LOCALITY SENSITIVE HASHING

- Locality Sensitive Hashing for proximity problems
- LSH for Hamming distance
- AND-OR and OR-AND Composition of LSH
- LSH Scheme and the 'S' curve
- Non-LSH-able distance measures
- LSH for Jaccard distance
- LSH for Cosine distance
- LSH for Euclidean distance
- Data dependent LSH

Imdad ullah Khan

LSH for Proximity Problems

Dictionary: Abstract Data Type

Given *n* items pre-process and store to support INSERT, SEARCH, DELETE

Varying operations wise complexity with different implementations

- Array
- Sorted Array
- Linked List
- Sorted Linked List
- Binary Search Tree
- Balanced Binary Search Tree
- Hash functions

Approaches for nearest neighbor

Hashing works best for duplicate detection not for near duplicate detection

Array	\triangleright works for $m = 1$
Sorted Array	\triangleright works for $m = 1$
Voronoi Diagram	▷ works for $m = 2$

kd-tree

 \triangleright works for $m \leq 10$ or 12

Locality Sensitive Hashing

- Need hash functions where meaningful collisions are desired
- Want similar objects hash to same buckets

Locality Sensitive Hashing

A family $\mathcal{F} = \{h_1, h_2, \dots, \}$ is a (d_1, d_2, p_1, p_2) -family of LSH functions, if For a randomly chosen function h from \mathcal{F} , for objects **x** and **y**

If $d(\mathbf{x},\mathbf{y}) \leq d_1$, then $Pr[h(\mathbf{x}) = h(\mathbf{y})] \geq p_1$

• If $d(\mathbf{x},\mathbf{y}) \geq d_2$, then $Pr[h(\mathbf{x}) = h(\mathbf{y})] \leq p_2$

Using LSH for nearest neighbor query

A family $\mathcal{F} = \{h_1, h_2, \dots, \}$ is a (d_1, d_2, p_1, p_2) -family of LSH functions, if For a randomly chosen function h from \mathcal{F} , for objects \mathbf{x} and \mathbf{y}

If
$$d(\mathbf{x},\mathbf{y}) \leq d_1$$
, then $Pr[h(\mathbf{x}) = h(\mathbf{y})] \geq p_1$

• If $d(\mathbf{x}, \mathbf{y}) \ge d_2$, then $Pr[h(\mathbf{x}) = h(\mathbf{y})] \le p_2$

Find k-NN of **q** in a dataset X

- Pick a random h from \mathcal{F} and compute $h(\mathbf{x})$ for all $\mathbf{x} \in X$
- Compute $h(\mathbf{q})$ and find $NN(\mathbf{q})$ among objects in bucket $h(\mathbf{q})$

Using LSH for nearest neighbor query

A family $\mathcal{F} = \{h_1, h_2, \dots, \}$ is a (d_1, d_2, p_1, p_2) -family of LSH functions, if For a randomly chosen function h from \mathcal{F} , for objects \mathbf{x} and \mathbf{y}

If
$$d(\mathbf{x},\mathbf{y}) \leq d_1$$
, then $Pr[h(\mathbf{x}) = h(\mathbf{y})] \geq p_1$

If
$$d(\mathbf{x},\mathbf{y}) \geq d_2$$
, then $Pr[h(\mathbf{x}) = h(\mathbf{y})] \leq p_2$

Find docs within distance r of \mathbf{q} in a dataset X

- Pick a random h from \mathcal{F} and compute $h(\mathbf{x})$ for all $\mathbf{x} \in X$
- Compute $h(\mathbf{q})$ and find $NN(\mathbf{q})$ among objects in bucket $h(\mathbf{q})$

Using LSH for nearest neighbor

- 1*M* docs each of length 1000 (e.g. TF-IDF)
- For a query **q** find docs with $d(ullet, \mathbf{q}) \leq .1$ ▷ Naive approach: $\sim 10^9$ ops
- Use random h from \mathcal{F} of (.15, .4, .8, .2)-LSH family

▷ Naive approach on $h(\mathbf{q})$ only

9 / 58

■ If
$$d(x, y) \le .15$$
, then $Pr[h(x) = h(y)] \ge .8$
■ If $d(x, y) \ge .40$, then $Pr[h(x) = h(y)] \le .2$

■ False negatives (FN): d(•, q) < 0.1 ∧ h(•) ≠ h(q)
 ▷ qualitative error, missed near neighbor

False positives (FP):
$$d(\bullet, \mathbf{q}) > 0.1 \land h(\bullet) = h(\mathbf{q})$$

wasted/unnecessary distance computation

- $\bullet E[FN] < E[|\{(\mathbf{x}, \mathbf{y}) : d(\mathbf{x}, \mathbf{y}) \le .15 \land h(\mathbf{x}) \neq h(\mathbf{y})\}|] \le 20\%$
- $\bullet \ E[|\{(\mathbf{x}, \mathbf{y}) : d(\mathbf{x}, \mathbf{y}) \ge .4 \land h(\mathbf{x}) = h(\mathbf{y})|\}] \le 20\%$

 \blacksquare On average $\leq 20\%$ missed near nbrs and hopefully small wasted computation

For two docs **x** and **y**

Using LSH for near duplicates detection

- 1*M* docs each of length 2000 (e.g. TF-IDF)
- Find near duplicates: $sim(\cdot, \cdot) \ge 0.9 \ \left[d(\cdot, \cdot) \le .1\right] \triangleright$ bruteforce $\binom{1M}{2} \ d() \sim 10^{15} \text{ ops}$
- Use random *h* from *F* of (.15, .4, .8, .2)-LSH family

For two docs x and y	If $d(\mathbf{x}, \mathbf{y}) \leq .15$, then $Pr[h(\mathbf{x}) = h(\mathbf{y})] \geq .8$
	• If $d(\mathbf{x}, \mathbf{y}) \ge .40$, then $Pr[h(\mathbf{x}) = h(\mathbf{y})] \le .2$

- Assume all functions in \mathcal{H} are of the form $h : \mathbb{R}^n \mapsto [2500] \qquad \triangleright$ bucket IDs
- Assume functions in ${\cal H}$ maps docs to the 2500 buckets almost uniformly

 \triangleright unrealistic assumption, ${\rm LSH}$ gives no such guarantee

IMDAD ULLAH KHAN (LUMS)

Algorithm:

Compute distance b/w pairs in each bucket Output the pair if distance < .1

Runtime:

 $2500 imes {400 \choose 2} d(\cdot, \cdot)$ computation imes 2500 imes faster

Using LSH for near duplicates detection

- 1*M* docs each of length 2000 (e.g. TF-IDF)
- Find near duplicates pairs with $\textit{sim}(\cdot, \cdot) \geq 90\% = 0.9$ $\left[d(\cdot, \cdot) \leq .1\right]$
- Use random h from \mathcal{F} of (.15, .4, .8, .2)-family of LSH functions

If $d(\mathbf{x}, \mathbf{y}) \leq .15$,	then	$Pr[h(\mathbf{x}) = h(\mathbf{y})]$	\geq	.8
If $d(\mathbf{x}, \mathbf{y}) \ge .40$,	then	$Pr[h(\mathbf{x}) = h(\mathbf{y})]$	\leq	.2

- Assume all function in \mathcal{H} are of the form $h : \mathbb{R}^n \mapsto [2500] \qquad \qquad \triangleright$ bucket IDs
- \blacksquare Assume functions in ${\mathcal H}$ maps docs to the 2500 buckets almost uniformly
- \blacksquare Naive approach $\rightarrow \sim 10^{15} \text{ ops}$ $\qquad \mathrm{LSH} \text{ approach} \rightarrow 4 \times 10^{11} \text{ ops}$
- False positives (FP): $d(\mathbf{x}, \mathbf{y}) > 0.1 \land h(\mathbf{x}) = h(\mathbf{y})$ ▷ wasted comput.
- False negatives (FN): $d(\mathbf{x}, \mathbf{x}) \le 0.1 \land h(\mathbf{x}) \ne h(\mathbf{y})$ \triangleright qualitative error
- $\bullet E[FN] < E[|\{(\mathbf{x}, \mathbf{y}) : d(\mathbf{x}, \mathbf{y}) \leq .15 \land h(\mathbf{x}) \neq h(\mathbf{y})\}|] \leq 20\%$
- $\bullet \ E[|\{(\mathbf{x}, \mathbf{y}) : d(\mathbf{x}, \mathbf{y}) \ge .4 \land h(\mathbf{x}) = h(\mathbf{y})|\}] \le 20\%$
- \blacksquare On average $\leq 20\%$ missed near dups and hopefully small wasted computation

For two docs \mathbf{x} and \mathbf{y}

Locality Sensitive Hashing

A family $\mathcal{H} = \{h_1, h_2, \dots, \}$ is a (d_1, d_2, p_1, p_2) -family of LSH functions, if For a randomly chosen function h from \mathcal{H} , for objects **x** and **y**

If
$$d(\mathbf{x}, \mathbf{y}) \leq d_1$$
, then $Pr[h(\mathbf{x}) = h(\mathbf{y})] \geq p_1$

• We want p_1 to be close to 1

If
$$d(\mathbf{x}, \mathbf{y}) \geq d_2$$
, then $Pr[h(\mathbf{x}) = h(\mathbf{y})] \leq p_2$

• We want p_2 to be close to 0

▷ to reduce false positive

■ We want d₁ and d₂ both to be close to t (near duplicates threshold)
▷ to reduce the range of distances with no guarantees

Locality Sensitive Hashing

Equivalent definition of LSH functions in terms of similarity

A family $\mathcal{H} = \{h_1, h_2, \dots, \}$ is a (s_1, s_2, p_1, p_2) -family of LSH functions, if For a randomly chosen function h from \mathcal{H} , for objects **x** and **y**

• If $sim(\mathbf{x}, \mathbf{y}) \ge s_1$, then $Pr[h(\mathbf{x}) = h(\mathbf{y})] \ge p_1$

If $sim(\mathbf{x}, \mathbf{y}) \leq s_2$, then $Pr[h(\mathbf{x}) = h(\mathbf{y})] \leq p_2$

Bit-Sampling: LSH for Hamming distance

Hamming Distance and Similarity

- Hamming distance: used for fixed-length character vectors
- Coordinates values from a finite (usually small) set called alphabet
- Hamming distance d_H(x, y) between two *n*-vectors x and y is the number of coordinates in which they differ
- $0 \leq d_H(\mathbf{x}, \mathbf{y}) \leq n$ and it is a distance metric
- Hamming similarity: $s_H = n d_H(x, y)$

We use $d_H(x, y) = \frac{\text{number of coordinates different in x and y}}{n \text{ (total number of bits in x and y)}}$

- Similarity in this setting $s_H(\mathbf{x}, \mathbf{y}) = 1 d_H(\mathbf{x}, \mathbf{y})$
- When contextually clear, we drop subscript from $s_H(\mathbf{x}, \mathbf{y})$ and $d_H(\mathbf{x}, \mathbf{y})$

bit-sampling: LSH for Hamming distance

F : a family of LSH functions for d_H(·, ·) between *n*-bits strings
Each h ∈ *F* is of the form h : {0,1}ⁿ → {0,1}

$$\bullet \ \mathcal{F} = \{h_i : \ 1 \le i \le n\} \qquad \qquad \triangleright \ |\mathcal{F}| = n$$

$$h_i(\mathbf{x}) := h_i(b_1, b_2, \dots, b_n) := b_i$$

 $h_1(10101011) = 1$ $h_1(00110011) = 0$ $h_2(10101011) = 0$ $h_3(10101011) = 1$

	1	2	3	4	5	6	7	8	9	
x	1	0	1	1	0	1	1	0	0	
ł	$\mathbf{n}_1(\mathbf{x}) = \mathbf{n}_1(\mathbf{y}) =$	= 1 = 0		ł	$\mathbf{h}_5(\mathbf{x}) =$ $\mathbf{h}_5(\mathbf{y}) =$	= 0 = 0	$\begin{aligned} \mathbf{h}_8(\mathbf{x}) &= 0\\ \mathbf{h}_8(\mathbf{y}) &= 1 \end{aligned}$			
	1	2	3	4	5	6	7	8	9	
у	0	1	1	0	0	1	0	1	0	

bit-sampling: LSH for Hamming distance

- *F* : a family of LSH functions for *d_H*(·, ·) between *n*-bits strings
 Each *h* ∈ *F* is of the form *h* : {0,1}^{*n*} → {0,1}
- $\bullet \mathcal{F} = \{h_i : 1 \le i \le n\} \qquad \triangleright |\mathcal{F}| = n$

$$h_i(\mathbf{x}) := h_i(b_1, b_2, \dots, b_n) := b_i$$

$$\mathcal{F}$$
 is a $(r_1, r_2, 1 - r_1, 1 - r_2)$ -LSH family

- Choose a random function form $\mathcal{F} \leftrightarrow$ choose a random index from [n]
- $d(\mathbf{x}, \mathbf{y}) \leq r_1$ means that \mathbf{x} and \mathbf{y} agree on $\geq (1 r_1)n$ bits
- $Pr[\text{choose } h_i \text{ such that } \mathbf{x}_i = \mathbf{y}_i] \geq \frac{(1-r_1)n}{n} = 1-r_1$
- $d(\mathbf{x}, \mathbf{y}) \ge r_2$ means that \mathbf{x} and \mathbf{y} agree on $\le (1 r_2)n$ bits
- $Pr[choose h_i such that \mathbf{x}_i = \mathbf{y}_i] \leq \frac{(1-r_2)n}{n} = 1-r_2$

Theory of ${\rm LSH}$ and ${\rm LSH}$ Scheme

LSH Working

- Candidate pair: Two data items that hash to the same buckets
- Working of a LSH function:
 - Input: x and y
 - Output: Yes a candidate pair or No
- $h(\mathbf{x}) = h(\mathbf{y})$ means h declares x and y a candidate pair
- We will not go into the detail of how it computes the value
- Values of $h(\mathbf{x})$ and $h(\mathbf{y})$ (bucket IDs) are irrelevant \triangleright just check equality
- False negative (FN): $d(\mathbf{x}, \mathbf{y}) \leq t$ (nearest neighbors) but $h(\mathbf{x}) \neq h(\mathbf{y})$
- False positive (FP): $d(\mathbf{x}, \mathbf{y}) > t$ (not nearest neighbors) but $h(\mathbf{x}) = h(\mathbf{y})$
- Also no notion of absolute locality sensitive hashing ▷ only parametric

LSH: Probability Amplification

- Parameters of a LSH family may not be good enough for application
- Use probability amplification (independent trials) to adjust parameters
- Manipulate H to bound number of FP and FN into desired range
- Dealing with False Positives:
 - \blacksquare Use many independent hash functions from ${\cal H}$
 - Consider pairs that are declared candidate by ALL of them > AND
 - Dissimilar vectors are less likely to become candidate pair
- Dealing with False Negatives:
 - \blacksquare Use many independent hash functions from ${\cal H}$
 - Consider pairs that are declared candidate by ANY of them
 OR
 - Similar vectors are more likely to become candidate pair

Applying the AND construction to (s_1, s_2, p_1, p_2) -LSH family \mathcal{F} :

- Each h' in new family \mathcal{F}' consists of r functions $h_{i1}, h_{i2}, \ldots, h_{ir}$ from \mathcal{F}
- $h'_i = \{h_{i1}, h_{i2}, \dots, h_{ir}\} \in \mathcal{F}'$ works as follows $\triangleright |\mathcal{F}'| = \binom{n}{r}$

 $h'_i(\mathbf{x}) = h'_i(\mathbf{y}) \iff h_{i1}(\mathbf{x}) = h_{i1}(\mathbf{y}) \land h_{i2}(\mathbf{x}) = h_{i2}(\mathbf{y}) \land \ldots \land h_{ir}(\mathbf{x}) = h_{ir}(\mathbf{y})$

• $h' \in \mathcal{F}'$ only declares a candidate pair if all r functions from \mathcal{F} do

Applying the AND construction to (s_1, s_2, p_1, p_2) -LSH family \mathcal{F} :

• Each h' in new family \mathcal{F}' consists of r functions $h_{i1}, h_{i2}, \ldots, h_{ir}$ from \mathcal{F}

•
$$h'_i = \{h_{i1}, h_{i2}, \dots, h_{ir}\} \in \mathcal{F}'$$
 works as follows $\triangleright |\mathcal{F}'| = \binom{n}{r}$

 $h'_i(\mathbf{x}) = h'_i(\mathbf{y}) \iff h_{i1}(\mathbf{x}) = h_{i1}(\mathbf{y}) \land h_{i2}(\mathbf{x}) = h_{i2}(\mathbf{y}) \land \ldots \land h_{ir}(\mathbf{x}) = h_{ir}(\mathbf{y})$

• $h' \in \mathcal{F}'$ only declares a candidate pair if all r functions from \mathcal{F} do

\mathcal{F}' is a (s_1, s_2, p_1^r, p_2^r) -family of LSH functions

• Choose $h'_i \in \mathcal{F}' \iff$ Choose r functions $\{h_{i1}, h_{i2}, \ldots, h_{ir}\}$ in \mathcal{F}

•
$$s(\mathbf{x}, \mathbf{y}) \ge s_1 \implies Pr[h_{ij}(\mathbf{x}) = h_{ij}(\mathbf{y})] \ge p_1 \text{ for } h_{ij} \in \mathcal{F}$$

• $\therefore Pr[h'_i(\mathbf{x}) = h'_i(\mathbf{y})] = \prod_{j=1}^r Pr[h_{ij}(\mathbf{x}) = h_{ij}(\mathbf{y})] \ge p'_1$
• $s(\mathbf{x}, \mathbf{y}) \le s_2 \implies Pr[h_{ij}(\mathbf{x}) = h_{ij}(\mathbf{y})] \le p_2 \text{ for } h_{ij} \in \mathcal{F}$

•
$$\therefore$$
 $\Pr[h'_i(\mathbf{x}) = h'_i(\mathbf{y})] = \prod_{j=1}^r \Pr[h_{ij}(\mathbf{x}) = h_{ij}(\mathbf{y})] \le p_2^r$

Applying the OR construction to (s_1, s_2, p_1, p_2) -LSH family \mathcal{F} :

• Each h'' in new family \mathcal{F}'' consists of b functions $h_{i1}, h_{i2}, \ldots, h_{ib}$ from \mathcal{F}

• $h''_i = \{h_{i1}, h_{i2}, \dots, h_{ib}\} \in \mathcal{F}''$ works as follows $\triangleright |\mathcal{F}'| = \binom{n}{b}$

 $h_i''(\mathbf{x}) = h_i''(\mathbf{y}) \iff h_{i1}(\mathbf{x}) = h_{i1}(\mathbf{y}) \lor h_{i2}(\mathbf{x}) = h_{i2}(\mathbf{y}) \lor \ldots \lor h_{ib}(\mathbf{x}) = h_{ib}(\mathbf{y})$

• $h'' \in \mathcal{F}''$ only declares a candidate pair if any of *b* functions from \mathcal{F} do

	1	2	3	4	5	6	7	8	9
x	1	0	1	1	0	1	1	0	0
$\mathbf{h}_1'' = \{\mathbf{h_2}, \mathbf{h_5}, \mathbf{h_7}\}$									
$h_2'' = \{h_1, h_4, h_8\}$	$\mathbf{h_1''}($	$\mathbf{x}) = \mathbf{h}$	$\mathbf{u}_1''(\mathbf{y})$	$\mathbf{h_2''}(\mathbf{z})$	$\mathbf{x} \neq \mathbf{h}$	$_{2}^{\prime\prime}(\mathbf{y})$	$\mathbf{h_3''}(\mathbf{x})$	\mathbf{x} = \mathbf{h}	$_{3}^{\prime\prime}(\mathbf{y})$
$\mathbf{h}_3''=\{\mathbf{h}_6,\mathbf{h}_9\}$	1	2	3	4	5	6	7	8	9
У	0	1	1	0	0	1	0	1	0

Applying the OR construction to (s_1, s_2, p_1, p_2) -LSH family \mathcal{F} :

- Each h'' in new family \mathcal{F}'' consists of b functions $h_{i1}, h_{i2}, \ldots, h_{ib}$ from \mathcal{F}
- $h''_i = \{h_{i1}, h_{i2}, \dots, h_{ib}\} \in \mathcal{F}''$ works as follows $\triangleright |\mathcal{F}'| = \binom{n}{b}$
- $h_i''(\mathbf{x}) = h_i''(\mathbf{y}) \iff h_{i1}(\mathbf{x}) = h_{i1}(\mathbf{y}) \lor h_{i2}(\mathbf{x}) = h_{i2}(\mathbf{y}) \lor \ldots \lor h_{ib}(\mathbf{x}) = h_{ib}(\mathbf{y})$
 - $h'' \in \mathcal{F}''$ only declares a candidate pair if any of *b* functions from \mathcal{F} do

$$\mathcal{F}''$$
 is a $(s_1,s_2,1-(1-p_1)^b,1-(1-p_2)^b)$ -family of LSH functions

• Choose
$$h'_i \in \mathcal{F}'' \iff$$
 Choose *b* functions $\{h_{i1}, h_{i2}, \dots, h_{ib}\}$ in \mathcal{F}
• $s(\mathbf{x}, \mathbf{y}) \ge s_1 \implies Pr[h_{ij}(\mathbf{x}) = h_{ij}(\mathbf{y})] \ge p_1$ for $h_{ij} \in \mathcal{F}$
• $\therefore Pr[h''_i(\mathbf{x}) = h''_i(\mathbf{y})] = 1 - \prod_{j=1}^b Pr[h_{ij}(\mathbf{x}) \ne h_{ij}(\mathbf{y})] \ge 1 - (1 - p_1)^b$
• $s(\mathbf{x}, \mathbf{y}) \le s_2 \implies Pr[h_{ij}(\mathbf{x}) = h_{ij}(\mathbf{y})] \le p_2$ for $h_{ij} \in \mathcal{F}$
• $\therefore Pr[h''_i(\mathbf{x}) = h''_i(\mathbf{y})] = 1 - \prod_{i=1}^b Pr[h_{ii}(\mathbf{x}) \ne h_{ij}(\mathbf{y})] < 1 - (1 - p_2)^b$

Choosing b and r

- Let \mathcal{F} be a (s_1, s_2, p_1, p_2) -LSH family $\triangleright p_1 > p_2$
- \blacksquare Using r-wise AND construction, from ${\mathcal F}$ we get a ${\rm LSH}$ family, ${\mathcal F}'$
- \mathcal{F}' is (s_1, s_2, p_1^r, p_2^r) -family of LSH functions both probabilities smaller \triangleright Our goal was to make only p_2 smaller
- Choose r so p_2^r becomes very small (~ 0) but p_1^r is not very small
- Using *b*-wise OR construction, from \mathcal{F} , we get a LSH family, \mathcal{F}''
- \mathcal{F}'' is $(s_1, s_2, 1 (1 p_1)^b, 1 (1 p_2)^b)$ -family, both probabilities larger \triangleright Our goal was to make only p_1 larger

■ Choose b so 1 - (1 - p₁)^b becomes very large (~ 1) but 1 - (1 - p₂)^b doesn't grow too much

LSH Scheme: AND-OR Compositon

- $\begin{array}{l} \mathcal{F} : (s_1, s_2, p_1, p_2) \text{-family} \xrightarrow{r\text{-wise AND}} \mathcal{F}' : (s_1, s_2, p_1^r, p_2^r) \text{-family} \\ \\ \mathcal{F}' : (s_1, s_2, p_1^r, p_2^r) \text{-family} \xrightarrow{b\text{-wise OR}} \mathcal{F}'' : (s_1, s_2, 1 (1 p_1^r)^b, 1 (1 p_2^r)^b) \text{-family} \end{array}$
 - Choose *b* collections of *r* independent random functions from \mathcal{F}
 - *b* meta functions f_1, \ldots, f_b from \mathcal{F}'
 - each an AND of r functions in \mathcal{F}
 - x and y is a candidate pair if

 $[f_1(\mathbf{x}) = f_1(\mathbf{y})]$ or $[f_2(\mathbf{x}) = f_2(\mathbf{y})]$ or ... or $[f_b(\mathbf{x}) = f_b(\mathbf{y})]$

- Visualize this as bands of $b \times r$ signature matrix
- AND-OR Construction: r-way AND followed by b-way OR construction
- Denoted by (r, b) AND-OR construction

LSH Scheme: OR-AND Composition

$$\begin{split} \mathcal{F} &: (s_1, s_2, p_1, p_2) \text{-family} \xrightarrow{b \text{-wise OR}} \mathcal{F}' &: (s_1, s_2, 1 - (1 - p_1)^b, 1 - (1 - p_2)^b) \text{-family} \\ \mathcal{F}' &: (s_1, s_2, 1 - (1 - p_1)^b, 1 - (1 - p_2)^b) \text{-family} \xrightarrow{r \text{-wise AND}} \\ \mathcal{F}'' &: (s_1, s_2, (1 - (1 - p_1)^b)^r, (1 - (1 - p_2)^b)^r) \text{-family} \end{split}$$

- Choose r collections of b independent random functions from \mathcal{F}
- r meta functions f_1, \ldots, f_r from \mathcal{F}'
 - each an OR of *b* functions from \mathcal{F}

x and y is a candidate pair if

 $[f_1(\mathbf{x}) = f_1(\mathbf{y})]$ and $[f_2(\mathbf{x}) = f_2(\mathbf{y})]$ and ... and $[f_b(\mathbf{x}) = f_b(\mathbf{y})]$

- Visualize this as bands of $b \times r$ signature matrix
- OR-AND Construction: b-way OR followed by r-way AND construction
- denoted by (b, r) OR-AND construction

LSH Scheme: AND-OR Compositon

Effect of construction and values of b and r of steepness of the S-curve

	(r,b) = (4,4)	(r,b)=(4,6)	(r,b) = (6,4)
р	$1-(1-p^r)^b$	$1-(1-p^r)^b$	$1-(1-p^r)^b$
0.1	0.0004	0.0006	0
0.2	0.00638	0.00956	0.00026
0.3	0.03201	0.04763	0.00291
0.4	0.09853	0.1441	0.01628
0.5	0.22752	0.32107	0.06105
0.6	0.42605	0.56518	0.17396
0.7	0.66655	0.80745	0.39387
0.8	0.8785	0.95765	0.70359
0.9	0.98601	0.99835	0.9518

A $(s_1, s_2, .2, .8)$ family is converted by

- (r, b) = (4, 4) AND-OR construction to a $(s_1, s_2, 0.00638, 0.8785)$
- (r, b) = (4, 6) AND-OR construction to a $(s_1, s_2, 0.00956, 0.95765)$
- (r, b) = (6, 4) AND-OR construction to a $(s_1, s_2, 0.00026, 0.70359)$

${\rm LSH}$ Scheme and the S cruve

Plot of $(1 - (1 - p^r)^b)$ is an S-shaped curve for every b and r

- There is a small range where the probability sharply decrease (for small values of p) or increase (for larger values of p)
- This is exactly what we want (recall our goal of the step function)
- Choose b and r (for AND-OR construction) so p₂ is in the "right interval", and the p₁ is on the left portion of the curve
- Any S-curve has a fixed-point, i.e. $\exists p \text{ satisfying } p = 1 (1 p^r)^b$, above this p prob. of candid. $(1 (1 p^r)^b)$ increases and vice-versa

LSH Scheme and the S cruve

Effect of construction and values of b and r of steepness of the S-curve

LSH Scheme: OR-AND Composition

Effect of construction and values of b and r of steepness of the S-curve

	(b,r) = (4,4)	(b,r) = (4,6)	(b,r) = (6,4)
р	$(1-(1-p)^b)^r$	$(1-(1-p)^b)^r$	$(1-(1-p)^b)^r$
0.1	0.01399	0.0482	0.00165
0.2	0.1215	0.29641	0.04235
0.3	0.33345	0.60613	0.19255
0.4	0.57395	0.82604	0.43482
0.5	0.77248	0.93895	0.67893
0.6	0.90147	0.98372	0.8559
0.7	0.96799	0.99709	0.95237
0.8	0.99362	0.99974	0.99044
0.9	0.9996	1	0.9994

A $(s_1, s_2, .2, .8)$ family is converted by

- (b, r) = (4, 4) OR-AND construction to $(s_1, s_2, 0.1215, 0.99362)$
- (b, r) = (4, 6) OR-AND construction to $(s_1, s_2, 0.29641, 0.99974)$
- (b, r) = (6, 4) OR-AND construction to $(s_1, s_2, 0.04235, 0.99044)$

LSH Scheme and the S cruve

Effect of construction and values of b and r of steepness of the S-curve

${\rm LSH} \ Scheme$

Create a cascade of multiple AND-OR or OR-AND constructions with varying values of r and b depending on the requirements

${\rm LSH}$ for other distances

LSH for other distances

We gave a LSH family for Hamming distance. Next we consider Jaccard, Cosine, Euclidean distances

- We only need a basic (d_1, d_2, p_1, p_2) -LSH family \mathcal{F}
- Here d_1 and d_2 are w.r.t other (than Hamming) distance measures
- We want for a random $h \in \mathcal{F}$
 - 1 if $sim(\mathbf{x}, \mathbf{y})$ is high, then with high probability $h(\mathbf{x}) = h(\mathbf{y})$ 2 if $sim(\mathbf{x}, \mathbf{y})$ is low, then with high probability $h(\mathbf{x}) \neq h(\mathbf{y})$
- With amplification we can adjust the parameters
- Clearly such hash functions will depend on the particular similarity
- \blacksquare We know that not all similarities have such suitable ${\rm LSH}$ families

Non-LSH-able distances

Known that no LSH scheme exists for certain distance measures Sørensen-Dice: A similarity measure between sets

For two sets X and Y
$$sim_{sd}(X, Y) = \frac{2|X \cap Y|}{|X| + |Y|}$$

 $X = \{a\}, Y = \{b\}, \text{ and } Z = \{a, b\}$
 $sim_{sd}(X, Y) = 0$ $sim_{sd}(X, Z) = 2/3$ $sim_{sd}(Y, Z) = 2/3$

2 Overlap Similarity: A similarity measure between sets

For two sets X and Y
$$sim_{ov}(X, Y) = \frac{|X \cap Y|}{\min\{|X|, |Y|\}}$$

 $X = \{a\}, Y = \{b\}, \text{ and } Z = \{a, b\}$
 $sim_{ov}(X, Y) = 0$ $sim_{ov}(X, Z) = 1$ $sim_{ov}(Y, Z) = 1$

In both cases distances are defined as $1-\textit{sim}_*(\cdot,\cdot)$

Non-(yet)-LSH-able distances

Open question to design -LSH-able scheme for certain distance measures **1** Anderberg: A similarity measure between sets

For X and Y
$$sim_{an}(X, Y) = \frac{|X \cap Y|}{|X \cap Y| + 2|X \oplus Y|}$$

Compute this similarity for pairs of

$$X = \{a\}, Y = \{b\}, \text{ and } Z = \{a, b\}$$

2 Rogers-Tanimoto A similarity measure between sets

For X and Y
$$sim_{rt}(X, Y) = \frac{|X \cap Y| + |X \cup Y|}{|X \cap Y| + \overline{X \cup Y} + 2|X \oplus Y|}$$

Compute this similarity for pairs of $X = \{a\}, Y = \{b\}$, and $Z = \{a, b\}$

MinHash: LSH for Jaccard distance

LSH for Jaccard distance (Minhashing)

- LSH family for Jaccard distance called Minhashes or Min-wise hashing
- Suppose all sets are subsets of a universal set U
 - If sets are documents, then U could be the English lexicon
- \mathcal{F} : set of all permutations of elements in U
- \blacksquare We will show that ${\mathcal F}$ is a family of ${\rm LSH}$ function
- For a permutation π of elements in U the hash function h_{π}
 - h_{π} is of the form $h_{\pi}: \mathcal{P}(U) \mapsto U$ $\triangleright \mathcal{P}(U)$: all possible subsets
 - Takes as input a subset of U and returns an element of U
 - h_{π} maps a set $S \subseteq U$ as follows:
 - $h_{\pi}(S)$ is the first element of S in the order of π
- $\bullet |\mathcal{F}| = |U|!$

Minhashing

- Let $U = \{w_0, w_1, w_2, w_3, w_4\}$
- Given four sets S_1, S_2, S_3, S_4
- Let the permutation $\pi = (w_1, w_4, w_0, w_3, w_2)$

elem.id	S_1	S_2	S_3	S_4
w ₀	1	0	0	1
W ₁	0	0	1	0
W ₂	0	1	0	1
W ₃	1	0	1	1
W ₄	0	0	1	0

elem.id	S_1	S_2	S_3	S_4
w ₁	0	0	1	0
W4	0	0	1	0
w ₀	1	0	0	1
W ₃	1	0	1	1
W2	0	1	0	1

Given Sets

Sets reordered according to π

 $h_{\pi}(S_1) = w_0$ $h_{\pi}(S_2) = w_2$ $h_{\pi}(S_3) = w_1$ $h_{\pi}(S_4) = w_0$

• $h_{\pi}(S)$ is the index of row (elem.id) with first 1 in the order π

Called minhashing because of this first index (minimum index)

Minhashing

Let |U| = n, all sets (vectors) are *n*-dimensional $\implies n!$ functions in \mathcal{F}

 \mathcal{F} is a $(d_1, d_2, (1 - d_1), (1 - d_2))$ -family of LSH functions

Choose h_{π} at random from $\mathcal{F}\iff$ Choose a random permutation π of U

Let S and T be two arbitrary subsets of U

- Suppose $d(S, T) \leq d_1$
- \blacksquare Picture S and T as two columns with rows ordered by π
- h_π(S) = h_π(T) is event that first element in order of π is same in S and T
 i.e. we get a [1 1] row before any [1 0] and [0 1] row (ignore [0 0] rows)
- Since π is a random permutation the probability of this happening is

$$\frac{\text{No. of [1 1] rows}}{\text{No. of [1 1], [1 0], [0 1] rows}} = \frac{|S \cap T|}{|S \cup T|}$$

• Thus $Pr[h_{\pi}(S) = h_{\pi}(T)] \geq 1 - d_1$

The other bound is obtained analogously

Approximate Minhashing

Approximate minhash using universal hash function

- **1** To pick a random permutation is not easy
- **2** Finding minhashes of sets is expensive, need sorting by π and find the first 1
- 3 For large U, all columns would have many 0's (sparse matrix)
- 4 Approximation: Use universal hash functions instead
- **5** permutation is of the form $\pi : [n] \mapsto [n]$ (bijection no collisions)
- **6** Take a universal hash function $h: [n] \mapsto [n]$ or even better $[n] \mapsto [2n]$
- **7** Will have few collisions; order of $w_i, w_j \in U$ by $h(w_i) < h(w_j)$
- 8 By the randomness of h we get that either order is equally likely
- 9 The (approximate) minhash value is then computed as follows:

$$minhash(S) = \arg\min_{w \in S} h(w)$$

10 With a universal hash function, only need to compute the minimum of elements that are in S (ignore 0 rows in column of S)

SimHash: LSH for Cosine distance

A ${}_{\mathrm{LSH}}$ family $\mathcal F$ for cosine distance for points in $\mathbb R^m$

- Choose a hyperplane h in \mathbb{R}^m
 - a line in 2d, a plane in 3d, a d-1 dimensional subspace of \mathbb{R}^d
 - h divides the space in two half-spaces (upper/+ve and lower/-ve)
- \mathcal{F} contains functions f_h corresponding to hyperplanes
- *f_h* maps vectors in the upper half-space to bucket + and vectors in the lower half-space to bucket -

IMDAD ULLAH KHAN (LUMS)

▷ simHash

The same concept applies to higher dimensions

- A hyperplane (a 2d plane) splits the 3d space into two half spaces
- We show only a sphere, as WLOG we consider only unit vectors (surface of unit ball in ℝ^d), as our concern is angles between vectors
- Vectors in the upper half-space are mapped to + by the function corresponding to the given hyperplane h
- Vectors in the lower half-space are mapped to —

Let **x** and **y** be two vectors with angle θ between them

Probability that a random hyperplane h goes between them is exactly $\theta/180^{\circ}$

f_{h1} and f_{h2} in F corresponding to hyperplanes h₁ and h₂
 f_{h1}(**x**) = f_{h1}(**y**) ⇒ **x** and **y** is a candidate pair under f_{h1}
 Under f_{h2}, **x** and **y** is not a candidate pair

Locality Sensitive Hashing

\mathcal{F} : corresponding to (m-1)-dim hyperplanes (passing through $\mathbf{0}$ in \mathbb{R}^m)

 \mathcal{F} is a $(d_1, d_2, (^{180-d_1})/_{180}, (^{180-d_2})/_{180})$ -family of LSH functions

Choose random $f_h \in \mathcal{F} \iff$ Choose random hyperplane h

- $d_{cos}({f x},{f y}) \leq d_1 \implies \geq (1-d_1)/$ 180 chance h does not separate ${f x}$ and ${f y}$
- $d_{cos}(\mathbf{x},\mathbf{y}) \geq d_2 \implies \leq (1-d_2)/_{180}$ chance h does not separate \mathbf{x} and \mathbf{y}
- Combining the above two statements we get the theorem
- We can amplify this as we wish
- \mathcal{F} has infinitely many functions, unlike
- LSH for Hamming similarity (only n functions in the base family) and
- Jaccard similarity ("only" *n*! functions in the base family)

LSH for Cosine distance: Computation

- Not easy to find the half-space where a vector **x** lies
- Pick a unit vector **v** and consider hyperplane to which **v** is normal
- **The unit vector** \mathbf{v} "uniquely" represents the hyperplane
 - Infinitely many normal vectors to a hyperplane all scalings of v
 - But only two unit vectors (\mathbf{v} and $-1\mathbf{v}$) pegged at origin
- The hyperplane with **v** as its normal is the family of vectors (the *n* − 1 dimensional subspace) whose dot-product with **v** is 0
- Upper half-space: vectors whose dot-product with **v** is positive (> 0)
- Lower lower half-space: vectors whose dot-product with v is negative

 $f_h(\mathbf{x})$ is computed as follows. Let **v** be a normal to *h*, then

$$f_h(\mathbf{x}) = sign(\mathbf{v} \cdot \mathbf{x}), \text{ where } sign(a) = \begin{cases} + & \text{if } a \ge 0 \\ - & \text{otherwise} \end{cases}$$

Random Projection: LSH for Euclidean distance

LSH for Euclidean distance

Overall idea of LSH for Euclidean distance:

Projections of "close-by" vectors in \mathbb{R}^m onto a vector should be "close"

- ℓ : a line in \mathbb{R}^m passing through $\mathbf{0}$
- **v** : unit vector in direction of ℓ
- Divide l into segments of length a (a fixed constant)
- Segments are buckets for the hash function corresponding to l

Function $h_{\mathbf{v}} = h_{\ell}$ (corresponding to ℓ or \mathbf{v}) maps \mathbf{x} to segment where projection of \mathbf{x} on ℓ lies

$$h_{\mathbf{v}}(\mathbf{x}) = \left\lfloor rac{\langle \mathbf{x}, \mathbf{v}
angle}{a}
ight
floor$$

 $h_{\mathbf{v}}$ projects \mathbf{x} onto \mathbf{v} and discretize the projection into a multiple of a

LSH for Euclidean distance

LSH family \mathcal{F} contains functions corresponding to unit vectors in \mathbb{R}^m \mathcal{F} has infinitely many functions

Locality sensitivity of ${\mathcal F}$

- Intuitively, close by vectors are likely to fall into the same bucket
- Far vectors are less likely to fall into the same bucket (tricky part)

${\scriptstyle\rm LSH}$ for Euclidean distance

• $Pr[h_{\mathbf{v}}(\mathbf{x}) = h_{\mathbf{v}}(\mathbf{y})] \propto d(\mathbf{x}, \mathbf{y})$

 \blacksquare It also depends on angle between ℓ and line-segment joining \boldsymbol{x} and \boldsymbol{y}

If $d(\mathbf{x}, \mathbf{y})$ is small compared to a, \mathbf{x} and \mathbf{y} will likely fall in same bucket

Though x and y may fall close to boundary of two adjacent buckets

${\scriptstyle\rm LSH}$ for Euclidean distance

• $Pr[h_{\mathbf{v}}(\mathbf{x}) = h_{\mathbf{v}}(\mathbf{y})] \propto d(\mathbf{x}, \mathbf{y})$

 \blacksquare It also depends on angle between ℓ and line-segment joining \boldsymbol{x} and \boldsymbol{y}

If $d(\mathbf{x}, \mathbf{y})$ is large compared to a, \mathbf{x} and \mathbf{y} unlikely to fall in one bucket

 If d is large but line segment joining x and y is almost perpendicular to ℓ, still they are likely to fall in same bucket

LSH for Euclidean distance

- Dependence of event $h_{\mathbf{v}}(\mathbf{x}) = h_{\mathbf{v}}(\mathbf{y})$ and angle between \overline{xy} and ℓ
- If $h_{\mathbf{v}}(\mathbf{x}) = h_{\mathbf{v}}(\mathbf{y})$, then $d \cos \theta_{xy} < a$
- This is only necessary condition, not sufficient
- i.e. even if $d \cos \theta \ll a$, **x** and **y** may still go to different buckets

${\cal F}$ is a (_/2, 2a, 1/2, 1/3)-family of ${\rm LSH}$ functions

Pick a random *h* in $\mathcal{F} \iff$ Pick a random line ℓ in \mathbb{R}^n

The angle θ between ℓ and the line through ${\bf x}$ and ${\bf y}$ is random

Suppose
$$d = d(\mathbf{x}, \mathbf{y}) < a/2$$

- Since d < a/2, **x** and **y** either fall in the same or consecutive buckets
- Even if **x** falls on the bucket border, there is $\geq 50\%$ chance that **y** falls in the same bucket. Thus $Pr[h_{\ell}(\mathbf{x}) = h_{\ell}(\mathbf{y})] \geq 1/2$

Suppose
$$d = d(\mathbf{x}, \mathbf{y}) < 2a$$

• d': distance between projections of **x** and **y** on ℓ ($d' = d \cos \theta$)

 $h_{\ell}(\mathbf{x}) = h_{\ell}(\mathbf{y}) \Rightarrow d' < a \Rightarrow d\cos\theta < a \Rightarrow 2a\cos\theta < a \Rightarrow \cos\theta < \frac{1}{2} \Rightarrow \theta \in [60^{\circ}, 90^{\circ}]$

- $Pr(\theta \in [60^{\circ}, 90^{\circ}])$ is 1/3 $\triangleright \theta$ is random
- Thus $Pr[h_\ell(\mathbf{x}) = h_\ell(\mathbf{y})] \geq 1/3$

LSH for Euclidean distance

- \blacksquare Note difference between ${\mathcal F}$ for ℓ_2 distance and those other distances
- For others we got for any d_1 and d_2 and the probabilities $(1 - d_1)$ and $(1 - d_2)$
- Here for any distance $d_1 < d_2$, all we get is $p_1 > p_2$
- This will require more functions for amplification to desired values
- We have infinitely many functions though

Memory Requirement of LSH and implementation trick

Given that the resulting hash tables have at most n non-zero entries, one can reduce the amount of memory used per hash table to O(n) using universal hash functions

Data Dependent LSH

All ${\scriptstyle\rm LSH}$ we discussed are sensitive to specific distance measure

They are all data oblivious (they do not look at the data)

Clustering LSH

\triangleright a data dependent ${\rm LSH}$ scheme

Cluster datasets into k clusters (using some method and proximity)

Bucket ID of each point is it's cluster id

https://randorithms.com/

IMDAD ULLAH KHAN (LUMS)