
Big Data Analytics

Locality Sensitive Hashing

Locality Sensitive Hashing for proximity problems

lsh for Hamming distance

and-or and or-and Composition of lsh

lsh Scheme and the ‘S’ curve

Non-lsh-able distance measures

lsh for Jaccard distance

lsh for Cosine distance

lsh for Euclidean distance

Data dependent lsh

Imdad ullah Khan

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 1 / 58

lsh for Proximity Problems

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 2 / 58

Dictionary adt

Dictionary: Abstract Data Type

Given n items pre-process and store to support insert, search, delete

Varying operations wise complexity with different implementations

Array

Sorted Array

Linked List

Sorted Linked List

Binary Search Tree

Balanced Binary Search Tree

Hash functions

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 3 / 58

Approaches for nearest neighbor

Hashing works best for duplicate detection not for near duplicate detection

Array ▷ works for m = 1

Sorted Array ▷ works for m = 1

Voronoi Diagram ▷ works for m = 2

kd-tree ▷ works for m ≤ 10 or 12

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 4 / 58

Locality Sensitive Hashing

Need hash functions where meaningful collisions are desired

Want similar objects hash to same buckets

General Hashing

Data Objects

Hash Table

collission

Locality Sensitive

Data Objects

Hash Table

Hashing

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 5 / 58

Locality Sensitive Hashing

A family F = {h1, h2, . . . , } is a (d1, d2, p1, p2)-family of lsh functions, if

For a randomly chosen function h from F , for objects x and y

If d(x, y) ≤ d1, then Pr [h(x) = h(y)] ≥ p1

If d(x, y) ≥ d2, then Pr [h(x) = h(y)] ≤ p2

probability
of x,y
sharing
bucket

d(x,y)
0

1

p1

p2

d2d1

?

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 6 / 58

Using lsh for nearest neighbor query

A family F = {h1, h2, . . . , } is a (d1, d2, p1, p2)-family of lsh functions, if

For a randomly chosen function h from F , for objects x and y

If d(x, y) ≤ d1, then Pr [h(x) = h(y)] ≥ p1

If d(x, y) ≥ d2, then Pr [h(x) = h(y)] ≤ p2

Find k-NN of q in a dataset X

Pick a random h from F and compute h(x) for all x ∈ X

Compute h(q) and find NN(q) among objects in bucket h(q)

h(·)

q

h(q)

find nearest

among them
neighbor(s)

X

n objects of m dimensions

k buckets

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 7 / 58

Using lsh for nearest neighbor query

A family F = {h1, h2, . . . , } is a (d1, d2, p1, p2)-family of lsh functions, if

For a randomly chosen function h from F , for objects x and y

If d(x, y) ≤ d1, then Pr [h(x) = h(y)] ≥ p1

If d(x, y) ≥ d2, then Pr [h(x) = h(y)] ≤ p2

Find docs within distance r of q in a dataset X

Pick a random h from F and compute h(x) for all x ∈ X

Compute h(q) and find NN(q) among objects in bucket h(q)

h(·)

q

h(q)

find nearest

among them
neighbor(s)

X

n objects of m dimensions

k buckets

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 8 / 58

Using lsh for nearest neighbor

1M docs each of length 1000 (e.g. tf-idf)

For a query q find docs with d(•,q) ≤ .1 ▷ Naive approach: ∼ 109 ops

Use random h from F of (.15, .4, .8, .2)-lsh family ▷ Naive approach on h(q) only

For two docs x and y
If d(x, y) ≤ .15, then Pr [h(x) = h(y)] ≥ .8

If d(x, y) ≥ .40, then Pr [h(x) = h(y)] ≤ .2

h(·)

q

h(q)

find nearest

among them
neighbor(s)

X

n objects of m dimensions

k buckets

False negatives (fn): d(•,q) < 0.1 ∧ h(•) ̸= h(q)

▷ qualitative error, missed near neighbor

False positives (fp): d(•,q) > 0.1 ∧ h(•) = h(q)

▷ wasted/unnecessary distance computation

E
[
FN

]
< E

[
|{(x, y) : d(x, y) ≤ .15 ∧ h(x) ̸= h(y)}|

]
≤ 20%

E
[
|{(x, y) : d(x, y) ≥ .4 ∧ h(x) = h(y)|}

]
≤ 20%

On average ≤ 20% missed near nbrs and hopefully small wasted computation

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 9 / 58

Using lsh for near duplicates detection

1M docs each of length 2000 (e.g. tf-idf)

Find near duplicates: sim(·, ·) ≥ 0.9
[
d(·, ·) ≤ .1

]
▷ bruteforce

(
1M
2

)
d() ∼ 1015 ops

Use random h from F of (.15, .4, .8, .2)-lsh family

For two docs x and y
If d(x, y) ≤ .15, then Pr [h(x) = h(y)] ≥ .8

If d(x, y) ≥ .40, then Pr [h(x) = h(y)] ≤ .2

Assume all functions in H are of the form h : Rn 7→ [2500] ▷ bucket IDs

Assume functions in H maps docs to the 2500 buckets almost uniformly

▷ unrealistic assumption, lsh gives no such guarantee

h(·)X

1M docs with

2500 buckets

2000 terms each

Algorithm:

Compute distance b/w pairs in each bucket

Output the pair if distance < .1

Runtime:

2500×
(
400
2

)
d(·, ·) computation ▷ 2500× faster

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 10 / 58

Using lsh for near duplicates detection

1M docs each of length 2000 (e.g. tf-idf)

Find near duplicates pairs with sim(·, ·) ≥ 90% = 0.9
[
d(·, ·) ≤ .1

]
Use random h from F of (.15, .4, .8, .2)-family of lsh functions

For two docs x and y
If d(x, y) ≤ .15, then Pr [h(x) = h(y)] ≥ .8

If d(x, y) ≥ .40, then Pr [h(x) = h(y)] ≤ .2

Assume all function in H are of the form h : Rn 7→ [2500] ▷ bucket IDs

Assume functions in H maps docs to the 2500 buckets almost uniformly

Naive approach → ∼ 1015 ops lsh approach → 4× 1011 ops

False positives (fp): d(x, y) > 0.1 ∧ h(x) = h(y) ▷ wasted comput.

False negatives (fn): d(x, x) ≤ 0.1 ∧ h(x) ̸= h(y) ▷ qualitative error

E
[
FN

]
< E

[
|{(x, y) : d(x, y) ≤ .15 ∧ h(x) ̸= h(y)}|

]
≤ 20%

E
[
|{(x, y) : d(x, y) ≥ .4 ∧ h(x) = h(y)|}

]
≤ 20%

On average ≤ 20% missed near dups and hopefully small wasted computation

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 11 / 58

Locality Sensitive Hashing

A family H = {h1, h2, . . . , } is a (d1, d2, p1, p2)-family of lsh functions, if

For a randomly chosen function h from H, for objects x and y

If d(x, y) ≤ d1, then Pr [h(x) = h(y)] ≥ p1

We want p1 to be close to 1 ▷ to reduce false negative

If d(x, y) ≥ d2, then Pr [h(x) = h(y)] ≤ p2

We want p2 to be close to 0 ▷ to reduce false positive

We want d1 and d2 both to be close to t (near duplicates threshold)
▷ to reduce the range of distances with no guarantees

probability
of x,y
sharing
bucket

d(x,y)
0

1

p1

p2

d2d1

?

t
0

1
probability
of x,y
sharing
bucket

d(x,y)

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 12 / 58

Locality Sensitive Hashing

Equivalent definition of lsh functions in terms of similarity

A family H = {h1, h2, . . . , } is a (s1, s2, p1, p2)-family of lsh functions, if

For a randomly chosen function h from H, for objects x and y

If sim(x, y) ≥ s1, then Pr [h(x) = h(y)] ≥ p1

If sim(x, y) ≤ s2, then Pr [h(x) = h(y)] ≤ p2

sim(x,y)
0

1

p1

p2

s1s2

?

probability
of x,y
sharing
bucket

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 13 / 58

Bit-Sampling: lsh for Hamming distance

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 14 / 58

Hamming Distance and Similarity

Hamming distance: used for fixed-length character vectors

Coordinates values from a finite (usually small) set called alphabet

Hamming distance dH(x, y) between two n-vectors x and y is the
number of coordinates in which they differ

0 ≤ dH(x, y) ≤ n and it is a distance metric

Hamming similarity: sH = n − dH(x , y)

We use dH(x , y) =
number of coordinates different in x and y

n (total number of bits in x and y)

Similarity in this setting sH(x, y) = 1− dH(x, y)

When contextually clear, we drop subscript from sH(x, y) and dH(x, y)

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 15 / 58

bit-sampling: lsh for Hamming distance

F : a family of lsh functions for dH(·, ·) between n-bits strings

Each h ∈ F is of the form h : {0, 1}n 7→ {0, 1}
F = {hi : 1 ≤ i ≤ n} ▷ |F| = n

hi (x) := hi (b1, b2, . . . , bn) := bi

h1(10101011) = 1 h1(00110011) = 0 h2(10101011) = 0 h3(10101011) = 1

1 2 3 4 5 6 7 8 9

1 0 1 1 0 1 1 0 0x

1 2 3 4 5 6 7 8 9

0 1 1 0 0 1 0 1 0y

h1(x) = 1

h1(y) = 0

h5(x) = 0

h5(y) = 0

h8(x) = 0

h8(y) = 1

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 16 / 58

bit-sampling: lsh for Hamming distance

F : a family of lsh functions for dH(·, ·) between n-bits strings

Each h ∈ F is of the form h : {0, 1}n 7→ {0, 1}
F = {hi : 1 ≤ i ≤ n} ▷ |F| = n

hi (x) := hi (b1, b2, . . . , bn) := bi

F is a (r1, r2, 1− r1, 1− r2)-lsh family

Choose a random function form F ↔ choose a random index from [n]

d(x, y) ≤ r1 means that x and y agree on ≥ (1− r1)n bits

Pr [choose hi such that xi = yi] ≥ (1−r1)n
n = 1− r1

d(x, y) ≥ r2 means that x and y agree on ≤ (1− r2)n bits

Pr [choose hi such that xi = yi] ≤ (1−r2)n
n = 1− r2

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 17 / 58

Theory of lsh and lsh Scheme

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 18 / 58

lsh Working

Candidate pair: Two data items that hash to the same buckets

Working of a lsh function:

Input: x and y

Output: Yes a candidate pair or No

h(x) = h(y) means h declares x and y a candidate pair

We will not go into the detail of how it computes the value

Values of h(x) and h(y) (bucket IDs) are irrelevant ▷ just check equality

False negative (FN): d(x, y) ≤ t (nearest neighbors) but h(x) ̸= h(y)

False positive (FP): d(x, y) > t (not nearest neighbors) but h(x) = h(y)

Also no notion of absolute locality sensitive hashing ▷ only parametric

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 19 / 58

lsh: Probability Amplification

Parameters of a lsh family may not be good enough for application

Use probability amplification (independent trials) to adjust parameters

Manipulate H to bound number of FP and FN into desired range

Dealing with False Positives:

Use many independent hash functions from H
Consider pairs that are declared candidate by ALL of them ▷ AND

Dissimilar vectors are less likely to become candidate pair

Dealing with False Negatives:

Use many independent hash functions from H
Consider pairs that are declared candidate by ANY of them ▷ OR

Similar vectors are more likely to become candidate pair

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 20 / 58

Constructing new lsh families from old

Applying the AND construction to (s1, s2, p1, p2)-lsh family F :

Each h′ in new family F ′ consists of r functions hi1, hi2, . . . , hir from F
h′i = {hi1, hi2, . . . , hir} ∈ F ′ works as follows ▷ |F ′| =

(n
r

)
h′i (x) = h′i (y) ⇐⇒ hi1(x) = hi1(y) ∧ hi2(x) = hi2(y) ∧ . . . ∧ hir (x) = hir (y)

h′ ∈ F ′ only declares a candidate pair if all r functions from F do

1 2 3 4 5 6 7 8 9

1 0 1 1 0 1 1 0 0x

1 2 3 4 5 6 7 8 9

0 1 1 0 0 1 0 1 0y

h′1 = {h2,h5,h7}
h′
1(x) 6= h′

1(y) h′
2(x) 6= h′

2(y) h′
3(x) = h′

3(y)h′2 = {h1,h4,h8}
h′3 = {h6,h9}

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 21 / 58

Constructing new lsh families from old

Applying the AND construction to (s1, s2, p1, p2)-lsh family F :

Each h′ in new family F ′ consists of r functions hi1, hi2, . . . , hir from F
h′i = {hi1, hi2, . . . , hir} ∈ F ′ works as follows ▷ |F ′| =

(n
r

)
h′i (x) = h′i (y) ⇐⇒ hi1(x) = hi1(y) ∧ hi2(x) = hi2(y) ∧ . . . ∧ hir (x) = hir (y)

h′ ∈ F ′ only declares a candidate pair if all r functions from F do

F ′ is a (s1, s2, p
r
1, p

r
2)-family of lsh functions

Choose h′i ∈ F ′ ⇐⇒ Choose r functions {hi1, hi2, . . . , hir} in F

s(x, y) ≥ s1 =⇒ Pr [hij(x) = hij(y)] ≥ p1 for hij ∈ F
∴ Pr [h′i (x) = h′i (y)] =

∏r
j=1 Pr [hij(x) = hij(y)] ≥ pr1

s(x, y) ≤ s2 =⇒ Pr [hij(x) = hij(y)] ≤ p2 for hij ∈ F
∴ Pr [h′i (x) = h′i (y)] =

∏r
j=1 Pr [hij(x) = hij(y)] ≤ pr2

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 22 / 58

Constructing new lsh families from old

Applying the OR construction to (s1, s2, p1, p2)-lsh family F :

Each h′′ in new family F ′′ consists of b functions hi1, hi2, . . . , hib from F
h′′i = {hi1, hi2, . . . , hib} ∈ F ′′ works as follows ▷ |F ′| =

(n
b

)
h′′i (x) = h′′i (y) ⇐⇒ hi1(x) = hi1(y) ∨ hi2(x) = hi2(y) ∨ . . . ∨ hib(x) = hib(y)

h′′ ∈ F ′′ only declares a candidate pair if any of b functions from F do

1 2 3 4 5 6 7 8 9

1 0 1 1 0 1 1 0 0x

1 2 3 4 5 6 7 8 9

0 1 1 0 0 1 0 1 0y

h′′1 = {h2,h5,h7}
h′′
1(x) = h′′

1(y) h′′
2(x) 6= h′′

2(y) h′′
3(x) = h′′

3(y)h′′2 = {h1,h4,h8}
h′′3 = {h6,h9}

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 23 / 58

Constructing new lsh families from old

Applying the OR construction to (s1, s2, p1, p2)-lsh family F :

Each h′′ in new family F ′′ consists of b functions hi1, hi2, . . . , hib from F
h′′i = {hi1, hi2, . . . , hib} ∈ F ′′ works as follows ▷ |F ′| =

(n
b

)
h′′i (x) = h′′i (y) ⇐⇒ hi1(x) = hi1(y) ∨ hi2(x) = hi2(y) ∨ . . . ∨ hib(x) = hib(y)

h′′ ∈ F ′′ only declares a candidate pair if any of b functions from F do

F ′′ is a (s1, s2, 1− (1− p1)
b, 1− (1− p2)

b)-family of lsh functions

Choose h′i ∈ F ′′ ⇐⇒ Choose b functions {hi1, hi2, . . . , hib} in F

s(x, y) ≥ s1 =⇒ Pr [hij(x) = hij(y)] ≥ p1 for hij ∈ F

∴ Pr [h′′i (x) = h′′i (y)] = 1−
∏b

j=1 Pr [hij(x) ̸= hij(y)] ≥ 1− (1− p1)
b

s(x, y) ≤ s2 =⇒ Pr [hij(x) = hij(y)] ≤ p2 for hij ∈ F

∴ Pr [h′′i (x) = h′′i (y)] = 1−
∏b

j=1 Pr [hij(x) ̸= hij(y)] ≤ 1− (1− p2)
b

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 24 / 58

Constructing new lsh families from old

Choosing b and r

Let F be a (s1, s2, p1, p2)-lsh family ▷ p1 > p2

Using r -wise AND construction, from F we get a lsh family, F ′

F ′ is (s1, s2, p
r
1, p

r
2)-family of lsh functions both probabilities smaller

▷ Our goal was to make only p2 smaller

Choose r so pr2 becomes very small (∼ 0) but pr1 is not very small

Using b-wise OR construction, from F , we get a lsh family, F ′′

F ′′ is (s1, s2, 1− (1− p1)
b, 1− (1− p2)

b)-family, both probabilities larger

▷ Our goal was to make only p1 larger

Choose b so 1− (1− p1)
b becomes very large (∼ 1) but 1− (1− p2)

b

doesn’t grow too much

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 25 / 58

lsh Scheme: AND-OR Compositon

F : (s1, s2, p1, p2)-family
r -wise AND−−−−−−→ F ′ : (s1, s2, p

r
1, p

r
2)-family

F ′ : (s1, s2, p
r
1, p

r
2)-family

b-wise OR−−−−−−→ F” : (s1, s2, 1− (1−pr1)
b, 1− (1−pr2)

b)-family

Choose b collections of r independent random functions from F
b meta functions f1, . . . , fb from F ′

each an AND of r functions in F

x and y is a candidate pair if

[f1(x) = f1(y)] or [f2(x) = f2(y)] or . . . or [fb(x) = fb(y)]

Visualize this as bands of b × r signature matrix

AND-OR Construction: r -way AND followed by b-way OR construction

Denoted by (r , b) AND-OR construction

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 26 / 58

lsh Scheme: OR-AND Composition

F : (s1, s2, p1, p2)-family
b-wise OR−−−−−→ F ′ : (s1, s2, 1− (1− p1)

b, 1− (1− p2)
b)-family

F ′ : (s1, s2, 1− (1− p1)
b, 1− (1− p2)

b)-family
r -wise AND−−−−−−→

F ′′ : (s1, s2, (1− (1− p1)
b)r , (1− (1− p2)

b)r)-family

Choose r collections of b independent random functions from F
r meta functions f1, . . . , fr from F ′

each an OR of b functions from F

x and y is a candidate pair if

[f1(x) = f1(y)] and [f2(x) = f2(y)] and . . . and [fb(x) = fb(y)]

Visualize this as bands of b × r signature matrix

OR-AND Construction: b-way OR followed by r -way AND construction

denoted by (b, r) OR-AND construction

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 27 / 58

lsh Scheme: AND-OR Compositon

Effect of construction and values of b and r of steepness of the S-curve

(r , b) = (4, 4) (r , b) = (4, 6) (r , b) = (6, 4)

p 1− (1− pr)b 1− (1− pr)b 1− (1− pr)b

0.1 0.0004 0.0006 0

0.2 0.00638 0.00956 0.00026

0.3 0.03201 0.04763 0.00291

0.4 0.09853 0.1441 0.01628

0.5 0.22752 0.32107 0.06105

0.6 0.42605 0.56518 0.17396

0.7 0.66655 0.80745 0.39387

0.8 0.8785 0.95765 0.70359

0.9 0.98601 0.99835 0.9518

A (s1, s2, .2, .8) family is converted by

(r , b) = (4, 4) AND-OR construction to a (s1, s2, 0.00638, 0.8785)

(r , b) = (4, 6) AND-OR construction to a (s1, s2, 0.00956, 0.95765)

(r , b) = (6, 4) AND-OR construction to a (s1, s2, 0.00026, 0.70359)

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 28 / 58

lsh Scheme and the S cruve

Plot of (1− (1− pr)b) is an S-shaped curve for every b and r

There is a small range where the probability sharply decrease (for small
values of p) or increase (for larger values of p)

This is exactly what we want (recall our goal of the step function)

Choose b and r (for AND-OR construction) so p2 is in the “right interval”,
and the p1 is on the left portion of the curve

Any S-curve has a fixed-point, i.e. ∃ p satisfying p = 1− (1− pr)b, above
this p prob. of candid. (1− (1− pr)b) increases and vice-versa

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 29 / 58

lsh Scheme and the S cruve

Effect of construction and values of b and r of steepness of the S-curve

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 30 / 58

lsh Scheme: OR-AND Composition

Effect of construction and values of b and r of steepness of the S-curve

(b, r) = (4, 4) (b, r) = (4, 6) (b, r) = (6, 4)

p (1− (1− p)b)r (1− (1− p)b)r (1− (1− p)b)r

0.1 0.01399 0.0482 0.00165

0.2 0.1215 0.29641 0.04235

0.3 0.33345 0.60613 0.19255

0.4 0.57395 0.82604 0.43482

0.5 0.77248 0.93895 0.67893

0.6 0.90147 0.98372 0.8559

0.7 0.96799 0.99709 0.95237

0.8 0.99362 0.99974 0.99044

0.9 0.9996 1 0.9994

A (s1, s2, .2, .8) family is converted by

(b, r) = (4, 4) OR-AND construction to (s1, s2, 0.1215, 0.99362)

(b, r) = (4, 6) OR-AND construction to (s1, s2, 0.29641, 0.99974)

(b, r) = (6, 4) OR-AND construction to (s1, s2, 0.04235, 0.99044)

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 31 / 58

lsh Scheme and the S cruve

Effect of construction and values of b and r of steepness of the S-curve

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 32 / 58

lsh Scheme

Create a cascade of multiple AND-OR or OR-AND constructions with
varying values of r and b depending on the requirements

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 33 / 58

lsh for other distances

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 34 / 58

lsh for other distances

We gave a lsh family for Hamming distance. Next we consider Jaccard,
Cosine, Euclidean distances

We only need a basic (d1, d2, p1, p2)-lsh family F

Here d1 and d2 are w.r.t other (than Hamming) distance measures

We want for a random h ∈ F

1 if sim(x, y) is high, then with high probability h(x) = h(y)

2 if sim(x, y) is low, then with high probability h(x) ̸= h(y)

With amplification we can adjust the parameters

Clearly such hash functions will depend on the particular similarity

We know that not all similarities have such suitable lsh families

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 35 / 58

Non-lsh-able distances

Known that no lsh scheme exists for certain distance measures

1 Sørensen-Dice: A similarity measure between sets

For two sets X and Y simsd(X ,Y) =
2|X ∩ Y |
|X |+ |Y |

X = {a},Y = {b}, and Z = {a, b}
simsd(X ,Y) = 0 simsd(X ,Z) = 2/3 simsd(Y ,Z) = 2/3

2 Overlap Similarity: A similarity measure between sets

For two sets X and Y simov (X ,Y) =
|X ∩ Y |

min{|X |, |Y |}

X = {a},Y = {b}, and Z = {a, b}
simov (X ,Y) = 0 simov (X ,Z) = 1 simov (Y ,Z) = 1

In both cases distances are defined as 1− sim∗(·, ·)
Imdad ullah Khan (LUMS) Locality Sensitive Hashing 36 / 58

Non-(yet)-lsh-able distances

Open question to design -lsh-able scheme for certain distance measures

1 Anderberg: A similarity measure between sets

For X and Y siman(X ,Y) =
|X ∩ Y |

|X ∩ Y |+ 2|X ⊕ Y |

Compute this similarity for pairs of

X = {a},Y = {b}, and Z = {a, b}

2 Rogers-Tanimoto A similarity measure between sets

For X and Y simrt(X ,Y) =
|X ∩ Y |+ |X ∪ Y |

|X ∩ Y |+ X ∪ Y + 2|X ⊕ Y |

Compute this similarity for pairs of

X = {a},Y = {b}, and Z = {a, b}

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 37 / 58

MinHash: lsh for Jaccard distance

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 38 / 58

lsh for Jaccard distance (Minhashing)

lsh family for Jaccard distance called Minhashes or Min-wise hashing

Suppose all sets are subsets of a universal set U

If sets are documents, then U could be the English lexicon

F : set of all permutations of elements in U

We will show that F is a family of lsh function

For a permutation π of elements in U the hash function hπ

hπ is of the form hπ : P(U) 7→ U ▷ P(U): all possible subsets

Takes as input a subset of U and returns an element of U

hπ maps a set S ⊆ U as follows:

hπ(S) is the first element of S in the order of π

|F| = |U|!

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 39 / 58

Minhashing

Let U = {w0,w1,w2,w3,w4}
Given four sets S1,S2, S3,S4

Let the permutation π = (w1,w4,w0,w3,w2)

elem.id S1 S2 S3 S4
w0 1 0 0 1
w1 0 0 1 0
w2 0 1 0 1
w3 1 0 1 1
w4 0 0 1 0

Given Sets

elem.id S1 S2 S3 S4
w1 0 0 1 0
w4 0 0 1 0
w0 1 0 0 1
w3 1 0 1 1
w2 0 1 0 1

Sets reordered according to π

hπ(S1) = w0 hπ(S2) = w2 hπ(S3) = w1 hπ(S4) = w0

hπ(S) is the index of row (elem.id) with first 1 in the order π

Called minhashing because of this first index (minimum index)

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 40 / 58

Minhashing

Let |U| = n, all sets (vectors) are n-dimensional =⇒ n! functions in F

F is a (d1, d2, (1− d1), (1− d2))-family of lsh functions

Choose hπ at random from F ⇐⇒ Choose a random permutation π of U

Let S and T be two arbitrary subsets of U

Suppose d(S ,T) ≤ d1

Picture S and T as two columns with rows ordered by π

hπ(S) = hπ(T) is event that first element in order of π is same in S and T

i.e. we get a [1 1] row before any [1 0] and [0 1] row (ignore [0 0] rows)

Since π is a random permutation the probability of this happening is

No. of [1 1] rows

No. of [1 1], [1 0], [0 1] rows
=

|S ∩ T |
|S ∪ T |

Thus Pr [hπ(S) = hπ(T)] ≥ 1− d1

The other bound is obtained analogously

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 41 / 58

Approximate Minhashing

Approximate minhash using universal hash function

1 To pick a random permutation is not easy

2 Finding minhashes of sets is expensive, need sorting by π and find the first 1

3 For large U, all columns would have many 0’s (sparse matrix)

4 Approximation: Use universal hash functions instead

5 permutation is of the form π : [n] 7→ [n] (bijection no collisions)

6 Take a universal hash function h : [n] 7→ [n] or even better [n] 7→ [2n]

7 Will have few collisions; order of wi ,wj ∈ U by h(wi) <
? h(wj)

8 By the randomness of h we get that either order is equally likely

9 The (approximate) minhash value is then computed as follows:

minhash(S) = arg min
w∈S

h(w)

10 With a universal hash function, only need to compute the minimum of
elements that are in S (ignore 0 rows in column of S)

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 42 / 58

SimHash: lsh for Cosine distance

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 43 / 58

lsh for Cosine distance

A lsh family F for cosine distance for points in Rm ▷ simHash

Choose a hyperplane h in Rm

a line in 2d , a plane in 3d , a d − 1 dimensional subspace of Rd

h divides the space in two half-spaces (upper/+ve and lower/−ve)

F contains functions fh corresponding to hyperplanes

fh maps vectors in the upper half-space to bucket + and vectors in
the lower half-space to bucket −

h

Upper halfspace

Lower halfspace

h1

fh1(•) = −

fh1(•) = +

h2

fh2(•) = −fh2(•) = +

u and v is a candidate pair if fh(u) = fh(v) else they are not
Imdad ullah Khan (LUMS) Locality Sensitive Hashing 44 / 58

lsh for Cosine distance

The same concept applies to higher dimensions

fh(•) = +
h

fh(•) = −

A hyperplane (a 2d plane) splits the 3d space into two half spaces

We show only a sphere, as wlog we consider only unit vectors
(surface of unit ball in Rd), as our concern is angles between vectors

Vectors in the upper half-space are mapped to + by the function
corresponding to the given hyperplane h

Vectors in the lower half-space are mapped to −
Imdad ullah Khan (LUMS) Locality Sensitive Hashing 45 / 58

lsh for Cosine distance

Let x and y be two vectors with angle θ between them

Probability that a random hyperplane h goes between them is exactly θ/180°

h1

fh1(x) = +

x y

fh1(y) = +

θ

h2

fh2(y) = −fh2(x) = +

x y

θ

fh1 and fh2 in F corresponding to hyperplanes h1 and h2

fh1(x) = fh1(y) =⇒ x and y is a candidate pair under fh1

Under fh2 , x and y is not a candidate pair

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 46 / 58

lsh for Cosine distance

F : corresponding to (m − 1)-dim hyperplanes (passing through 0 in Rm)

F is a (d1, d2, (180−d1)/180, (180−d2)/180)-family of lsh functions

Choose random fh ∈ F ⇐⇒ Choose random hyperplane h

dcos(x, y) ≤ d1 =⇒ ≥ (1−d1)/180 chance h does not separate x and y

dcos(x, y) ≥ d2 =⇒ ≤ (1−d2)/180 chance h does not separate x and y

Combining the above two statements we get the theorem

We can amplify this as we wish

F has infinitely many functions, unlike

lsh for Hamming similarity (only n functions in the base family) and

Jaccard similarity (“only” n! functions in the base family)

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 47 / 58

lsh for Cosine distance: Computation

Not easy to find the half-space where a vector x lies

Pick a unit vector v and consider hyperplane to which v is normal

The unit vector v “uniquely” represents the hyperplane

Infinitely many normal vectors to a hyperplane – all scalings of v
But only two unit vectors (v and −1v) pegged at origin

The hyperplane with v as its normal is the family of vectors (the n − 1
dimensional subspace) whose dot-product with v is 0

Upper half-space: vectors whose dot-product with v is positive (> 0)

Lower lower half-space: vectors whose dot-product with v is negative

fh(x) is computed as follows. Let v be a normal to h, then

fh(x) = sign(v · x), where sign(a) =

{
+ if a ≥ 0

− otherwise

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 48 / 58

Random Projection: lsh for Euclidean distance

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 49 / 58

lsh for Euclidean distance

Overall idea of lsh for Euclidean distance:
Projections of “close-by” vectors in Rm onto a vector should be “close”

ℓ : a line in Rm passing through 0

v : unit vector in direction of ℓ

Divide ℓ into segments of length
a (a fixed constant)

Segments are buckets for the
hash function corresponding to ℓ

`

v

bu
cke

t i
d

a

bu
cke

t i
d

Function hv = hℓ (corresponding to ℓ or v) maps x to segment where
projection of x on ℓ lies

hv(x) =

⌊
⟨x, v⟩
a

⌋
hv projects x onto v and discretize the projection into a multiple of a

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 50 / 58

lsh for Euclidean distance

lsh family F contains functions corresponding to unit vectors in Rm

F has infinitely many functions

Locality sensitivity of F

Intuitively, close by vectors are likely to fall into the same bucket

Far vectors are less likely to fall into the same bucket (tricky part)

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 51 / 58

lsh for Euclidean distance

Pr [hv(x) = hv(y)] ∝ d(x, y)

It also depends on angle between ℓ and line-segment joining x and y

v

bu
cke

t i
d

bu
cke

t i
d

x

y

a

`
x

y

v

`

bu
cke

t i
d

a

bu
cke

t i
d

If d(x, y) is small compared to a, x and y will likely fall in same bucket

Though x and y may fall close to boundary of two adjacent buckets

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 52 / 58

lsh for Euclidean distance

Pr [hv(x) = hv(y)] ∝ d(x, y)

It also depends on angle between ℓ and line-segment joining x and y

x

y

v

`

bu
ck
et

id
a

bu
ck
et

id

x

y

v

`

bu
ck
et

id
a

bu
ck
et

id

If d(x, y) is large compared to a, x and y unlikely to fall in one bucket

If d is large but line segment joining x and y is almost perpendicular
to ℓ, still they are likely to fall in same bucket

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 53 / 58

lsh for Euclidean distance

Dependence of event hv(x) = hv(y) and angle between xy and ℓ

If hv(x) = hv(y), then d cos θxy < a

This is only necessary condition, not sufficient

i.e. even if d cos θ ≪ a, x and y may still go to different buckets

v

bu
cke

t i
d

bu
cke

t i
d

x

a

`
y

d
θ

d c
os
θ

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 54 / 58

lsh for Euclidean distance

F is a (a/2, 2a, 1/2, 1/3)-family of lsh functions

Pick a random h in F ⇐⇒ Pick a random line ℓ in Rn

The angle θ between ℓ and the line through x and y is random

Suppose d = d(x, y) < a/2

Since d < a/2, x and y either fall in the same or consecutive buckets

Even if x falls on the bucket border, there is ≥ 50% chance that y
falls in the same bucket. Thus Pr [hℓ(x) = hℓ(y)] ≥ 1/2

Suppose d = d(x, y) < 2a

d ′ : distance between projections of x and y on ℓ (d ′ = d cos θ)

hℓ(x) = hℓ(y) ⇒ d ′ < a ⇒ d cos θ < a ⇒ 2a cos θ < a ⇒ cos θ < 1
2 ⇒ θ ∈ [60°, 90°]

Pr
(
θ ∈ [60°, 90°]

)
is 1/3 ▷ θ is random

Thus Pr [hℓ(x) = hℓ(y)] ≥ 1/3

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 55 / 58

lsh for Euclidean distance

Note difference between F for ℓ2 distance and those other distances

For others we got
for any d1 and d2 and the probabilities (1− d1) and (1− d2)

Here for any distance d1 < d2, all we get is p1 > p2

This will require more functions for amplification to desired values

We have infinitely many functions though

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 56 / 58

lsh Computational Issues

Memory Requirement of lsh and implementation trick

Given that the resulting hash tables have at most n non-zero entries, one
can reduce the amount of memory used per hash table to O(n) using
universal hash functions

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 57 / 58

Data Dependent lsh

All lsh we discussed are sensitive to specific distance measure

They are all data oblivious (they do not look at the data)

Clustering lsh ▷ a data dependent lsh scheme

Cluster datasets into k clusters (using some method and proximity)

Bucket ID of each point is it’s cluster id

https://randorithms.com/

Imdad ullah Khan (LUMS) Locality Sensitive Hashing 58 / 58

