Big Data Analytics

Data Streams

- Stream: Motivation and Applications
- Data Stream: Model of Computation

■ Synopsis and Synopsis based exact stream computation
■ Sliding Window, Sample, Histogram and Wavelets
■ Linear Sketches
■ Count-Min Sketch

- Count Sketch

■ AMS Sketch
Imdad Ullah Khan

Data Stream Model

Data Stream

Stream Processing: Analytics on a continuous stream of data items

The goal is to draw meaningful analytics from the stream subject to

■ Single Pass: process each item exactly once (common requirement)

- Limited Memory: poly-logarithmic space (in length of stream or domain)

■ Constant per item processing: near real time

- Arbitrary arrival order: No assumption on distribution or order of items

Outline

Characteristics of data streams ${ }^{1}$
■ Huge volumes of continuous data, possibly infinite
■ Fast changing and requires fast, real-time response

- Data stream captures nicely our data processing needs of today

■ Random access is expensive

- Single scan algorithm (can only have one look)
- Store only the summary of the data seen thus far
- Most stream data are at pretty low-level or multi-dimensional in nature, needs multi-level and multi-dimensional processing

[^0]
Stream Model of Computation

Data Stream

Stream data is fundamentally different than traditional datasets ${ }^{2}$

Traditional Data (DBMS)	Data Stream
Persistent storage	Transient stream(s)
One-time query	Continuous query
Random access	Sequential access
Unbounded disk storage	Bounded main memory
Only current state matters	Arrival-order is critical
No real time services	Real-time requirements
Low update rate	Possibly multi-GB arrival rate (dynamic \& fast)
Mixed granularity	Data at fine granularity

[^1]
Data Stream Processing Model

- Since streams are long (potentially unbounded) exact algorithms with limited memory are possible only for a few simple queries
■ \therefore we design approximate algorithms (they often suffice)

(ϵ, δ)-approximate algorithm

- \mathcal{A} : an algorithm to compute $f(\mathcal{S})$
$\triangleright($ a function of stream $)$
- $\mathcal{A}(\mathcal{S})$: output of \mathcal{A} on \mathcal{S}

■ For $\epsilon>0, \quad 0 \leq \delta \leq 1, \mathcal{A}$ is an (ϵ, δ)-approximation algorithm if

$$
\operatorname{Pr}[|\mathcal{A}(\mathcal{S})-f(\mathcal{S})|>\epsilon f(\mathcal{S})] \leq \delta
$$

Data Stream

Continuous Data Stream potentially unbounded

GigaBytes
Possibly multiple
(parallel) streams

Data Stream: Applications

Application Domains

Stream data comes in many domains and has various applications ${ }^{3}$

- Telecommunication calling records
- Business: credit card transaction flows

■ Network monitoring and traffic engineering

- Financial market: stock exchange
- Engineering \& industrial processes: power supply \& manufacturing
- Sensor, monitoring \& surveillance: video streams, RFIDs
- Security monitoring

■ Web logs and Web page click streams
■ Massive data sets (even saved but random access is too expensive)

[^2]
Applications: Sensor Networks

- Sensor nodes collect unlimited amount of data
- have very limited computation power and memory

■ Limited battery power constrain communication of all collected data
■ 1 bit transmission consumes power \sim to executing 800 instructions ${ }^{4}$
■ Streaming algorithm deployed onto nodes are ideally suited for drawing analytics from sensed data

[^3]
Application: Network Monitoring \& Management

NetFlow: A Cisco tool for network administrators (performance metrics, security analysis, detection and forensics). For each Flow it reports (logs)

- Network Interface

■ Source/Destination IP Addresses

- IP Protocol

■ Source/Destination port

- TCP Flags
- Total packets/bytes in flow
- AT\&T Processes over 567 billion flow records per day ${ }^{5}$ $\triangleright \sim 15$ PBytes
■ Detects and characterizes approximately 500 anomalies per day

[^4]
Application: Network Monitoring \& Management

Network Monitoring and Management

Application Area

- Traffic Engineering
- Traffic Monitoring

■ Volume estimation \& analysis

- Load Balancing
- Efficient Resource Utilization
- (D)DOS Attack Detection
- SLA Voilation

Queries

- How many bytes sent b/w IP-1 and IP-2?
- How many IP addresses are active?

■ Top 100 IP's by traffic volume
■ Average duration of IP session?

- Meidan number of bytes in each IP session
- Find sessions that transmitted $>1 k$ bytes
- Find sessions with duration > twice average
- List all IP's with a sudden spike in traffic

■ List all IP involved in more than 1 k sessions

Application: Click Stream Analysis

Web Click Stream Analysis: tracking and analysis of websites visits

Google Analytics
New Version|alex.smolaegranail.com | Setings|My Account| Heip | Sign Out
Amyaci Sertiren I Vivw Reporth: alex.smola.org :
Wy Amyter Accoumt: alex smoli.org :
\# Dashboard
L. Intolligence 8 visitors
Traffic Sources
\square Content
PGoals
[3. Custom Reporting

My Customizations
[1] Cusiom Reports
(1) Advanced Segments
I. Inteligenco $\mathrm{D}=\mathrm{A}$ Emal

Help Resources

(3) Abowt this Report
(7) Conversion Universty
(7) Common Questions

Figure credit: Alex Smola @Yahoo research \& ANU

- Stream of user clicks on websites (tracked via cookies)
- Find hot links, frequent IP's, click probability

■ Enhanced customer experience \& conversion rates
■ Digital marketing - Up-selling and cross-selling

Application: Query Stream Analysis

Search Queries Stream:

■ Discover trends and patterns

Application: AMI

Energy consumption Analysis:

■ Electricity consumption data from AMI (Automatic Metering Interface)
■ Find average hourly load, load surges, anamoly

- Short term load forecast (total or for individual consumer)

■ Identify faults, drops, failures

Application: Time Series

Financial Time Series:

- Time stamped real time (multiple) stock data

■ Need near real time prediction

- Algorithmic Trading

Application: Query Execution Plan

Query Execution Plan can be optimized using a synopsis of the database Suppose we have data of $n=1 M$ people in a database and the query SELECT * from Table WHERE $25 \leq$ age ≤ 35 and $54 \leq$ weight ≤ 60
Runtime of brute force execution is $2 n$ comparisons
Suppose we have the following synopsis of distribution of an attribute

Age	Freq
$0-10$	7%
$11-20$	8%
$21-30$	10%
$31-40$	12%
$41-50$	13%
$51-60$	25%
$61-70$	20%
$71+$	5%

First filter on Age, then on weight

Weight	Freq.
$0-20$	20%
$21-40$	25%
$41-60$	10%
$61-80$	15%
$81+$	30%

First filter on Weight, then on age
Runtime: $1.1 n$
Runtime: $1.22 n$

Synopsis

Stream Model of Computation

Stream $\mathcal{S}:=a_{1}, a_{2}, a_{3}, \ldots, a_{m}$
$\triangleright m$ may be unknown
Each $a_{i} \in[n]$
Goal: Compute a function of the stream \mathcal{S} (e.g. mean, median, number of distinct elements, frequency moments..)

Subject to

■ Single pass, read each element of \mathcal{S} only once sequentially
■ Per item processing time $O(1)$
■ Use memory polynomial in $O(1 / \epsilon, 1 / \delta, \log n)$
■ Return (ϵ, δ)-randomized approximate solution

Data Stream: Synopsis

Fundamental Methodology: Keep a synopsis of the stream and answer query based on it. Update synopsis after examining each item in $O(1)$

Synopsis: Succinct summary of the stream (so far) (poly-log bits)

Families of Synopsis

- Sliding Window
- Random Sample
- Histogram
- Wavelets

■ Sketch

Continuous Data Stream potentially unbounded

GigaBytes
Possibly multiple
(parallel) streams

Synopsis Based Exact Stream Computation

- Length of $\mathcal{S}(m)$: Computed by storing a running counter

■ Sum of \mathcal{S} : Computed by storing a running sum

- Mean of \mathcal{S} : Computed from sum and length of \mathcal{S}

■ Variance of \mathcal{S} : Computed from sum, sum of square, and length of \mathcal{S}

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}
$$

Synopsis Based Exact Stream Computation

Missing Element

- $n-1$ unique integers are streamed in from [n]

■ Find the missing integer?

- Trivial to find it if we use n bits
- A better solution is to save sum S of the stream
$\triangleright O(\log n)$ bits
- The missing integer is $n(n+1) / 2-S$

■ Can do it in exactly $\log n$ bits by storing the parity sum of each bits

- The final parity sum is the missing integer

Synopsis Based Exact Stream Computation

Two Missing Elements

- $n-2$ unique integers are streamed in from [n]
- Find the missing integers?
- Trivial to find it if we use n bits
- Save sum of 1st and 2nd powers of stream elements $\triangleright O(\log n)$ bits
- The missing integers are solution to 2 unknowns and two equations
- Readily generalizes to k missing elements

Data Stream: Sliding Window

Synopsis: Sliding Window

- Keep the last w elements as synopsis (w is length of window)

■ On input $a_{i}(i \geq w), a_{i-w}$ expires and a_{i} added to window
■ Can be used for queries like mean, sum, variance, count of pre-specified element(s) (e.g. non-zero, even)

■ Extended to compute approximate median, and k-median

Data Stream: Random Sample

Synopsis: Random Sample

■ Keep a "representative" subset of the stream
■ Approximately compute query answer on sample (with appropriate scaling etc.)

Stream elements in an arbitrary order
Random Sample

Data Stream: Random Sample

Sample a random element from array A of length n
■ Generate a random number $r \in[0, n]$

- Return $A[\lceil r\rceil]$

Sample random element (by weight) from array $A \triangleright A[i]$ with prob. w_{i} / w

- Generate a random number $r \in\left[0, \sum_{j=1}^{n} w_{i}\right] \quad \triangleright r \leftarrow \operatorname{RAND}() \times W_{n}$
- Return A [i] if $W_{i-1} \leq r<W_{i}$

w_{1}	w_{2}	2	${ }^{3}$	w_{4}						${ }_{11}{ }^{1}$	
a_{1}	a_{2}		a_{3}	a_{4}						$a_{11} a_{1}$	

$$
\mathrm{r} \uparrow \quad W_{i}=\sum_{j=1}^{i} w_{j}
$$

Data Stream: Random Sample

Sample a random element from the stream S $\triangleright a_{i}$ with prob. $1 / m$

- If m is known, use algorithm for sampling from array. For unknown m

Algorithm : Reservoir Sampling (S)
$R \leftarrow a_{1} \quad \triangleright R$ (reservoir) maintains the sample
for $i \geq 2$ do
Pick a_{i} with probability $1 / i$
Replace with current element in R

Prob. that a_{i} is in the sample R_{m} (m : stream length or query time)

$$
\begin{array}{r}
=\underbrace{\operatorname{Pr} \text { that } a_{i} \text { was selected at time } i}_{\frac{1}{i}} \times \underbrace{\operatorname{Pr} \text { that } a_{i} \text { survived in } R \text { until time } m}_{\prod_{j=i+1}^{m}\left(1-\frac{1}{j}\right)} \\
=\frac{1}{i} \times \frac{\dot{\gamma}}{i+1} \times \frac{i \nmid 1}{i+2} \times \frac{i 才 2}{i+3} \times \ldots \times \frac{m \not-2}{m \not-1} \times \frac{m \not 1}{m}=\frac{1}{m}
\end{array}
$$

Data Stream: Random Sample

Sample k random elements from the stream S
$\triangleright a_{i}$ with prob. k / m
Algorithm : Reservoir Sampling (\mathcal{S}, k)
$R \leftarrow a_{1}, a_{2}, \ldots, a_{k} \quad \triangleright R$ (reservoir) maintains the sample for $i \geq k+1$ do

Pick a_{i} with probability k / i
If a_{i} is picked, replace with it a randomly chosen element in R

Prob. that a_{i} is in the sample R_{m} (m : stream length or query time)

$$
\begin{aligned}
& =\underbrace{\operatorname{Pr} \text { that } a_{i} \text { was selected at time } i}_{\frac{k}{i}} \times \underbrace{\operatorname{Pr} \text { that } a_{i} \text { survived in } R \text { untill time } m}_{\prod_{j=i+1}^{m}\left(1-\left(\frac{k}{j} \times \frac{1}{k}\right)\right)} \\
& =\frac{k}{\dot{i}} \times \frac{\dot{x}}{i+1} \times \frac{i+1}{i+2} \times \frac{i+2}{i+3} \times \ldots \times \frac{m-2}{m-1} \times \frac{m / 1}{m}=\frac{k}{m}
\end{aligned}
$$

Data Stream: Histogram and Wavelets

Synopsis: Histogram

- The synopsis is some summary statistics (e.g. frequency, mean) of groups (subsets, buckets) in streams values
- Equi-width histogram
- Equidepth histogram
- V-optimal histogram
- Multi-dimensional histogram

Synopsis: Wavelets

- Essentially histograms of features (coefficients) in the frequency domain representation of the stream

Linear Sketch for Frequency

Data Stream: Linear Sketch

- Sample is a general purpose synopsis

■ Process sample only - no advantage from observing the whole stream

- Sketches are specific to a particular purpose (query)

■ Sketches (also histograms and wavelets) take advantage from the fact the processor see the whole stream (though can't remember all)

Data Stream: Linear Sketch

A linear sketch interprets the stream as defining the frequency vector

Often we are interested in functions of the frequency vector from a stream

$$
\begin{aligned}
& \left.\mathcal{S}: a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{m} \quad \mathbf{F}: \begin{array}{|c|c|c|c|c|}
1 & 2 & 3 & & n \\
\hline f_{1} & f_{2} & f_{3} & \cdots & \cdots \\
a_{i} \in[n] \\
f_{j}=\left|\left\{a_{i} \in \mathcal{S}: a_{i}=j\right\}\right| \quad \text { (frequency of } j \text { in } \mathcal{S} \text {) } \\
\mathcal{S}: \quad 2,5,6,7,8,2,1,2,7,5,5,4,2,8,8,9,5,6,4,4,2,5,5 \\
\mathbf{F}: \begin{array}{|l|l|l|l|l|l|l|l|l|}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 1 & 5 & 0 & 3 & 6 & 2 & 2 & 3 & 1 \\
\hline
\end{array}
\end{array}\right) .
\end{aligned}
$$

Stream: Frequency Moments

$$
\mathcal{S}=<a_{1}, a_{2}, a_{3}, \ldots, a_{m}>\quad a_{i} \in[n]
$$

f_{i} : frequency of i in \mathcal{S}
$\mathbf{F}=\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$
$F_{0}:=\sum_{i=1}^{n} f_{i}^{0}$
\triangleright number of distinct elements
$F_{1}:=\sum_{i=1}^{n} f_{i}$
$F_{2}:=\sum_{i=1}^{n} f_{i}^{2}$
\triangleright second frequency moment

Data Stream: Linear Sketch

Synopsis: Linear Sketches
Linear sketch is a synopsis that can be computed as a linear transform of \mathbf{F}
■ Best suited for data streams, highly parallelizable
■ Very good for our problems of computing norms of \mathbf{F}

- Can be readily extended to variations of the basic stream model

Data Stream Model: Time Series Model

Time Series Model
Every stream item gives the current frequency of an element ($\mathbf{F}\left[a_{i}\right]$)
Stream items are $a_{i}=\left\langle j, c_{i}\right\rangle$ and it means $\mathbf{F}[j] \leftarrow c_{i}$
For stream $\mathcal{S}:\langle 7,3\rangle,\langle 3,3\rangle,\langle 2,9\rangle,\langle 7,2\rangle,\langle 9,1\rangle,\langle 3,1\rangle$
The final frequency vector will be

$\mathbf{F}=$| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9 | 1 | 0 | 0 | 0 | 2 | 0 | 1 |

■ Used to measure link-bandwidth or energy consumption over time
■ Very useful if there are multiple streams (e.g. stock prices for different companies

Data Stream Model: Cash-Register Model

Cash-Register Model aka Arrivals-Only Stream
Every stream item is an increment to a frequency.

Stream items are $a_{i}=\left\langle j, c_{i}\right\rangle$ and it means $\mathbf{F}[j] \leftarrow \mathbf{F}[j]+c_{i} \quad c_{i} \geq 1$
For stream $\mathcal{S}:\langle 7,3\rangle,\langle 3,3\rangle,\langle 2,9\rangle,\langle 7,2\rangle,\langle 9,1\rangle,\langle 3,1\rangle$
The final frequency vector will be

$\mathbf{F}=$| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9 | 4 | 0 | 0 | 0 | 5 | 0 | 1 |

Can be used e.g. for packet counts in every flow

Data Stream Model: Turnstile Model

Turnstile Model aka Arrivals and Departures Stream
Every stream item is an update to a frequency

Stream items are $a_{i}=\left\langle j, c_{i}\right\rangle$ and it means $\mathbf{F}[j] \leftarrow \mathbf{F}[j]+c_{i} \quad c_{i} \geq 1$
For stream $\mathcal{S}:\langle 7,3\rangle,\langle 3,3\rangle,\langle 2,9\rangle,\langle 7,-2\rangle,\langle 9,1\rangle,\langle 3,-1\rangle$
The final frequency vector will be

$\mathbf{F}=$| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 9 | 2 | 0 | 0 | 0 | 1 | 0 | 1 |

Generally, model has restriction of $\mathbf{F}[\cdot] \geq 0$

Universal hash functions

Hash functions/table is an efficient way to implement the Dictionary ADT Hash functions map keys $A \subset U$ to m buckets labeled $\{0,1,2, \ldots, m-1\}$
A is not known in advance and $|A|=n$
Desired properties from hashing

- Fewer collisions
- Small range (m)

■ Small space complexity to store hash function

- Easy to evaluate hash value for any key

A family of hash functions \mathcal{H} is 2-universal if
for any distinct keys $x, y \in U, \quad \underset{h \in \mathcal{R}^{\prime} \mathcal{H}}{\operatorname{Pr}}[h(x)=h(y)] \leq \frac{1}{m}$
Source of randomness is picking h (at random) from the family

Universal hash functions

A family of hash functions \mathcal{H} is 2-universal if

$$
\text { for any distinct keys } x, y \in U, \quad \underset{h \in \mathcal{R}^{\mathcal{H}}}{\operatorname{Pr}}[h(x)=h(y)] \leq \frac{1}{m}
$$

Linear Congruential Generators for $U=\mathbb{Z}$

- Pick a prime number $p>m$
- For any two integers a and $b(1 \leq a \leq p-1),(0 \leq b \leq p-1)$
- A hash function $h_{a, b}: U \mapsto[m]$ is defined as

$$
\begin{array}{r}
h_{a, b}(x)=(a x+b) \quad(\bmod p) \quad(\bmod m) \\
\mathcal{H}:=\left\{h_{a, b}: 1 \leq a \leq p-1,0 \leq b \leq p-1\right\} \text { is 2-universal }
\end{array}
$$

Picking a random $h \in \mathcal{H}$ amounts to picking random a and b

Count-Min Sketch

Count-Min Sketch

- Count-Min sketch (Cormode \& Muthukrishnan 2005) for frequency estimates
- Cannot store frequency of every elements
- Store total frequency of random groups (elements in hash buckets)

Algorithm : Count-Min Sketch (k, ϵ, δ)
$\operatorname{COUNT} \leftarrow \operatorname{ZEROS}(k) \quad \triangleright$ sketch consists of k integers
Pick a random $h:[n] \mapsto[k]$ from a 2-universal family \mathcal{H}
On input a_{i}

$$
\operatorname{COUNT}\left[h\left(a_{i}\right)\right] \leftarrow \operatorname{COUNT}\left[h\left(a_{i}\right)\right]+1 \quad \triangleright \text { increment count at index } h\left(a_{i}\right)
$$

On query j

```
\triangleright query: F[j]=?
```

return COUNT[$h(j)$]

Count-Min Sketch

Algorithm : Count-Min Sketch (k, ϵ, δ)

COUNT $\leftarrow \operatorname{ZEROS}(k) \quad \triangleright$ sketch consists of k integers
Pick a random $h:[n] \mapsto[k]$ from a 2-universal family \mathcal{H}
On input a_{i}
$\operatorname{COUNT}\left[h\left(a_{i}\right)\right] \leftarrow \operatorname{COUNT}\left[h\left(a_{i}\right)\right]+1 \quad \triangleright$ increment count at index $h\left(a_{i}\right)$
On query j
\triangleright query: $\mathrm{F}[j]=$?
return Count $[h(j)]$
$\mathcal{S}: \quad 2,5,6,7,8,2,1,2,7,5,5,4,2,8,8,9,5,6,4,4,2,5,5$

COUNT :

Count-Min Sketch

- $k=2 / \epsilon$

■ Large k means better estimate (smaller groups) but more space

- \tilde{f}_{j} : estimate for f_{j} - output of algorithm

Count-Min Sketch

- $k=2 / \epsilon$

■ Large k means better estimate but more space

- \tilde{f}_{j} : estimate for f_{j} - output of algorithm

Bounds on $\tilde{f}_{j}:($ idea $)$

$$
h(\cdot)
$$

COUNT :

Count-Min Sketch

- $k=2 / \epsilon$

■ Large k means better estimate but more space

- \tilde{f}_{j} : estimate for f_{j} - output of algorithm

Bounds on \tilde{f}_{j} : (idea)

$1 \tilde{f} \geq f_{j}$

- Other elements that hash to $h(j)$ contribute to \tilde{f}_{j}

2 $\operatorname{Pr}\left[\tilde{f}_{j} \leq f_{j}+\epsilon\|F\|_{1}\right] \geq \frac{1}{2}$
$\square X_{j}=\tilde{f}_{j}-f_{j} \quad \triangleright$ Excess in \tilde{f}_{j} (error)

- $X_{j}=\sum_{i \in[n] \backslash j} f_{i} \cdot 1_{h(i)=h(j)}$
$\triangleright 1_{\text {condition }}$ is indicator of condition
$\mathbb{E}\left(X_{j}\right)=\mathbb{E}\left(\sum_{i \in[n] \backslash j} f_{i} \cdot 1_{h(i)=h(j)}\right)=\sum_{i \in[n] \backslash j} f_{i} \cdot \frac{1}{k} \leq \sum_{i \in[n] \backslash j}\|F\|_{1} \cdot \frac{\epsilon}{2}$
- By Markov inequality we get the bound

Count-Min Sketch

Idea: Amplify the probability of the basic count-min sketch
Keep t over-estimates, $t=\log (1 / \delta), k=2 / \epsilon$ and return their minimum
Unlikely that all t functions hash j with very frequent elements
Algorithm : Count-Min Sketch (k, ϵ, δ)
COUNT $\leftarrow \operatorname{ZEROS}(t \times k) \quad \triangleright$ sketch consists of t rows of k integers
Pick t random functions $h_{1}, \ldots, h_{t}:[n] \mapsto[k]$ from a 2-universal family
On input a_{i}
for $r=1$ to t do

$$
\operatorname{COUNT}[r]\left[h_{r}\left(a_{i}\right)\right] \leftarrow \operatorname{COUNT}[r]\left[h_{r}\left(a_{i}\right)\right]+1
$$

\triangleright increment count[r] at index $h_{r}\left(a_{i}\right)$
On query j
\triangleright query: $\mathbf{F}[j]=$?
return $\underset{1 \leq r \leq t}{\operatorname{MIN}} \operatorname{COUNT}[r]\left[h_{r}(j)\right]$

Count-Min Sketch

$\mathcal{S}: \quad 2,5,6,7,8,2,1,2,7,5,5,4,2,8,8,9,5,6,4,4,2,5,5$

$\mathbf{F}: \quad$| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 5 | 0 | 3 | 6 | 2 | 2 | 3 | 1 | « \quad True $\quad \begin{aligned} & \text { Trequencies }\end{aligned}$

Count-Min Sketch

I $\tilde{f}_{j} \geq f_{j}$

- For every r, other elements that hash to $h_{r}(j)$ contribute to \tilde{f}_{j}
$2 \tilde{f}_{j} \leq f_{j}+\epsilon\|F\|_{1}$ with probability at least $1-\delta$
- $X_{j r}$: contribution of other elements to Count $[r]\left[h_{r}(j)\right]$
- $\operatorname{Pr}\left[X_{j r} \geq \epsilon\|F\|_{1}\right] \leq \frac{1}{2} \quad$ for $k=2 / \epsilon$
- The event $\tilde{f}_{j} \geq f_{j}+\epsilon\|F\|_{1} \quad$ is $\forall 1 \leq r \leq t \quad X_{j r} \geq \epsilon\|F\|_{1}$
- $\operatorname{Pr}\left[\forall r X_{j r} \geq \epsilon\|F\|_{1}\right] \leq\left(\frac{1}{2}\right)^{t}$
- $t=\log \left(\frac{1}{\delta}\right) \Longrightarrow \operatorname{Pr}\left[\forall r X_{j r} \geq \epsilon\|F\|_{1}\right] \leq\left(\frac{1}{2}\right)^{\log 1 / \delta}=\delta$

■ Count-Min sketch is an $\left(\epsilon\|F\|_{1}, \delta\right)$-additive approximation algorithm
■ Space required is $k \cdot t$ integers $=O(1 / \epsilon \log (1 / \delta) \log n)$ (plus constant)

The Count Sketch

The Count Sketch

- In Count-Min sketch error in frequency estimate accumulates (group total)
- The Count Sketch
\triangleright Charikar, Chen, Farach-Colton (2002)
- A frequency estimate where errors in a group cancel each other

Algorithm : Count Sketch (k, ϵ, δ)

Pick a random $h:[n] \mapsto[k]$ from a 2-universal family \mathcal{H}
Pick a random $g:[n] \mapsto\{-1,1\}$ from a 2-universal family
COUNT $\leftarrow \operatorname{ZEROS}(k)$
\triangleright sketch consists of k integers
On input a_{i}
$\operatorname{COUNT}\left[h\left(a_{i}\right)\right] \leftarrow \operatorname{COUNT}\left[h\left(a_{i}\right)\right]+g\left(a_{i}\right)$
\triangleright increment or decrement, depending on value of $g\left(a_{i}\right)$ COUNT at index $h\left(a_{i}\right)$
On query j
\triangleright query: $\mathbf{F}[j]=$?
return $g(j) \times \operatorname{COUNT}[h(j)]$

Count Sketch

Algorithm : Count Sketch (k, ϵ, δ)

Pick a random $h:[n] \mapsto[k]$ from a 2-universal family \mathcal{H}
Pick a random $g:[n] \mapsto\{-1,1\}$ from a 2-universal family
COUNT $\leftarrow \operatorname{zEROS}(k)$
\triangleright sketch consists of k integers
On input a_{i}
$\operatorname{COUNT}\left[h\left(a_{i}\right)\right] \leftarrow \operatorname{COUNT}\left[h\left(a_{i}\right)\right]+g\left(a_{i}\right)$
\triangleright increment or decrement, depending on value of $g\left(a_{i}\right)$ COUNT at index $h\left(a_{i}\right)$
On query j
\triangleright query: $\mathrm{F}[j]=$?
return $g(j) \times \operatorname{COUNT}[h(j)]$

The Count Sketch

■ $k=3 / \epsilon^{2}$

- \tilde{f}_{j} : estimate for f_{j} - output of algorithm

The Count Sketch

- $k=3 / \epsilon^{2}$
- \tilde{f}_{j} : estimate for f_{j} - output of algorithm

Bounds on \tilde{f}_{j} :

$1 E\left(\tilde{f}_{j}\right)=f_{j}$

$$
\begin{aligned}
& \operatorname{COUNT}[h(j)]=\sum_{i \in[n]} f_{i} \cdot g(i) \cdot 1_{h(i)=h(j)} \\
& \tilde{f}_{j}=g(j) \sum_{i \in[n]} f_{i} \cdot g(i) 1_{h(i)=h(j)}=g(j)\left(f(j) g(j)+\sum_{i \in[n] \backslash j} f_{i} \cdot g(i) 1_{h(i)=h(j)}\right) \\
& =f(j)(g(j))^{2}+\sum_{i \in[n] \backslash j} f_{i} \cdot g(i) g(j) \cdot 1_{h(i)=h(j)}=f(j)+\sum_{i \in[n] \backslash j} f_{i} \cdot g(i) g(j) 1_{h(i)=h(j)} \\
& \Longrightarrow \mathbb{E}\left(\tilde{f}_{j}\right)=f_{j} \quad \triangleright \mathbb{E}\left(1_{h(i)=h(j)}\right)=\frac{1}{k} \text { and } \mathbb{E}(g(i) g(j))=0
\end{aligned}
$$

The Count Sketch

- $k=3 / \epsilon^{2}$
- \tilde{f}_{j} : estimate for f_{j} - output of algorithm

Bounds on \tilde{f}_{j} :

$1 E\left(\tilde{f}_{j}\right)=f_{j}$
$2 \operatorname{Var}\left(\tilde{f}_{j}\right) \leq \frac{1}{k}\|F\|_{2}$
\triangleright Read notes
$3 \operatorname{Pr}\left[\left|\tilde{f}_{j}-f_{j}\right| \geq \epsilon\|F\|_{2}\right] \leq 1 / 3$

- substitute $k=3 / \epsilon^{2}$ and use Chebychev inequality

Count Sketch

Probability Amplification
Algorithm : Count Sketch (k, ϵ, δ)
COUNT $\leftarrow \operatorname{ZEROS}(t \times k) \quad \triangleright$ sketch consists of t rows of k integers
Pick t random functions $h_{1}, \ldots, h_{t}:[n] \mapsto[k]$ from a 2-universal family
Pick t random functions $g_{1}, \ldots, g_{t}:[n] \mapsto\{-1,1\}$ from a 2 -uni. family On input a_{i} for $r=1$ to t do

$$
\begin{aligned}
\operatorname{COUNT}[r]\left[h_{r}\left(a_{i}\right)\right] \leftarrow \operatorname{COUNT}[r]\left[h_{r}\left(a_{i}\right)\right] & +g_{r}\left(a_{i}\right) \\
\triangleright & \text { inc } / \mathrm{dec} \operatorname{CouNT}[r] \text { at index } h_{r}\left(a_{i}\right)
\end{aligned}
$$

On query j
\triangleright query: $\mathrm{F}[j]=$?
return $\underset{1 \leq r \leq t}{\text { MEDIAN }} g_{r}(j) \times \operatorname{COUNT}[r]\left[h_{r}(j)\right]$

Count Sketch

Keep t unbiassed estimates, $t=\log (1 / \delta), k=3 / \epsilon^{2}$. Their median is a good estimate, unless at least $t / 2$ estimates are very bad

1 $E\left(\tilde{f}_{j}\right)=f_{j}$
$2\left|\tilde{f}_{j}-f_{j}\right| \leq \epsilon\|F\|_{2}$ with probability at least $1-\delta \triangleright$ Uses Chernoff bound
■ Count sketch is an $\left(\epsilon\|F\|_{2}, \delta\right)$ additive approximation algorithm

- Space required is $k \cdot t$ integers $=O\left(1 / \epsilon^{2} \log (1 / \delta) \log n\right)$ (plus constant)

AMS Sketch

Estimate F_{2} : AMS Algorithm

- The AMS Sketch (Alon, Mathias, Szegedy, 1996)
- A sketch to estimate F_{2} (paper has other algorithms for higher moments)

$$
\mathcal{S}=<a_{1}, a_{2}, a_{3}, \ldots, a_{m}>\quad a_{i} \in[n]
$$

f_{i} : frequency of i in $\mathcal{S} \quad \mathbf{F}=\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$
$F_{2}=\sum_{i=1}^{n} f_{i}^{2}$
\triangleright second frequency moment

Easy to compute if we store F
$\triangleright O(n)$ space
Can store $f_{1}+f_{2}+\ldots+f_{n}$
$\triangleright O(1)$ space
Also easy $\left(f_{1}+f_{2}+\ldots+f_{n}\right)^{2}$

Estimate F_{2} : AMS Algorithm

$F_{2}:=\sum_{i=1}^{n} f_{i}^{2}$
Can store $f_{1}+f_{2}+\ldots+f_{n}$ $\triangleright O(1)$ space
$\left(f_{1}+f_{2}+\ldots+f_{n}\right)^{2}$ can be computed by the following algorithm
Algorithm:
for each $a_{i} \in \mathcal{S}$

$$
x \leftarrow x+1
$$

return X^{2}
$X^{2}=\left(f_{1}+f_{2}+\ldots+f_{n}\right)^{2}$

Estimate F_{2} : AMS Algorithm

$$
F_{2}=\sum_{i=1}^{n} f_{i}^{2}=\underline{f_{1}^{2}+f_{2}^{2}+\ldots+f_{n}^{2}}
$$

\triangleright We want this

$$
\left(f_{1}+f_{2}+\ldots+f_{n}\right)^{2}
$$

\triangleright Easy but overestimate
$\left(f_{1}+f_{2}+f_{3}+f_{4}\right)^{2}=\underbrace{f_{1}^{2}+f_{2}^{2}+f_{3}^{2}+f_{4}^{2}}_{\text {error }}+\underbrace{2\left(f_{1} f_{2}+f_{1} f_{3}+f_{2} f_{3}+f_{1} f_{4}+f_{2} f_{4}+f_{3} f_{4}\right)}$

$$
\left(f_{1}-f_{2}+f_{3}-f_{4}\right)^{2}=f_{1}^{2}+f_{2}^{2}+f_{3}^{2}+f_{4}^{2}+2\left(-f_{1} f_{2}+f_{1} f_{3}-f_{2} f_{3}-f_{1} f_{4}+f_{2} f_{4}-f_{3} f_{4}\right)
$$

Estimate F_{2} : AMS Algorithm

Algorithm (AMS):
$g:[n] \rightarrow\{-1,+1\}$
for each $a_{i} \in \mathcal{S}$

$$
X \leftarrow X+g\left(a_{i}\right)
$$

return X^{2}
$X=f_{1} g(1)+f_{2} g(2)+\ldots+f_{n} g(n)$

Estimate F_{2} : AMS Algorithm

$$
X^{2}=\left(f_{1} g(1)+f_{2} g(2)+\ldots+f_{n} g(n)\right)^{2}
$$

$$
\begin{aligned}
\mathbb{E}\left[X^{2}\right] & =\mathbb{E}\left[\sum_{i}\left(f_{i} g(i)\right)^{2}\right]+\mathbb{E}\left[\sum_{i \neq j} f_{i} g(i) f_{j} g(j)\right] \\
& =\mathbb{E}\left[\sum_{i} f_{i}^{2}\right]+\mathbb{E}\left[\sum_{i \neq j} f_{i} f_{j} g(i) g(j)\right] \\
& =F_{2}+\sum_{i \neq j} f_{i} f_{j} \mathbb{E}[g(i) g(j)]=F_{2}
\end{aligned}
$$

$$
\mathbb{E}\left[X^{2}\right]=F_{2}
$$

Estimate F_{2} : AMS Algorithm

$X^{2}=\left(f_{1} g(1)+f_{2} g(2)+\ldots+f_{n} g(n)\right)^{2} \quad \mathbb{E}\left[X^{2}\right]=F_{2}$
$\operatorname{Var}\left(X^{2}\right)=\mathbb{E}\left[X^{4}\right]-\left(\mathbb{E}\left[X^{2}\right]\right)^{2}$
$\mathbb{E}\left[X^{4}\right]=\mathbb{E}\left[\sum_{i}\left(f_{i} g(i)\right)^{4}+6 \sum_{i \neq j}\left(f_{i} g(i)^{2} f_{j} g(j)\right)^{2}\right]+\ldots$
other terms: $\mathbb{E}[g(i) g(j) g(k) g(I)]=\mathbb{E}\left[g(i)^{2} g(j) g(k)\right]=\mathbb{E}\left[g(i)^{3} g(j)\right]=0$
\triangleright 4-wise independence
$\mathbb{E}\left[X^{4}\right]=\sum_{i} f_{i}^{4}+6 \sum_{i \neq j} f_{i}^{2} f_{j}^{2}$
$\operatorname{Var}\left(X^{2}\right)=\sum_{i} f_{i}^{4}+6 \sum_{i \neq j} f_{i}^{2} f_{j}^{2}-\left(\sum_{i} f_{i}^{2}\right)^{2}=4 \sum_{i \neq j} f_{i}^{2} f_{j}^{2} \leq 2 F_{2}^{2}$

Amplifying the probability of basic AMS Sketch

- Keep $k=8 / \epsilon^{2} \times \log (1 / \delta)$ estimates, $X_{1}, X_{2}, \ldots, X_{k}$

■ Return \bar{X} : median of $\log (1 / \delta)$ averages of groups of $8 / \epsilon^{2}$ estimates

Algorithm : AMS sketch to estimate F_{2} of $\mathcal{S}(\epsilon, \delta)$

Pick $k=8 / \epsilon^{2} \times \log (1 / \delta)$ random hash functions $g_{j}:[n] \rightarrow\{-1,+1\}$
$X \leftarrow \operatorname{zeros}(k)$
\triangleright sketch consists of k integer
On input a_{i}
for $j=1 \rightarrow k$ do

$$
X[j] \leftarrow X[j]+g_{j}\left(a_{i}\right)
$$

return \bar{X} : median of $\log (1 / \delta)$ means of groups of $8 / \epsilon^{2}$ estimates $\left(X[\cdot]^{2}\right)$

Amplifying the probability of basic AMS Sketch
■ Keep $k=8 / \epsilon^{2} \times \log (1 / \delta)$ estimates, $X_{1}, X_{2}, \ldots, X_{k}$
■ Return \bar{X} : median of $\log (1 / \delta)$ averages of groups of $2 / \epsilon^{2}$ estimates

$\square \mathbb{E}\left[X_{j}^{2}\right]=F_{2} \quad \operatorname{Var}\left(X_{j}^{2}\right) \leq 2 F_{2}^{2}$
■ $\mathbb{E}\left[\tilde{X}_{j}\right]=F_{2}$
$\operatorname{Var}\left(\tilde{X}_{j}\right) \leq \epsilon^{2} / 4 F_{2}^{2}$
■ $\operatorname{Pr}\left[\left|\tilde{X}_{j}-F_{2}\right| \geq \epsilon F_{2}\right] \leq \operatorname{Var}\left(\tilde{X}_{j}\right) / \epsilon^{2} F_{2}^{2}=1 / 4 \quad \triangleright$ Chebyshev Inequality

- $\operatorname{Pr}\left[\left|\bar{X}-F_{2}\right| \geq \epsilon F_{2}\right] \leq \delta$

The last inequality uses the Chernoff bound. For \bar{X} to deviate this much from F_{2} at least half of \tilde{X}_{j} have to deviate more than that

Linear Transformation View of AMS Sketch

Algorithm : AMS sketch to estimate F_{2} of \mathcal{S}

Pick k random hash functions $g:[n] \mapsto\{-1,+1\}$
$X \leftarrow \operatorname{zeros}(k)$
\triangleright sketch consists of 1 integer
On input a_{i}

$$
\begin{aligned}
& \text { for } j=1 \rightarrow k \text { do } \\
& \quad X[j] \leftarrow X[j]+g_{j}\left(a_{i}\right)
\end{aligned}
$$

$\mathbf{g}=$| $g(1)$ | $g(2)$ | \ldots | | $g(n)$ |
| :--- | :--- | :--- | :--- | :--- |

Linear Transformation View of AMS Sketch

Algorithm : AMS sketch to estimate F_{2} of \mathcal{S}

Pick k random hash functions $g:[n] \mapsto\{-1,+1\}$
$X \leftarrow \operatorname{zeros}(k)$
\triangleright sketch consists of 1 integer
On input a_{i}

$$
\begin{aligned}
& \text { for } j=1 \rightarrow k \text { do } \\
& \quad X[j] \leftarrow X[j]+g_{j}\left(a_{i}\right)
\end{aligned}
$$

$\mathbf{g}=$| +1 | -1 | \ldots | | +1 |
| :--- | :--- | :--- | :--- | :--- |

\boldsymbol{F}
f_{1}
f_{2}
\vdots
\vdots
f_{n}

$=X$

Linear Transformation View of AMS Sketch

Algorithm : AMS sketch to estimate F_{2} of \mathcal{S}

Pick k random hash functions $g:[n] \mapsto\{-1,+1\}$
$X \leftarrow \operatorname{zeros}(k)$
\triangleright sketch consists of 1 integer
On input a_{i}

$$
\begin{aligned}
& \text { for } j=1 \rightarrow k \text { do } \\
& \quad X[j] \leftarrow X[j]+g_{j}\left(a_{i}\right)
\end{aligned}
$$

$\mathbf{G}=$| +1 | -1 | \ldots | | +1 |
| :---: | :---: | :---: | :---: | :---: |
| -1 | -1 | \ldots | | -1 |

Linear Transformation View of AMS Sketch

Algorithm : AMS sketch to estimate F_{2} of \mathcal{S}

Pick k random hash functions $g:[n] \mapsto\{-1,+1\}$
$X \leftarrow \operatorname{zeros}(k)$
\triangleright sketch consists of 1 integer
On input a_{i}

$$
\begin{aligned}
& \text { for } j=1 \rightarrow k \text { do } \\
& X[j] \leftarrow X[j]+g_{j}\left(a_{i}\right)
\end{aligned}
$$

$\mathbf{G}=$| +1 | -1 | \ldots | | +1 |
| :---: | :---: | :---: | :---: | :---: |
| -1 | -1 | \ldots | | -1 |
| \vdots | | \ldots | | \vdots |
| -1 | +1 | \ldots | | -1 |

\mathbf{F}
f_{1}
f_{2}
\vdots
\vdots
f_{n}

Estimate F_{2} : AMS Algorithm

$\mathbf{G}=$| +1 | -1 | \ldots | | +1 |
| :---: | :---: | :---: | :---: | :---: |
| -1 | -1 | \ldots | | -1 |
| \vdots | | \ldots | | \vdots |
| -1 | +1 | \ldots | | -1 |

\mathbf{F}
f_{1} f_{2} \vdots \vdots f_{n}

$$
\bar{X}=\frac{1}{k} \sum_{i=1}^{k} X_{i}^{2} \quad \operatorname{Pr}\left[\left|\bar{X}-F_{2}\right|>\epsilon F_{2}\right] \leq \delta
$$

With probability at leat $1-\delta$

$$
\begin{aligned}
(1-\epsilon) \sum_{i=1}^{n} f_{i}^{2} & <\frac{1}{k} \sum_{i=1}^{k} X_{i}^{2}<(1+\epsilon) \sum_{i=1}^{n} f_{i}^{2} \\
\sqrt{(1-\epsilon)}\|F\|_{2} & <\frac{1}{\sqrt{k}}\|X\|_{2}<\sqrt{(1+\epsilon)}\|F\|_{2}
\end{aligned}
$$

Estimate F_{2} : AMS Algorithm

$\mathbf{G}=$| +1 | -1 | \ldots | | +1 |
| :---: | :---: | :---: | :---: | :---: |
| -1 | -1 | \ldots | | -1 |
| \vdots | | | | \vdots |
| -1 | +1 | \ldots | | -1 |

\mathbf{F}	\mathbf{X}
f_{1} f_{2} \vdots \vdots	X_{1} X_{2} \vdots X_{k}

$$
\sqrt{(1-\epsilon)}\|F\|_{2}<\frac{1}{\sqrt{k}}\|X\|_{2}<\sqrt{(1+\epsilon)}\|F\|_{2}
$$

G is a random linear transformation reduces the dimension of F while preserving its ℓ_{2} norm

Since G is linear it is easy to see that given $U, V \in \mathcal{R}^{n}$

$$
\text { w.h.p } \quad\left\|\frac{1}{\sqrt{k}} \mathbf{G} U\right\|_{2}-\left\|\frac{1}{\sqrt{k}} \mathbf{G} V\right\|_{2} \sim\|U-V\|_{2}
$$

Johnson-Lindenstrauss Lemma

- Given $V=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\} \subset \mathcal{R}^{d}$

■ For any $\epsilon \in(0,1 / 2)$, there is a linear map $f: \mathcal{R}^{d} \mapsto \mathcal{R}^{k}$
$■ k=c \log n / \epsilon^{2}$, such that for any $\mathbf{u}, \mathbf{v} \in V$

$$
(1-\epsilon)\|\mathbf{u}-\mathbf{v}\|_{2} \leq\|f(\mathbf{u})-f(\mathbf{v})\|_{2} \leq(1+\epsilon)\|\mathbf{u}-\mathbf{v}\|_{2}
$$

- This map can be obtained very easily

■ Let \mathbf{M} be a $k \times d$ matrix, with $M_{i j} \in \mathcal{N}(0,1)$, then

$$
f(\mathbf{u})=\frac{1}{\sqrt{k}} \mathbf{M} \mathbf{u}
$$

[^0]: ${ }^{1}$ Based on Han \& Kamber, Data Mining Concepts \& Techniques, 2nd Ed.

[^1]: ${ }^{2}$ R. Motwani, PODS (2002)

[^2]: ${ }^{3}$ Based on Han \& Kamber, Data Mining Concepts \& Techniques, 2nd Ed.

[^3]: ${ }^{4}$ Madden et.al. (2002)

[^4]: ${ }^{5}$ Fred Stinger (AT\&T) FloCon (2017) Netflow Collection and Analysis ..

