
Big Data Analytics

Data Streams

Stream: Motivation and Applications

Data Stream: Model of Computation

Synopsis and Synopsis based exact stream computation

Sliding Window, Sample, Histogram and Wavelets

Linear Sketches

Count-Min Sketch

Count Sketch

AMS Sketch

Imdad ullah Khan

Imdad ullah Khan (LUMS) Data Stream 1 / 73

Data Stream Model

Imdad ullah Khan (LUMS) Data Stream 2 / 73

Data Stream

Stream Processing: Analytics on a continuous stream of data items

The goal is to draw meaningful analytics from the stream subject to

Single Pass: process each item exactly once (common requirement)

Limited Memory: poly-logarithmic space (in length of stream or
domain)

Constant per item processing: near real time

Arbitrary arrival order: No assumption on distribution or order of
items

Imdad ullah Khan (LUMS) Data Stream 3 / 73

Outline

Characteristics of data streams 1

Huge volumes of continuous data, possibly infinite

Fast changing and requires fast, real-time response

Data stream captures nicely our data processing needs of today

Random access is expensive

Single scan algorithm (can only have one look)

Store only the summary of the data seen thus far

Most stream data are at pretty low-level or multi-dimensional in
nature, needs multi-level and multi-dimensional processing

1Based on Han & Kamber, Data Mining Concepts & Techniques, 2nd Ed.
Imdad ullah Khan (LUMS) Data Stream 4 / 73

Stream Model of Computation

Motwani, PODS (2002)

Imdad ullah Khan (LUMS) Data Stream 5 / 73

Data Stream

Stream data is fundamentally different than traditional datasets2

Traditional Data (DBMS) Data Stream

Persistent storage Transient stream(s)

One-time query Continuous query

Random access Sequential access

Unbounded disk storage Bounded main memory

Only current state matters Arrival-order is critical

No real time services Real-time requirements

Low update rate Possibly multi-GB arrival rate (dynamic & fast)

Mixed granularity Data at fine granularity

2R. Motwani, PODS (2002)
Imdad ullah Khan (LUMS) Data Stream 6 / 73

Data Stream Processing Model

Since streams are long (potentially unbounded) exact algorithms with
limited memory are possible only for a few simple queries

∴ we design approximate algorithms (they often suffice)

(ϵ, δ)-approximate algorithm

A : an algorithm to compute f (S) ▷ (a function of stream)

A(S) : output of A on S

For ϵ > 0, 0 ≤ δ ≤ 1 , A is an (ϵ, δ)-approximation algorithm if

Pr
[
|A(S)− f (S)| > ϵf (S)

]
≤ δ

Imdad ullah Khan (LUMS) Data Stream 7 / 73

Data Stream

Memory

GigaBytes

Continuous Data Stream
potentially unbounded

Possibly multiple
(parallel) streams

Query Q
Approximate Answer

probabilistic guarantees

Stream
Processing

Engine

KiloBytes

Application

to Q with

. . .

Imdad ullah Khan (LUMS) Data Stream 8 / 73

Data Stream: Applications

Imdad ullah Khan (LUMS) Data Stream 9 / 73

Application Domains

Stream data comes in many domains and has various applications3

Telecommunication calling records

Business: credit card transaction flows

Network monitoring and traffic engineering

Financial market: stock exchange

Engineering & industrial processes: power supply & manufacturing

Sensor, monitoring & surveillance: video streams, RFIDs

Security monitoring

Web logs and Web page click streams

Massive data sets (even saved but random access is too expensive)

3Based on Han & Kamber, Data Mining Concepts & Techniques, 2nd Ed.
Imdad ullah Khan (LUMS) Data Stream 10 / 73

Applications: Sensor Networks

source: Wikipedia

Sensor nodes collect unlimited amount of data

have very limited computation power and memory

Limited battery power constrain communication of all collected data

1 bit transmission consumes power ∼ to executing 800 instructions4

Streaming algorithm deployed onto nodes are ideally suited for
drawing analytics from sensed data

4Madden et.al. (2002)
Imdad ullah Khan (LUMS) Data Stream 11 / 73

Application: Network Monitoring & Management

source: Wikipedia

Network Monitoring and Management

NetFlow: A Cisco tool for network administrators (performance metrics, security
analysis, detection and forensics). For each Flow it reports (logs)

Network Interface

Source/Destination IP Addresses

IP Protocol

Source/Destination port

TCP Flags

Total packets/bytes in flow

AT&T Processes over 567 billion flow records per day5 ▷ ∼ 15 PBytes

Detects and characterizes approximately 500 anomalies per day

5
Fred Stinger (AT&T) FloCon (2017) Netflow Collection and Analysis ..

Imdad ullah Khan (LUMS) Data Stream 12 / 73

Application: Network Monitoring & Management

Network Monitoring and Management

Application Area

Traffic Engineering

Traffic Monitoring

Volume estimation & analysis

Load Balancing

Efficient Resource Utilization

(D)DOS Attack Detection

SLA Voilation

Queries

How many bytes sent b/w IP-1 and IP-2?

How many IP addresses are active?

Top 100 IP’s by traffic volume

Average duration of IP session?

Meidan number of bytes in each IP session

Find sessions that transmitted > 1k bytes

Find sessions with duration > twice average

List all IP’s with a sudden spike in traffic

List all IP involved in more than 1k sessions

Imdad ullah Khan (LUMS) Data Stream 13 / 73

Application: Click Stream Analysis

Web Click Stream Analysis: tracking and analysis of websites visits

Figure credit: Alex Smola @Yahoo research & ANU

Stream of user clicks on websites (tracked via cookies)

Find hot links, frequent IP’s, click probability

Enhanced customer experience & conversion rates

Digital marketing – Up-selling and cross-selling

Imdad ullah Khan (LUMS) Data Stream 14 / 73

Application: Query Stream Analysis

Search Queries Stream:

Figure credit: Alex Smola @Yahoo research & ANU

Discover trends and patterns

Relevant keywords for website

Estimate competition scores or difficulty

Estimate keywords CPC (cost per click)

Imdad ullah Khan (LUMS) Data Stream 15 / 73

Application: AMI

Energy consumption Analysis:

Electricity consumption data from AMI (Automatic Metering Interface)

Find average hourly load, load surges, anamoly

Short term load forecast (total or for individual consumer)

Identify faults, drops, failures

Imdad ullah Khan (LUMS) Data Stream 16 / 73

Application: Time Series

Financial Time Series:

Time stamped real time (multiple) stock data

Need near real time prediction

Algorithmic Trading

Imdad ullah Khan (LUMS) Data Stream 17 / 73

Application: Query Execution Plan

Query Execution Plan can be optimized using a synopsis of the database

Suppose we have data of n = 1M people in a database and the query

select * from Table where 25 ≤ age ≤ 35 and 54 ≤ weight ≤ 60

Runtime of brute force execution is 2n comparisons

Suppose we have the following synopsis of distribution of an attribute

Age Freq

0− 10 7%

11− 20 8%

21− 30 10%

31− 40 12%

41− 50 13%

51− 60 25%

61− 70 20%

71+ 5%

First filter on Age, then on weight

Runtime: 1.22n

Weight Freq.

0− 20 20%

21− 40 25%

41− 60 10%

61− 80 15%

81+ 30%

First filter on Weight, then on age

Runtime: 1.1n

Imdad ullah Khan (LUMS) Data Stream 18 / 73

Synopsis

Imdad ullah Khan (LUMS) Data Stream 19 / 73

Stream Model of Computation

Stream S := a1, a2, a3, . . . , am ▷ m may be unknown

Each ai ∈ [n]

Goal: Compute a function of the stream S (e.g. mean, median, number of
distinct elements, frequency moments..)

Subject to

Single pass, read each element of S only once sequentially

Per item processing time O(1)

Use memory polynomial in O(1/ϵ, 1/δ, log n)

Return (ϵ, δ)-randomized approximate solution

Imdad ullah Khan (LUMS) Data Stream 20 / 73

Data Stream: Synopsis

Fundamental Methodology: Keep a synopsis of the stream and answer
query based on it. Update synopsis after examining each item in O(1)

Synopsis: Succinct summary of the stream (so far) (poly-log bits)

Families of Synopsis

Sliding Window

Random Sample

Histogram

Wavelets

Sketch Memory

GigaBytes

Continuous Data Stream
potentially unbounded

Possibly multiple
(parallel) streams

Query Q
Approximate Answer

probabilistic guarantees

Stream
Processing

Engine

KiloBytes

Application

to Q with

. . .

Imdad ullah Khan (LUMS) Data Stream 21 / 73

Synopsis Based Exact Stream Computation

Length of S (m): Computed by storing a running counter

Sum of S: Computed by storing a running sum

Mean of S: Computed from sum and length of S

Variance of S: Computed from sum, sum of square, and length of S

Var(X) = E (X 2)− (E (X))2

Imdad ullah Khan (LUMS) Data Stream 22 / 73

Synopsis Based Exact Stream Computation

Missing Element

n − 1 unique integers are streamed in from [n]

Find the missing integer?

Trivial to find it if we use n bits

A better solution is to save sum S of the stream ▷ O(log n) bits

The missing integer is n(n+1)/2− S

Can do it in exactly log n bits by storing the parity sum of each bits

The final parity sum is the missing integer

Imdad ullah Khan (LUMS) Data Stream 23 / 73

Synopsis Based Exact Stream Computation

Two Missing Elements

n − 2 unique integers are streamed in from [n]

Find the missing integers?

Trivial to find it if we use n bits

Save sum of 1st and 2nd powers of stream elements ▷ O(log n) bits

The missing integers are solution to 2 unknowns and two equations

Readily generalizes to k missing elements

Imdad ullah Khan (LUMS) Data Stream 24 / 73

Data Stream: Sliding Window

Synopsis: Sliding Window

Keep the last w elements as synopsis (w is length of window)

On input ai (i ≥ w), ai−w expires and ai added to window

Can be used for queries like mean, sum, variance, count of
pre-specified element(s) (e.g. non-zero, even)

Extended to compute approximate median, and k-median

a1 a2 a3 a4

Imdad ullah Khan (LUMS) Data Stream 25 / 73

Data Stream: Random Sample

Synopsis: Random Sample

Keep a “representative” subset of the stream

Approximately compute query answer on sample (with appropriate
scaling etc.)

Random SampleStream elements in an arbitrary order

Imdad ullah Khan (LUMS) Data Stream 26 / 73

Data Stream: Random Sample

Sample a random element from array A of length n ▷ A[i] with prob 1/n

Generate a random number r ∈ [0, n] ▷ r ← rand()× n

Return A [⌈r⌉]
a1 a2 a4 a12a11

0 1 2 3 4 5 6 7 8 9 10 11 12

a3

r

Sample random element (by weight) from array A ▷ A[i] with prob. wi/W

Generate a random number r ∈ [0,
∑n

j=1 wi] ▷ r ← rand()×Wn

Return A [i] if Wi−1 ≤ r < Wi

a1 a2 a4 a12a11a3

w1

0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12

r

w2 w3 w4 w11 w12

Wi =
∑i

j=1wj

Imdad ullah Khan (LUMS) Data Stream 27 / 73

Data Stream: Random Sample

Sample a random element from the stream S ▷ ai with prob. 1/m

If m is known, use algorithm for sampling from array. For unknown m

Algorithm : Reservoir Sampling (S)
R ← a1 ▷ R (reservoir) maintains the sample

for i ≥ 2 do
Pick ai with probability 1/i
Replace with current element in R

Prob. that ai is in the sample Rm (m: stream length or query time)

= Pr that ai was selected at time i︸ ︷︷ ︸
1

i

×Pr that ai survived in R until time m︸ ︷︷ ︸
m∏

j=i+1

(
1− 1

j

)

=
1

i
× i

i+ 1
× i+ 1

i+ 2
× i+ 2

i+ 3
× . . . × m− 2

m− 1
× m− 1

m
=

1

m

Imdad ullah Khan (LUMS) Data Stream 28 / 73

Data Stream: Random Sample

Sample k random elements from the stream S ▷ ai with prob. k/m

Algorithm : Reservoir Sampling (S, k)
R ← a1, a2, . . . , ak ▷ R (reservoir) maintains the sample

for i ≥ k + 1 do
Pick ai with probability k/i
If ai is picked, replace with it a randomly chosen element in R

Prob. that ai is in the sample Rm (m: stream length or query time)

= Pr that ai was selected at time i︸ ︷︷ ︸
k

i

×Pr that ai survived in R untill time m︸ ︷︷ ︸
m∏

j=i+1

(
1−

(
k

j
× 1

k

))

=
k

i
× i

i+ 1
× i+ 1

i+ 2
× i+ 2

i+ 3
× . . . × m− 2

m− 1
× m− 1

m
=

k

m

Imdad ullah Khan (LUMS) Data Stream 29 / 73

Data Stream: Histogram and Wavelets

Synopsis: Histogram

The synopsis is some summary statistics (e.g. frequency, mean) of
groups (subsets, buckets) in streams values

Equi-width histogram

Equidepth histogram

V -optimal histogram

Multi-dimensional histogram

Synopsis: Wavelets

Essentially histograms of features (coefficients) in the frequency
domain representation of the stream

Imdad ullah Khan (LUMS) Data Stream 30 / 73

Linear Sketch for Frequency

Imdad ullah Khan (LUMS) Data Stream 31 / 73

Data Stream: Linear Sketch

Sample is a general purpose synopsis

Process sample only – no advantage from observing the whole stream

Sketches are specific to a particular purpose (query)

Sketches (also histograms and wavelets) take advantage from the fact
the processor see the whole stream (though can’t remember all)

Imdad ullah Khan (LUMS) Data Stream 32 / 73

Data Stream: Linear Sketch

A linear sketch interprets the stream as defining the frequency vector

figure credit: Andoni@Columbia

Often we are interested in functions of the frequency vector from a stream

S : a1, a2, a3, a4, . . . , am

ai ∈ [n]

f1 f2 f3 fn. . .F :

fj = |{ai ∈ S : ai = j}| (frequency of j in S)

S : 2, 5, 6, 7, 8, 2, 1, 2, 7, 5, 5, 4, 2, 8, 8, 9, 5, 6, 4, 4, 2, 5, 5

. . .
1 2 3 n

F : 1 5 0

1 2 3 94 5 76 8

3 6 2 2 3 1

Imdad ullah Khan (LUMS) Data Stream 33 / 73

Stream: Frequency Moments

S = < a1, a2, a3, . . . , am > ai ∈ [n]

fi : frequency of i in S F = {f1, f2, . . . , fn}

F0 :=
n∑

i=1
f 0i ▷ number of distinct elements

F1 :=
n∑

i=1
fi ▷ length of stream, m

F2 :=
n∑

i=1
f 2i ▷ second frequency moment

Imdad ullah Khan (LUMS) Data Stream 34 / 73

Data Stream: Linear Sketch

Synopsis: Linear Sketches

Linear sketch is a synopsis that can be computed as a linear transform of F

Best suited for data streams, highly parallelizable

Very good for our problems of computing norms of F

Can be readily extended to variations of the basic stream model

...

polylog(n,m) sketch matrix

F

sketch vector

Imdad ullah Khan (LUMS) Data Stream 35 / 73

Data Stream Model: Time Series Model

Time Series Model

Every stream item gives the current frequency of an element (F[ai])

Stream items are ai = ⟨j , ci ⟩ and it means F[j]← ci

For stream S : ⟨7, 3⟩, ⟨3, 3⟩, ⟨2, 9⟩, ⟨7, 2⟩, ⟨9, 1⟩, ⟨3, 1⟩

The final frequency vector will be

F =
1 2 3 4 5 6 7 8 9

0 9 1 0 0 0 2 0 1

Used to measure link-bandwidth or energy consumption over time

Very useful if there are multiple streams (e.g. stock prices for
different companies

Imdad ullah Khan (LUMS) Data Stream 36 / 73

Data Stream Model: Cash-Register Model

Cash-Register Model aka Arrivals-Only Stream

Every stream item is an increment to a frequency.

Stream items are ai = ⟨j , ci ⟩ and it means F[j]← F[j] + ci ci ≥ 1

For stream S : ⟨7, 3⟩, ⟨3, 3⟩, ⟨2, 9⟩, ⟨7, 2⟩, ⟨9, 1⟩, ⟨3, 1⟩

The final frequency vector will be

F =
1 2 3 4 5 6 7 8 9

0 9 4 0 0 0 5 0 1

Can be used e.g. for packet counts in every flow

Imdad ullah Khan (LUMS) Data Stream 37 / 73

Data Stream Model: Turnstile Model

Turnstile Model aka Arrivals and Departures Stream

Every stream item is an update to a frequency

Stream items are ai = ⟨j , ci ⟩ and it means F[j]← F[j] + ci ci ≥ 1

For stream S : ⟨7, 3⟩, ⟨3, 3⟩, ⟨2, 9⟩, ⟨7,−2⟩, ⟨9, 1⟩, ⟨3,−1⟩

The final frequency vector will be

F =
1 2 3 4 5 6 7 8 9

0 9 2 0 0 0 1 0 1

Generally, model has restriction of F[·] ≥ 0

Imdad ullah Khan (LUMS) Data Stream 38 / 73

Universal hash functions

Hash functions/table is an efficient way to implement the Dictionary adt

Hash functions map keys A ⊂ U to m buckets labeled {0, 1, 2, . . . ,m − 1}
A is not known in advance and |A| = n

Desired properties from hashing

Fewer collisions

Small range (m)

Small space complexity to store hash function

Easy to evaluate hash value for any key

...

...

1

2

3

n

1

2

3

m

A family of hash functions H is 2-universal if

for any distinct keys x , y ∈ U , Pr
h∈R H

[
h(x) = h(y)

]
≤ 1

m

Source of randomness is picking h (at random) from the family

Imdad ullah Khan (LUMS) Data Stream 39 / 73

Universal hash functions

A family of hash functions H is 2-universal if

for any distinct keys x , y ∈ U , Pr
h∈R H

[
h(x) = h(y)

]
≤ 1

m

Linear Congruential Generators for U = Z

Pick a prime number p > m

For any two integers a and b (1 ≤ a ≤ p − 1), (0 ≤ b ≤ p − 1)

A hash function ha,b : U 7→ [m] is defined as

ha,b(x) = (ax + b) (mod p) (mod m)

H := {ha,b : 1 ≤ a ≤ p − 1 , 0 ≤ b ≤ p − 1} is 2-universal

Picking a random h ∈ H amounts to picking random a and b

Imdad ullah Khan (LUMS) Data Stream 40 / 73

Count-Min Sketch

Imdad ullah Khan (LUMS) Data Stream 41 / 73

Count-Min Sketch

Count-Min sketch (Cormode & Muthukrishnan 2005) for frequency estimates

Cannot store frequency of every elements

Store total frequency of random groups (elements in hash buckets)

Algorithm : Count-Min Sketch (k , ϵ, δ)

count← zeros(k) ▷ sketch consists of k integers

Pick a random h : [n] 7→ [k] from a 2-universal family H
On input ai

count[h(ai)]← count[h(ai)] + 1 ▷ increment count at index h(ai)

On query j ▷ query: F[j] =?

return count[h(j)]

Imdad ullah Khan (LUMS) Data Stream 42 / 73

Count-Min Sketch

Algorithm : Count-Min Sketch (k, ϵ, δ)

count← zeros(k) ▷ sketch consists of k integers

Pick a random h : [n] 7→ [k] from a 2-universal family H
On input ai

count[h(ai)]← count[h(ai)] + 1 ▷ increment count at index h(ai)

On query j ▷ query: F[j] =?
return count[h(j)]

S : 2, 5, 6, 7, 8, 2, 1, 2, 7, 5, 5, 4, 2, 8, 8, 9, 5, 6, 4, 4, 2, 5, 5

F :

count :

1 5 0

1 2 3 94 5 76 8

3 6 2 2 3 1

1 2 3

1 + 2 3 + 6
5 + 2
+3 + 1

Sketch

True
Frequencies

Mapping by

h : {1, 2, . . . , 8, 9} 7→ {1, 2, 3}

Imdad ullah Khan (LUMS) Data Stream 43 / 73

Count-Min Sketch

f1 f2 f3 fn. . .F :

fj = |{ai ∈ S : ai = j}| (frequency of j in S)

. . .
1 2 3 n

1 2 3 4 5

h(·)

f4

4

f1
+
fn

f3

f4

f2
++count

k = 2/ϵ

Large k means better estimate (smaller groups) but more space

f̃j : estimate for fj – output of algorithm

Imdad ullah Khan (LUMS) Data Stream 44 / 73

Count-Min Sketch

k = 2/ϵ

Large k means better estimate but more space

f̃j : estimate for fj – output of algorithm

Bounds on f̃j : (idea)
f1 f2 f3 fn. . .F :

fj = |{ai ∈ S : ai = j}| (frequency of j in S)

. . .
1 2 3 n

1 2 3 4 5

h(·)

f4

4

f1
+
fn

f3

f4

f2
++count

F
1 2 3 n

fr
eq
u
en

cy

.

. . .

h(·)

Bad caseGood case

Sketchcount :

Imdad ullah Khan (LUMS) Data Stream 45 / 73

Count-Min Sketch

k = 2/ϵ

Large k means better estimate but more space

f̃j : estimate for fj – output of algorithm

Bounds on f̃j : (idea)
f1 f2 f3 fn. . .F :

fj = |{ai ∈ S : ai = j}| (frequency of j in S)

. . .
1 2 3 n

1 2 3 4 5

h(·)

f4

4

f1
+
fn

f3

f4

f2
++count

1 f̃ ≥ fj
Other elements that hash to h(j) contribute to f̃j

2 Pr
[
f̃j ≤ fj + ϵ∥F∥1

]
≥ 1

2

Xj = f̃j − fj ▷ Excess in f̃j (error)

Xj =
∑

i∈[n]\j fi · 1h(i)=h(j) ▷ 1condition is indicator of condition

E (Xj) = E
(∑

i∈[n]\j

fi · 1h(i)=h(j)

)
=

∑
i∈[n]\j

fi ·
1

k
≤

∑
i∈[n]\j

∥F∥1 ·
ϵ

2

By Markov inequality we get the bound

Imdad ullah Khan (LUMS) Data Stream 46 / 73

Count-Min Sketch

Idea: Amplify the probability of the basic count-min sketch

Keep t over-estimates, t = log(1/δ), k = 2/ϵ and return their minimum

Unlikely that all t functions hash j with very frequent elements

Algorithm : Count-Min Sketch (k , ϵ, δ)

count← zeros(t × k) ▷ sketch consists of t rows of k integers

Pick t random functions h1, . . . , ht : [n] 7→ [k] from a 2-universal family

On input ai

for r = 1 to t do

count[r][hr (ai)]← count[r][hr (ai)] + 1
▷ increment count[r] at index hr (ai)

On query j ▷ query: F[j] =?

return min
1≤r≤t

count[r][hr (j)]

Imdad ullah Khan (LUMS) Data Stream 47 / 73

Count-Min Sketch

1

2

3

9

4

5

7

6

8

1

2

3

1

2

3

h1(·)h2(·) S : 2, 5, 6, 7, 8, 2, 1, 2, 7, 5, 5, 4, 2, 8, 8, 9, 5, 6, 4, 4, 2, 5, 5

count :

1 2 3

0 + 1 + 2 3 + 6
5 + 2
+3 + 1

Sketch

h1(·)

h2(·)

F : 1 5 0

1 2 3 94 5 76 8

3 6 2 2 3 1
True
Frequencies

1 + 5 + 6 3 + 3 + 10 + 2 + 2

1 2 3 k
count[1][·] +1
count[2][·] +1
count[3][·] +1

...
count[t][·] +1

ht(a)h1(a)

On input a

On query a mini count[i][hi(a)]

Imdad ullah Khan (LUMS) Data Stream 48 / 73

Count-Min Sketch

1 f̃j ≥ fj

For every r , other elements that hash to hr (j) contribute to f̃j

2 f̃j ≤ fj + ϵ∥F∥1 with probability at least 1− δ

Xjr : contribution of other elements to Count[r][hr (j)]

Pr
[
Xjr ≥ ϵ∥F∥1

]
≤ 1

2 for k = 2/ϵ

The event f̃j ≥ fj + ϵ∥F∥1 is ∀ 1 ≤ r ≤ t Xjr ≥ ϵ∥F∥1

Pr
[
∀ r Xjr ≥ ϵ∥F∥1

]
≤

(
1
2

)t
t = log(1δ) =⇒ Pr

[
∀ r Xjr ≥ ϵ∥F∥1

]
≤

(
1
2

)log 1/δ
= δ

Count-Min sketch is an (ϵ∥F∥1, δ)-additive approximation algorithm

Space required is k · t integers = O(1/ϵ log(1/δ) log n) (plus constant)

Imdad ullah Khan (LUMS) Data Stream 49 / 73

The Count Sketch

Imdad ullah Khan (LUMS) Data Stream 50 / 73

The Count Sketch

In Count-Min sketch error in frequency estimate accumulates (group total)

The Count Sketch ▷ Charikar, Chen, Farach-Colton (2002)

A frequency estimate where errors in a group cancel each other

Algorithm : Count Sketch (k , ϵ, δ)

Pick a random h : [n] 7→ [k] from a 2-universal family H
Pick a random g : [n] 7→ {−1, 1} from a 2-universal family

count← zeros(k) ▷ sketch consists of k integers

On input ai

count[h(ai)]← count[h(ai)] + g(ai)

▷ increment or decrement, depending on value of g(ai) count at index h(ai)

On query j ▷ query: F[j] =?

return g(j)× count[h(j)]

Imdad ullah Khan (LUMS) Data Stream 51 / 73

Count Sketch

Algorithm : Count Sketch (k, ϵ, δ)

Pick a random h : [n] 7→ [k] from a 2-universal family H
Pick a random g : [n] 7→ {−1, 1} from a 2-universal family

count← zeros(k) ▷ sketch consists of k integers

On input ai
count[h(ai)]← count[h(ai)] + g(ai)

▷ increment or decrement, depending on value of g(ai) count at index h(ai)

On query j ▷ query: F[j] =?

return g(j)× count[h(j)]

S : 2, 5, 6, 7, 8, 2, 1, 2, 7, 5, 5, 4, 2, 8, 8, 9, 5, 6, 4, 4, 2, 5, 5

F :

count :

1 5 0

1 2 3 94 5 76 8

3 6 2 2 3 1

1 2 3

+1 + 2 +3− 6
+5− 2
−3− 1

Sketch

True
Frequencies

Mapping by

h : {1, 2, . . . , 8, 9} 7→ {1, 2, 3}

+1

−1

1

2

3

9

4

5

7

6

8

g(·)

Imdad ullah Khan (LUMS) Data Stream 52 / 73

The Count Sketch

f1 f2 f3 fn. . .F :

fj = |{ai ∈ S : ai = j}| (frequency of j in S)

. . .
1 2 3 n

1 2 3 4 5

count

h(·)

f4

4

±f1
+

g(n)fn

g(3)f3

±f4

±f2
++

k = 3/ϵ2

f̃j : estimate for fj – output of algorithm

Imdad ullah Khan (LUMS) Data Stream 53 / 73

The Count Sketch

k = 3/ϵ2

f̃j : estimate for fj – output of algorithm

Bounds on f̃j : f1 f2 f3 fn. . .F :

fj = |{ai ∈ S : ai = j}| (frequency of j in S)

. . .
1 2 3 n

1 2 3 4 5

count

h(·)

f4

4

±f1
+

g(n)fn

g(3)f3

±f4

±f2
++

1 E (f̃j) = fj

count[h(j)] =
∑

i∈[n] fi · g(i) · 1h(i)=h(j)

f̃j = g(j)
∑
i∈[n]

fi · g(i) 1h(i)=h(j) = g(j)
(
f (j)g(j) +

∑
i∈[n]\j

fi · g(i) 1h(i)=h(j)

)

= f (j)(g(j))2 +
∑

i∈[n]\j
fi · g(i)g(j) · 1h(i)=h(j) = f (j) +

∑
i∈[n]\j

fi · g(i)g(j) 1h(i)=h(j)

=⇒ E(f̃j) = fj ▷ E(1h(i)=h(j)) =
1
k and E(g(i)g(j)) = 0

Imdad ullah Khan (LUMS) Data Stream 54 / 73

The Count Sketch

k = 3/ϵ2

f̃j : estimate for fj – output of algorithm

Bounds on f̃j : f1 f2 f3 fn. . .F :

fj = |{ai ∈ S : ai = j}| (frequency of j in S)

. . .
1 2 3 n

1 2 3 4 5

count

h(·)

f4

4

±f1
+

g(n)fn

g(3)f3

±f4

±f2
++

1 E (f̃j) = fj

2 Var(f̃j) ≤ 1
k ∥F∥2 ▷ Read notes

3 Pr
[
|f̃j − fj | ≥ ϵ∥F∥2

]
≤ 1/3

substitute k = 3/ϵ2 and use Chebychev inequality

Imdad ullah Khan (LUMS) Data Stream 55 / 73

Count Sketch

Probability Amplification

Algorithm : Count Sketch (k , ϵ, δ)

count← zeros(t × k) ▷ sketch consists of t rows of k integers

Pick t random functions h1, . . . , ht : [n] 7→ [k] from a 2-universal family

Pick t random functions g1, . . . , gt : [n] 7→ {−1, 1} from a 2-uni. family

On input ai

for r = 1 to t do

count[r][hr (ai)]← count[r][hr (ai)] + gr (ai)
▷ inc/dec count[r] at index hr (ai)

On query j ▷ query: F[j] =?

return median
1≤r≤t

gr (j)× count[r][hr (j)]

Imdad ullah Khan (LUMS) Data Stream 56 / 73

Count Sketch

Keep t unbiassed estimates, t = log(1/δ), k = 3/ϵ2. Their median is a
good estimate, unless at least t/2 estimates are very bad

1 2 3 k
count[1][·] −1
count[2][·] +1
count[3][·] +1

...
count[t][·] −1

ht(a)h1(a)

On input a

On query a medi gi(a) count[i][hi(a)]

1 E (f̃j) = fj

2 |f̃j − fj | ≤ ϵ∥F∥2 with probability at least 1− δ ▷ Uses Chernoff bound

Count sketch is an (ϵ∥F∥2, δ) additive approximation algorithm

Space required is k · t integers = O(1/ϵ2 log(1/δ) log n) (plus constant)

Imdad ullah Khan (LUMS) Data Stream 57 / 73

AMS Sketch

Imdad ullah Khan (LUMS) Data Stream 58 / 73

Estimate F2 : AMS Algorithm

The AMS Sketch (Alon, Mathias, Szegedy, 1996)

A sketch to estimate F2 (paper has other algorithms for higher moments)

S =< a1, a2, a3, . . . , am > ai ∈ [n]

fi : frequency of i in S F = {f1, f2, . . . , fn}

F2 =
n∑

i=1
f 2i ▷ second frequency moment

Easy to compute if we store F ▷ O(n) space

Can store f1 + f2 + . . .+ fn ▷ O(1) space

Also easy (f1 + f2 + . . .+ fn)
2

Imdad ullah Khan (LUMS) Data Stream 59 / 73

Estimate F2 : AMS Algorithm

F2: =
n∑

i=1
f 2i

Can store f1 + f2 + . . .+ fn ▷ O(1) space

(f1 + f2 + . . .+ fn)
2 can be computed by the following algorithm

Algorithm:

for each ai ∈ S
X ← X + 1

return X 2

X 2 = (f1 + f2 + . . .+ fn)
2

Imdad ullah Khan (LUMS) Data Stream 60 / 73

Estimate F2 : AMS Algorithm

F2 =
n∑

i=1
f 2i = f 21 + f 22 + . . .+ f 2n ▷ We want this

(f1 + f2 + . . .+ fn)
2 ▷ Easy but overestimate

(f1 + f2 + f3 + f4)
2 = f 21 + f 22 + f 23 + f 24 +2(f1f2 + f1f3 + f2f3 + f1f4 + f2f4 + f3f4)︸ ︷︷ ︸

error

(f1− f2+ f3− f4)
2 = f 21 + f 22 + f 23 + f 24 +2(−f1f2+ f1f3− f2f3− f1f4+ f2f4− f3f4)

Imdad ullah Khan (LUMS) Data Stream 61 / 73

Estimate F2 : AMS Algorithm

Algorithm (AMS):

g : [n]→ {−1,+1} ▷ random hash function

for each ai ∈ S
X ← X + g(ai)

return X 2

X = f1g(1) + f2g(2) + . . .+ fng(n)

Imdad ullah Khan (LUMS) Data Stream 62 / 73

Estimate F2 : AMS Algorithm

X 2 =
(
f1g(1) + f2g(2) + . . .+ fng(n)

)2
E
[
X 2

]
= E

[∑
i

(fig(i))
2
]
+ E

[∑
i ̸=j

fig(i)fjg(j)
]

= E
[∑

i

f 2i

]
+ E

[∑
i ̸=j

fi fjg(i)g(j)
]

= F2 +
∑
i ̸=j

fi fj E
[
g(i)g(j)

]
= F2

E [X 2] = F2

Imdad ullah Khan (LUMS) Data Stream 63 / 73

Estimate F2 : AMS Algorithm

X 2 =
(
f1g(1) + f2g(2) + . . .+ fng(n)

)2 E
[
X 2

]
= F2

Var(X 2) = E
[
X 4

]
− (E

[
X 2

]
)2

E
[
X 4

]
= E

[∑
i
(fig(i))

4 + 6
∑
i ̸=j

(fig(i)
2fjg(j))

2
]
+ . . .

other terms: E
[
g(i)g(j)g(k)g(l)

]
= E

[
g(i)2g(j)g(k)

]
= E

[
g(i)3g(j)

]
= 0

▷ 4-wise independence

E
[
X 4

]
=

∑
i

f 4i + 6
∑
i ̸=j

f 2i f
2
j

Var(X 2) =
∑
i
f 4i + 6

∑
i ̸=j

f 2i f
2
j − (

∑
i
f 2i)

2 = 4
∑
i ̸=j

f 2i f
2
j ≤ 2F 2

2

Imdad ullah Khan (LUMS) Data Stream 64 / 73

Amplifying the probability of basic AMS Sketch

Keep k = 8/ϵ2 × log(1/δ) estimates, X1,X2, . . . ,Xk

Return X̄ : median of log(1/δ) averages of groups of 8/ϵ2 estimates

Algorithm : AMS sketch to estimate F2 of S (ϵ, δ)

Pick k = 8/ϵ2 × log(1/δ) random hash functions gj : [n]→ {−1,+1}
X ← zeros(k) ▷ sketch consists of k integer

On input ai
for j = 1→ k do

X [j]← X [j] + gj(ai)

return X̄ : median of log(1/δ) means of groups of 8/ϵ2 estimates (X [·]2)

X1 X2 Xt

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷t = 8/ε2 estimates t = 8/ε2 estimates t = 8/ε2 estimates t = 8/ε2 estimates

· · · · · · · · · Xk· · ·

X̃lX̃l−1X̃2

· · · · · ·· · ·· · ·

X̃1

mean mean mean mean

X̄

median

Imdad ullah Khan (LUMS) Data Stream 65 / 73

Amplifying the probability of basic AMS Sketch

Keep k = 8/ϵ2 × log(1/δ) estimates, X1,X2, . . . ,Xk

Return X̄ : median of log(1/δ) averages of groups of 2/ϵ2 estimates

X1 X2 Xt

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷t = 8/ε2 estimates t = 8/ε2 estimates t = 8/ε2 estimates t = 8/ε2 estimates

· · · · · · · · · Xk· · ·

X̃lX̃l−1X̃2

· · · · · ·· · ·· · ·

X̃1

mean mean mean mean

X̄

median

E
[
X 2
j

]
= F2 Var

(
X 2
j

)
≤ 2F 2

2

E
[
X̃j

]
= F2 Var

(
X̃j

)
≤ ϵ2/4F 2

2

Pr
[
|X̃j − F2| ≥ ϵF2

]
≤ Var

(
X̃j

)
/ϵ2F 2

2 = 1/4 ▷ Chebyshev Inequality

Pr
[
|X̄ − F2| ≥ ϵF2

]
≤ δ

The last inequality uses the Chernoff bound. For X̄ to deviate this much

from F2 at least half of X̃j have to deviate more than that

Imdad ullah Khan (LUMS) Data Stream 66 / 73

Linear Transformation View of AMS Sketch

Algorithm : AMS sketch to estimate F2 of S
Pick k random hash functions g : [n] 7→ {−1,+1}
X ← zeros(k) ▷ sketch consists of 1 integer

On input ai
for j = 1→ k do

X [j]← X [j] + gj(ai)

g = g(1) g(2) . . . g(n)

F

f1
f2
...
...
fn

= X

Imdad ullah Khan (LUMS) Data Stream 67 / 73

Linear Transformation View of AMS Sketch

Algorithm : AMS sketch to estimate F2 of S
Pick k random hash functions g : [n] 7→ {−1,+1}
X ← zeros(k) ▷ sketch consists of 1 integer

On input ai
for j = 1→ k do

X [j]← X [j] + gj(ai)

g = +1 −1 . . . +1

F

f1
f2
...
...
fn

= X

Imdad ullah Khan (LUMS) Data Stream 68 / 73

Linear Transformation View of AMS Sketch

Algorithm : AMS sketch to estimate F2 of S
Pick k random hash functions g : [n] 7→ {−1,+1}
X ← zeros(k) ▷ sketch consists of 1 integer

On input ai
for j = 1→ k do

X [j]← X [j] + gj(ai)

G =
+1 −1 . . . +1
−1 −1 . . . −1

F

f1
f2
...
...
fn

X

X1

X2

Imdad ullah Khan (LUMS) Data Stream 69 / 73

Linear Transformation View of AMS Sketch

Algorithm : AMS sketch to estimate F2 of S
Pick k random hash functions g : [n] 7→ {−1,+1}
X ← zeros(k) ▷ sketch consists of 1 integer

On input ai
for j = 1→ k do

X [j]← X [j] + gj(ai)

G =

+1 −1 . . . +1
−1 −1 . . . −1
... . . .

...
−1 +1 . . . −1

F

f1
f2
...
...
fn

X

X1

X2

...
Xk

Imdad ullah Khan (LUMS) Data Stream 70 / 73

Estimate F2 : AMS Algorithm

G =

+1 −1 . . . +1
−1 −1 . . . −1
... . . .

...
−1 +1 . . . −1

F
f1
f2
...
...
fn

X
X1

X2

...
Xk

X̄ =
1

k

k∑
i=1

X 2
i Pr

[
|X̄ − F2| > ϵF2

]
≤ δ

With probability at leat 1− δ

(1− ϵ)
n∑

i=1

f 2i <
1

k

k∑
i=1

X 2
i < (1 + ϵ)

n∑
i=1

f 2i

√
(1− ϵ)∥F∥2 <

1√
k
∥X∥2 <

√
(1 + ϵ)∥F∥2

Imdad ullah Khan (LUMS) Data Stream 71 / 73

Estimate F2 : AMS Algorithm

G =

+1 −1 . . . +1
−1 −1 . . . −1

.

.

. . . .

.

.

.
−1 +1 . . . −1

F

f1
f2

.

.

.

.

.

.
fn

X

X1
X2

.

.

.
Xk

√
(1− ϵ)∥F∥2 <

1√
k
∥X∥2 <

√
(1 + ϵ)∥F∥2

G is a random linear transformation reduces the dimension of F while
preserving its ℓ2 norm

Since G is linear it is easy to see that given U,V ∈ Rn

w.h.p ∥ 1√
k
GU∥2 − ∥

1√
k
GV ∥2 ∼ ∥U − V ∥2

Imdad ullah Khan (LUMS) Data Stream 72 / 73

Johnson-Lindenstrauss Lemma

Given V = {v1, v2, . . . , vn} ⊂ Rd

For any ϵ ∈ (0, 1/2), there is a linear map f : Rd 7→ Rk

k = c log n/ϵ2, such that for any u, v ∈ V

(1− ϵ)∥u− v∥2 ≤ ∥f (u)− f (v)∥2 ≤ (1 + ϵ)∥u− v∥2

This map can be obtained very easily

Let M be a k × d matrix, with Mij ∈ N (0, 1), then

f (u) =
1√
k
Mu

Imdad ullah Khan (LUMS) Data Stream 73 / 73

