 for $k = 2/\epsilon$

 $\bullet \ \ \text{The event} \ \, \tilde{f_j} \ \ge \ f_j + \epsilon \|F\|_1 \quad \ \text{is} \ \ \forall \ \ 1 \le r \le t \quad \ X_{jr} \ \ge \ \epsilon \|F\|_1$

•
$$\Pr\left[\forall r X_{jr} \geq \epsilon \|F\|_1\right] \leq \left(\frac{1}{2}\right)^t$$

- $t = \log(\frac{1}{\delta}) \implies \Pr\left[\forall r X_{jr} \ge \epsilon \|F\|_1 \right] \le \left(\frac{1}{2}\right)^{\log 1/\delta} = \delta$
- Count-Min sketch is an (ε||F||₁, δ)-additive approximation algorithm
 Space required is k ⋅ t integers = O(1/ε log(1/δ) log n) (plus constant)

- In Count-Min sketch error in frequency estimate accumulates (group total)
- The Count Sketch ▷ Charikar, Chen, Farach-Colton (2002)
- A frequency estimate where errors in a group cancel each other

Algorithm : Count Sketch (k, ϵ, δ)

Pick a random $h : [n] \mapsto [k]$ from a 2-universal family \mathcal{H}

- Pick a random $g : [n] \mapsto \{-1, 1\}$ from a 2-universal family
- $COUNT \leftarrow ZEROS(k) \qquad \qquad \triangleright \text{ sketch consists of } k \text{ integers}$

On input a_i

 $\text{COUNT}[h(a_i)] \leftarrow \text{COUNT}[h(a_i)] + g(a_i)$

▷ increment or decrement, depending on value of $g(a_i)$ COUNT at index $h(a_i)$

On query jreturn $g(j) \times \text{COUNT}[h(j)]$ \triangleright query: $\mathbf{F}[i] = ?$

Count Sketch

Data Stream

Bounds on \tilde{f}_j :

$$\begin{array}{l} \blacksquare \ E(\tilde{f}_{j}) = f_{j} \\ \text{COUNT}[h(j)] = \sum_{i \in [n]} f_{i} \cdot g(i) \cdot 1_{h(i) = h(j)} \\ \tilde{f}_{j} = g(j) \sum_{i \in [n]} f_{i} \cdot g(i) 1_{h(i) = h(j)} = g(j) \Big(f(j)g(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i) 1_{h(i) = h(j)} \Big) \\ = f(j)(g(j))^{2} + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) \cdot 1_{h(i) = h(j)} = f(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) 1_{h(i) = h(j)} \\ \tilde{f}_{i} = g(j) \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) \cdot 1_{h(i) = h(j)} = f(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) 1_{h(i) = h(j)} \\ \tilde{f}_{i} = g(j) \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) \cdot 1_{h(i) = h(j)} = f(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) 1_{h(i) = h(j)} \\ \tilde{f}_{i} = g(j) \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) \cdot 1_{h(i) = h(j)} = f(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) 1_{h(i) = h(j)} \\ \tilde{f}_{i} = g(j) \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) 1_{h(i) = h(j)} \\ \tilde{f}_{i} = g(j) \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) 1_{h(i) = h(j)} \\ \tilde{f}_{i} = g(j) \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) 1_{h(i) = h(j)} \\ \tilde{f}_{i} = g(j) \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) 1_{h(i) = h(j)} \\ \tilde{f}_{i} = g(j) \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) 1_{h(i) = h(j)} \\ \tilde{f}_{i} = g(j) \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) 1_{h(i) = h(j)} \\ \tilde{f}_{i} = g(j) \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) 1_{h(i) = h(j)} \\ \tilde{f}_{i} = g(j) \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) 1_{h(i) = h(j)} \\ \tilde{f}_{i} = g(j) \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot g(i)g(j) + \sum_{i \in [n] \setminus j} f_{i} \cdot$$

$$\implies \mathbb{E}(\tilde{f_j}) = f_j \qquad \qquad \triangleright \mathbb{E}(1_{h(i)=h(j)}) = \frac{1}{k} \text{ and } \mathbb{E}(g(i)g(j)) = 0$$

Bounds on f_i :

1 $E(\tilde{f}_j) = f_j$ 2 $Var(\tilde{f}_j) \leq \frac{1}{k} ||F||_2$ 3 $Pr[|\tilde{f}_j - f_j| \geq \epsilon ||F||_2] \leq \frac{1}{3}$

• substitute $k = 3/\epsilon^2$ and use Chebychev inequality

▷ Read notes

Probability Amplification

Algorithm : Count Sketch (k, ϵ, δ) COUNT \leftarrow ZEROS $(t \times k)$ \triangleright sketch consists of t rows of k integers Pick t random functions $h_1, \ldots, h_t : [n] \mapsto [k]$ from a 2-universal family Pick t random functions $g_1, \ldots, g_t : [n] \mapsto \{-1, 1\}$ from a 2-uni. family On input a; for r = 1 to t do $\operatorname{COUNT}[r][h_r(a_i)] \leftarrow \operatorname{COUNT}[r][h_r(a_i)] + g_r(a_i)$ \triangleright inc/dec COUNT[r] at index $h_r(a_i)$ On query *j* \triangleright query: $\mathbf{F}[j] = ?$

return MEDIAN
$$g_r(j) \times \text{COUNT}[r][h_r(j)]$$

Count Sketch

Keep t unbiassed estimates, $t = \log(1/\delta)$, $k = 3/\epsilon^2$. Their median is a good estimate, unless at least t/2 estimates are very bad

1 $E(\tilde{f}_j) = f_j$ 2 $|\tilde{f}_i - f_i| \le \epsilon ||F||_2$ with probability at least $1 - \delta \triangleright$ Uses Chernoff bound

• Count sketch is an $(\epsilon \|F\|_2, \delta)$ additive approximation algorithm

• Space required is $k \cdot t$ integers = $O(1/\epsilon^2 \log(1/\delta) \log n)$ (plus constant)

AMS Sketch

Estimate F_2 : AMS Algorithm

- The AMS Sketch (Alon, Mathias, Szegedy, 1996)
- A sketch to estimate F_2 (paper has other algorithms for higher moments)

$$\mathcal{S} = \langle a_1, a_2, a_3, \ldots, a_m \rangle \qquad a_i \in [n]$$

- f_i : frequency of *i* in $S \quad \mathbf{F} = \{f_1, f_2, \dots, f_n\}$
- $F_2 = \sum_{i=1}^n f_i^2$ > second frequency moment
- Easy to compute if we store F \triangleright O(n) spaceCan store $f_1 + f_2 + \ldots + f_n$ \triangleright O(1) spaceAlso easy $(f_1 + f_2 + \ldots + f_n)^2$

$$F_2:=\sum_{i=1}^n f_i^2$$

Can store $f_1 + f_2 + \ldots + f_n$

 $\triangleright O(1)$ space

 $(f_1 + f_2 + \ldots + f_n)^2$ can be computed by the following algorithm

Algorithm:

for each $a_i \in \mathcal{S}$

$$X \leftarrow X + 1$$

return X^2

 $X^2 = (f_1 + f_2 + \ldots + f_n)^2$

$$F_{2} = \sum_{i=1}^{n} f_{i}^{2} = \underline{f_{1}^{2} + f_{2}^{2} + \ldots + f_{n}^{2}}$$

 We want this

$$(f_{1} + f_{2} + \ldots + f_{n})^{2}$$

 Easy but overestimate

$$(f_{1} + f_{2} + f_{3} + f_{4})^{2} = \underline{f_{1}^{2} + f_{2}^{2} + f_{3}^{2} + f_{4}^{2}}_{error} + \underline{2(f_{1}f_{2} + f_{1}f_{3} + f_{2}f_{3} + f_{1}f_{4} + f_{2}f_{4} + f_{3}f_{4})}_{error}$$

 $(f_1 - f_2 + f_3 - f_4)^2 = f_1^2 + f_2^2 + f_3^2 + f_4^2 + 2(-f_1f_2 + f_1f_3 - f_2f_3 - f_1f_4 + f_2f_4 - f_3f_4)$

Algorithm (AMS):

 $egin{aligned} g:[n] o \{-1,+1\} \ & ext{for each } a_i \in \mathcal{S} \ & X \leftarrow X + g(a_i) \ & ext{return } X^2 \end{aligned}$

 $X = f_1g(1) + f_2g(2) + \ldots + f_ng(n)$

▷ random hash function

Estimate F₂ : AMS Algorithm

 $X^{2} = (f_{1}g(1) + f_{2}g(2) + \ldots + f_{n}g(n))^{2}$

$$\mathbb{E} [X^2] = \mathbb{E} \Big[\sum_i (f_i g(i))^2 \Big] + \mathbb{E} \Big[\sum_{i \neq j} f_i g(i) f_j g(j) \Big]$$
$$= \mathbb{E} \Big[\sum_i f_i^2 \Big] + \mathbb{E} \Big[\sum_{i \neq j} f_i f_j g(i) g(j) \Big]$$
$$= F_2 + \sum_{i \neq j} f_i f_j \mathbb{E} [g(i) g(j)] = F_2$$

 $\mathbb{E}\left[X^2\right] = F_2$

Estimate F₂ : AMS Algorithm

$$X^{2} = (f_{1}g(1) + f_{2}g(2) + \dots + f_{n}g(n))^{2} \qquad \mathbb{E}[X^{2}] = F_{2}$$
$$Var(X^{2}) = \mathbb{E}[X^{4}] - (\mathbb{E}[X^{2}])^{2}$$
$$\mathbb{E}[X^{4}] = \mathbb{E}[\sum_{i} (f_{i}g(i))^{4} + 6\sum_{i \neq j} (f_{i}g(i)^{2}f_{j}g(j))^{2}] + \dots$$

other terms: $\mathbb{E}[g(i)g(j)g(k)g(l)] = \mathbb{E}[g(i)^2g(j)g(k)] = \mathbb{E}[g(i)^3g(j)] = 0$ \triangleright 4-wise independence

$$\mathbb{E} [X^4] = \sum_{i} f_i^4 + 6 \sum_{i \neq j} f_i^2 f_j^2$$

$$V_{ar}(X^2) = \sum_{i} f_i^4 + 6 \sum_{i \neq j} f_i^2 f_j^2 - (\sum_{i} f_i^2)^2 - (\sum_{i} f_i^2)^2 f_i^2 + 6 \sum_{i \neq j} f_i^2 f_j^2 + 6 \sum_{i \neq j} f_i^2 + 6$$

$$Var(X^{2}) = \sum_{i} f_{i}^{4} + 6 \sum_{i \neq j} f_{i}^{2} f_{j}^{2} - (\sum_{i} f_{i}^{2})^{2} = 4 \sum_{i \neq j} f_{i}^{2} f_{j}^{2} \le 2F_{2}^{2}$$

Amplifying the probability of basic AMS Sketch

- Keep $k = {8/\epsilon^2} imes \log({1/\delta})$ estimates, X_1, X_2, \dots, X_k
- Return \bar{X} : median of log $(1/\delta)$ averages of groups of $8/\epsilon^2$ estimates

Algorithm : AMS sketch to estimate F_2 of $S(\epsilon, \delta)$

Pick $k = \frac{8}{\epsilon^2} \times \log(\frac{1}{\delta})$ random hash functions $g_j : [n] \to \{-1, +1\}$ $X \leftarrow \text{ZEROS}(k)$ \triangleright sketch consists of k integer

- On input a_i
- for $j = 1 \rightarrow k$ do $X[j] \leftarrow X[j] + g_j(a_i)$

return \bar{X} : median of log $(1/\delta)$ means of groups of $8/\epsilon^2$ estimates $(X[\cdot]^2)$

Amplifying the probability of basic AMS Sketch

- Keep $k = \frac{8}{\epsilon^2} \times \log(\frac{1}{\delta})$ estimates, X_1, X_2, \dots, X_k
- Return \bar{X} : median of log($1/\delta$) averages of groups of $2/\epsilon^2$ estimates

from F_2 at least half of \tilde{X}_j have to deviate more than that

Data Stream

Algorithm : AMS sketch to estimate F_2 of S

Pick k random hash functions $g : [n] \mapsto \{-1, +1\}$

 $X \leftarrow \text{ZEROS}(k)$ On input a_i for $j = 1 \rightarrow k$ do $X[j] \leftarrow X[j] + g_j(a_i)$

 $\mathbf{g} = \boxed{\begin{array}{c|c}g(1) & g(2) & \dots & g(n)\end{array}}$

▷ sketch consists of 1 integer

= X

Algorithm : AMS sketch to estimate F_2 of S

Pick k random hash functions $g : [n] \mapsto \{-1, +1\}$

 $X \leftarrow \text{ZEROS}(k)$ On input a_i for $j = 1 \rightarrow k$ do $X[j] \leftarrow X[j] + g_j(a_i)$

$$\mathbf{g} = egin{bmatrix} +1 & -1 & \dots & +1 \ \end{pmatrix}$$

 \triangleright sketch consists of 1 integer

= X

Algorithm : AMS sketch to estimate F_2 of S

Pick k random hash functions $g : [n] \mapsto \{-1, +1\}$

 $X \leftarrow \text{ZEROS}(k)$ On input a_i for $j = 1 \rightarrow k$ do $X[j] \leftarrow X[j] + g_i(a_i)$

▷ sketch consists of 1 integer

Algorithm : AMS sketch to estimate F_2 of S

Pick k random hash functions $g : [n] \mapsto \{-1, +1\}$

- $X \leftarrow \operatorname{ZEROS}(k)$ On input a_i
- for $j = 1 \rightarrow k$ do

 $X[j] \leftarrow X[j] + g_j(a_i)$

 \triangleright sketch consists of 1 integer

Estimate F_2 : AMS Algorithm

$$\bar{X} = \frac{1}{k} \sum_{i=1}^{k} X_i^2 \qquad \Pr\left[|\bar{X} - F_2| > \epsilon F_2\right] \leq \delta$$

With probability at leat $1-\delta$

$$(1-\epsilon)\sum_{i=1}^{n} f_{i}^{2} < \frac{1}{k}\sum_{i=1}^{k} X_{i}^{2} < (1+\epsilon)\sum_{i=1}^{n} f_{i}^{2}$$
$$\sqrt{(1-\epsilon)} \|F\|_{2} < \frac{1}{\sqrt{k}} \|X\|_{2} < \sqrt{(1+\epsilon)} \|F\|_{2}$$

Estimate F_2 : AMS Algorithm

 X_1

XL

$$\sqrt{(1-\epsilon)} \|F\|_2 < rac{1}{\sqrt{k}} \|X\|_2 < \sqrt{(1+\epsilon)} \|F\|_2$$

G is a random linear transformation reduces the dimension of F while preserving its ℓ_2 norm

Since G is linear it is easy to see that given $U, V \in \mathbb{R}^n$

w.h.p
$$\|\frac{1}{\sqrt{k}}\mathbf{G}U\|_2 - \|\frac{1}{\sqrt{k}}\mathbf{G}V\|_2 \sim \|U - V\|_2$$
Johnson-Lindenstrauss Lemma

- Given $V = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n} \subset \mathcal{R}^d$
- For any $\epsilon \in (0, 1/2)$, there is a linear map $f : \mathcal{R}^d \mapsto \mathcal{R}^k$
- $k = c \log n/\epsilon^2$, such that for any $\mathbf{u}, \mathbf{v} \in V$

 $(1-\epsilon) \|\mathbf{u}-\mathbf{v}\|_2 \leq \|f(\mathbf{u})-f(\mathbf{v})\|_2 \leq (1+\epsilon) \|\mathbf{u}-\mathbf{v}\|_2$

- This map can be obtained very easily
- Let **M** be a $k \times d$ matrix, with $M_{ij} \in \mathcal{N}(0, 1)$, then

$$f(\mathbf{u}) = rac{1}{\sqrt{k}}\mathbf{M}\mathbf{u}$$