Algorithms

Data Structures: Review

m Abstract Data Type
m List

m Stack
m Queue
m Set

m Dictionary
[

Priority Queue : Heaps

Imdadullah Khan

Algorithms work on data
Data must be represented in a usable way
Data is stored in data structures

Choice of data structure significantly affects the efficiency of the
algorithm

Just as functions (procedures) extend the notion of operators in a
programming language,

ADTs extend the notion of data types in a programming language
m ADTs are data types that have associated

m set of (valid) values (type of data)
m set of operations that can be applied on the set of values

For example the Set ADT could be defined as
m Sets of Integers

m Union, Intersection, set complement, set differences

Concrete implementation of an ADT is a Data Structure

Set can be implemented as arrays, linked list, bit vectors

Some of the frequently used ADT's are
m List

m Stack

m Queue

m Set

m Dictionary

[

Priority Queue

Sequence of elements of a certain type

Elements can be linearly ordered

Notion of position, next/previous, start/end of list

Associated operations:

INSERT(L, X, p)

DELETE(L, x) or DELETE(L, p)
RETRIEVE(L, p)

SEARCH(L, x)

NEXT(L, p)

FIRST(L)

Implemented using an array/linked list

Last-In First-Out(LIFO) list
Associated operations:
PuUsH(x)

Pop()

ISEMPTY()

1ISFULL()

S1ZE()

Implemented using an array/linked list

Use: In OS to handle recursive and procedural calls, DFS

First-In First-Out (FIFO) list
Associated operations:
ENQUEUE(x)
DEQUEUE(x)

ISEMPTY()

1ISFULL()

S1ZE()

Implemented using an array/linked list

Use: In processes scheduler, BFS

The Set ADT, in addition to INSERT, SEARCH and DELETE, includes
operations such as UNION (AU B), INTERSECTION (AN B) and
SUBTRACTION (A \ B)

The full Set ADT is not generally needed

E.g. Students’ record at RO (Zambeel)

E.g: How would you store the quiz scores for a set of students?
We need to maintain a set with insertion, deletion and searching
The scores of a quiz can be represented using a dictionary with roll
numbers as keys and scores as values

scores =

{'16020102’ : 17,

‘11010051' : 84,

‘11050001’ : 22,
‘12060009’ : 92}

A dictionary maintains a set of elements

Unique elements; elements are known by their “keys”

Elements could be compound (key, value) pairs

Associated operations:

What if an entry (k, V') exists in D and INSERT(D, k, v) is called?

INSERT(D, k, v)
DELETE(D, k)
SEARCH(D, k)
1ISEmpTY(D)
S1ze(D)

Dictionary can be implemented using

an array (sorted or unsorted)

a linked list (sorted or unsorted)

binary search trees (balanced or unbalanced)
hash tables

Unsorted Array:

m SEARCH: Linear search - traverse array sequentially

m INSERT: Insertion at the end of array (first empty slot)
m DELETE: Given a position, shift left remaining elements

Sorted Array:

B SEARCH: Binary search; repeatedly halve search interval
m INSERT: Lookup to find position and shift to make space
m DELETE: Given a position, shift left remaining elements

> O(n)
> O(1)
> O(n)

> O(log n)
> O(n)
> O(n)

Unsorted Linked List:

m LOOKUP: Linear search > O(n)
m INSERT: Insertion at start or end > O(1)
m DELETE: Lookup and link previous with next (doubly linked list) > O(n)

Sorted Linked List:

m LOOKUP: Linear search (can't jump to mid directly) > O(n)
m INSERT: Lookup to find position and update previous and next > O(n)
m DELETE: Lookup and link previous with next > O(n)
prev node next node
: prev| key | val |next ; prev(key |val [next : tail
new node
prev(key |val mext

Insertion to a sorted doubly linked list

m A binary tree has a root node, a left subtree and a right subtree
m Each node contains data, left pointer and right pointer
m Binary Search Tree is a Binary Tree with additional properties:
m Nodes have keys for comparison
m Keys in left subtree are smaller than node's key
m Keys in right subtree are larger than node's key

Binary Tree Binary Search Tree

For a dictionary, the node data is a (key) pair

m SEARCH: Compare with root; recursively lookup in appropriate
subtree

INSERT: Lookup for appropriate leaf position to insert node

m DELETE: - Given key, lookup to find pointer to node. Given pointer
to node, remove and recursively link parent with one of the children
Read Textbook

For a BST of height h, all the above operations take O(h) time

m An AVL tree is a binary search tree with additional properties:
m The height of the left and right subtree of a node differ by at most 1
m The left and right subtrees of a node are AVL trees
m AVL tree is a balanced BST; it's height is always O(log(n))

0 BST AVL

m SEARCH, INSERT and DELETE methods are the same as BST but an
AVL tree may become unbalanced after INSERT and DELETE

m An unbalanced tree is rebalanced using rotation; an adjustment to the
tree, around an item, that maintains the required ordering of items
Read Textbook

m All operations of AVL Tree have the same time complexity as BST i.e.
O(log n), as rotation takes only constant time

Dictionary Implementations - Hash Tables

m Suppose n data elements are to be stored in a dictionary with keys
k € U where universe set U =[1...N]

mlet meZt and h: U — [m]

m Make a array (or table) TT1,...,m]

m SEARCH: return T[h(k)] > O(1)
m INSERT: T[h(k)] «+ 1 > O(1)
m DELETE: T[h(k)] + 0 > O(1)

Dictionary Implementations - Hash Tables

m What if h(k.) = h(k,)? Collision occurs

hiky)
hk)

hiky) = hiks)

hiks)

m-1

Collision occurs between ky and ks

Dictionary Implementations - Hash Tables

Hashing with Chaining:

Make T[1,...,m] an array of linked lists
Lookup: Lookup in list T[h(k)]
INSERT: Insert in list T[h(k)]
DELETE: Delete from list T[h(k)]

Runtime of all operations: O(length of longest list in T[k])
ensure not many keys k map to the same index in T under h

/bl FL (L]

/18] 3L (] F2E k] /]

Ak

/] 1T k[

Uniform hashing:

m each key k has an equal chance of being mapped to the an index in T

under h
1

Pr[h(x) = h = —

r1h(x) = h(y)] = -

m Expected length of list of each index =

m Space and time complexity trade-off controlled by size of table m

m Example: Linear Congruential Hash Function
Select a prime number p > m
Choose integers a, b randomly s.t. a # 0
Then,

hap(x) = ((ax +b) mod p) mod m)
Read Number Theory slides from CS 210 Discrete Mathematics

m Runtimes of dictionary operations: different implementations

. Unsor. Sor. Unsor. | Sor. Hash
Operation Array Array L-list L-list BST AVL Function
Search(D,k) O(n) | O(logn) | O(n) | O(n) | O(h) | O(logn) O(1)
Insert(D,k,v) | O(1) O(n) O(1) | O(n) | O(h) | O(log n) O(1)
Delete(D,k) O(n) O(n) O(n) O(n) | O(h) | O(logn) o(1)

m Data elements have an associated priorities (called keys)

m Retrieval is done on the basis of this priority
m Operations:
m P = INITIALIZE()
B Initialize a priority queue with n elements with associated priorities
m INSERT(P, v, k)
m Insert an element v with priority k,
m EXTRACTMIN(P)

B Returns the element with minimum priority and delete it (also called DELETEMIN)
m One can analgously define EXTRACTMAX(P)

m DECREASEKEY(P, v, k')

m Change the priority of element v to k’
m One can analgously define INCREASEKEY(P, v, k')

Used in many algorithms
m scheduling systems

m shortest process first

longest request first
Cache Replacement algorithms (e.g. LRU, LFU)

Hierarchical (Agglomerative) Clustering

Dijkstra’'s and Prim's algorithm

Can be Implemented using
m Arrays (sorted or unsorted)
m Linked List (sorted or unsorted)

m Binary Heaps

Note: The terms Heap and Priority Queue are often used interchangeably as priority
queues are mostly implemented using heaps and they support the same operations

m Unsorted Array

m INITIALIZE: create array with elements in arbitrary order > O(n)
m INSERT: insert at the end of the array > O(1)
m EXTRACTMIN: FINDMIN in array by key, return, delete and shift > O(n)

m Sorted Array
m INITIALIZE: sort array in descending order by key > O(nlog n)
m INSERT: binary search for position and shift elements on right > O(n)
m EXTRACTMIN: remove the last element from array > O(1)
m Unsorted Linked-List (doubly linked list)
m INITIALIZE: create linked list with elements in arbitrary order > O(n)
m INSERT: insert new node at head of linked list > 0(1)

m EXTRACTMIN: FINDMIN in array by key, return, delete and shift > O(n)
m Sorted Linked-List

m INITIALIZE: sort linked list in ascending order by key > O(n?)
m INSERT: lienear search for position and insert new node > O(n)
m EXTRACTMIN: remove the element at head of linked-list > O(1)

DECREASEKEY is essentially a search, replace and (if needed) reorder

A binary heap can be used to implement priority queues

A rooted binary tree that satisfies the heap property

Min-Heap Property: If u is parent of v, then key(u) < key(v)

Max-Heap Property: If u is parent of v, then key(u) > key(v)

Associated Operations (min-heap):

‘H < INITIALIZE() > O(n)
builds a heap given a set of data elements with keys.

INSERT(H, v, k) > O(log n)
inserts an element v with key value k in H

DELETE(H, v) > O(log n)
deletes the element x from H given the pointer to x
DECREASEKEY(H, v, k') > O(log n)
decreases the key of element x in H to new value k’ given pointer to x
vV <= EXTRACTMIN(H) > O(log n)

returns the element v with min key value and deletes it from H

m Priority of each element in P is key of the respective element in .

A min-heap maintains a set of n elements each with a key and
satisfies the min-heap property.

Heap implementation uses a complete binary tree (binary heap) H
Every node has a key smaller than its both children

Data element with minimum key is at the root

Binary heap can also be represented as an array A of n elements
The minimum value (root) is at A[1]

The left and right child of a node at A[i] are at A[2/] and A2/ + 1],
respectively

The parent of a node at A[/] is at A[LéJ]

The sequence of vertices visited by level order traversal (BFS) of
the binary tree maps to the order of nodes in the array representation

Min-Heap: Binary Tree and Array Representation

Point of next insertion

‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘12‘13‘14‘15‘ ‘

A binary min-heap and its array representation

Min-Heap Operations: INSERT

INSERT(H, v, 3)

Min-Heap Operations: INSERT

ORNOIC IO @@)

INSERT(H, v, 3)
Insert v to next available position in H

Min-Heap Operations: INSERT

INSERT(H, v, 3)
Sift-up the added node as needed to restore heap property
Each Sift-up moves the node to the level above in the tree

INSERT(H, v, 3)

Min-Heap property restored

At max, as many Sift-Up moves can be made as the height of the tree
Recall: Height of a balanced complete binary tree with n nodes is O(log n)
Therefore, sifting up takes O(log n) time

function INSERT(H, v, k) > O(log n)
H.APPEND(v) > insert v at end, i.e. last available position in H
key(H[v]) + k
SirTUP(H, v)

function SIFTUP(H,v) > O(log n)
p <~ GETPARENT(v)
if key(H|[v]) < key(H[p]) then
swap(H]v], H[p])
SirTUP(H, p)

function DECREASEKEY(H, v, k) > O(log n)
key(H[v]) < k
SirTUP(H, v)

Min-Heap Operations: EXTRACT-MIN

EXTRACT-MIN(H)

Min-Heap Operations: EXTRACT-MIN

EXTRACT-MIN(H)
Extract the root node to be returned

Min-Heap Operations: EXTRACT-MIN

EXTRACT-MIN(H)
Delete the last filled node at its place and move its element to root

Min-Heap Operations: EXTRACT-MIN

EXTRACT-MIN(H)
Sift-down as needed to restore heap property
Each sift-down moves the node to the level below in the tree

EXTRACT-MIN(H)

Min-heap property restored

At max, as many Sift-Down moves can be made as the height of tree
Recall: Height of a balanced complete binary tree with n nodes is O(log n)
Therefore, sifting down takes O(log n) time

function EXTRACT-MIN(H) > O(log n)
return DELETE(H, root)

function DELETE(H, node) > O(log n)
key < H[node] > node is pointer to element to be removed
SWAP(H[node], H[lastFilledPosition])
REMOVE(H|lastFilledPosition])

SIFTDOWN(node)
return key

function SIFTDOWN(H, node)
| < LEFTCHILD(node)
r < RIGHTCHILD(node)
if key(H[l]) < key(H[r]) then
if key(H[node]) > key(H[/]) then
SWAP(H[node|, H[I])
SIFTDOWN(H, /)
else
if key(H[node]) > key(H[r]) then
SWAP(H[node], H[r])
SIFTDOWN(H, r)

> O(log n)

