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Data Preparation

Many qualitative issues with data
Data Preparation: Preprocessing tasks to prepare data for enhanced
analysis
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Data Compression

Data Compression deals with large volumes of data

Given a point set X = {x1, x2, . . . , xn}. Find

a compression scheme f : X 7→ X ′ ▷ encoder

a decompressor g : X ′ 7→ X ▷ decoder

objective is to minimize

n∑
i=1

∥xi − g(f (xi ))∥p

called ℓp-reconstruction error

g is not necessarily = f −1

If g = f −1, compression is called Lossless otherwise it is Lossy

Imdad ullah Khan (LUMS) Dimensionality Reduction 3 / 36



Data Compression

source: percona.com

Lossless Compression Lossy Compression

= original data ' original data

Huffman

Shannon Fano

JPEG

MPEG
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Data Compression

Data Compression deals with large volumes of data

x

y
= or '

Compression

x̃

ỹ

Decompression

compressed
data
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Low Distortion Embedding

Given two metric spaces (X , d) and (Y , d ′) and a real α > 0, Find

an embedding function f : X 7→ Y such that

∀ xi , xj ∈ X
1

α
d(xi , xj) ≤ d ′(f (xi ), f (xj)) ≤ d(xi , xj)

f(·)

f(·) (1± α) dG(u,v)

u

v

G

(R3, `2)(V,dG)
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Low Distortion Embedding

Given two metric spaces (X , d) and (Y , d ′) and a real α > 0, Find

an embedding function f : X 7→ Y such that

∀ xi , xj ∈ X
1

α
d(xi , xj) ≤ d ′(f (xi ), f (xj)) ≤ d(xi , xj)

Points in X embedded into Y almost preserving pairwise distances

The space Y may be easy to work with

The distance metric d ′ may be computationally nicer

Graph vertices with shortest paths distances embedded to (Rk , ℓ2)

Sequences with edit distance embedded into Euclidean space
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Multi-Dimensional Scaling

Given X = {x1, . . . , xn} and pairwise distance matrix D = {dij}, Find
A k-dimensional representation {x ′1, x ′2, . . . , x ′n} for points in X

∀ xi , xj ∈ X d(x ′i , x
′
j ) ∼ D(i , j)

source: statisticshowto.com

Many methods depending on whether or not the given and required
distance measure is metric or Euclidean
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Representation Learning

Automatically learn a representation for the dataset for further analysis

Usually we represent data points with vectors

Basically deals with the Varity of Big Data

Also called feature learning, feature engineering, feature vector
representation
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Representation Learning

Recommendation

Centrality

Visualization

Outlier

Regression

Clustering

Classification

NLP

Time Series

Graphs

Nodes

Text

Sets

Sequences

Audio

Image

Tweets

Video

Word

Vectors

Rm

Map objects
to vectors

Feature Space

Apply vector
space machine
learning algorithm
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Dimensionality Reduction

We discussed many issues with large dimensions

We focus on computational aspect of the curse

Processing time

Storage capacity

Communication bandwidth

Our goal is to reduce dimensionality of the dataset, while preserving
pairwise distances

There may be other objectives for dimensionality reduction, we will
mention some later
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Dimensionality Reduction

Given a point set X = {x1, . . . , xn} ⊂ Rm, Find

a dimensionality reduction function f : Rm 7→ Rk , k ≪ m such that

∀ xi , xj ∈ X (1− ϵ)d(xi , xj) ≤ d
(
f (xi ), f (xj)

)
≤ (1 + ϵ)d(x , y)

f(xi) =
[
8 7 1 0 3

]

f(xj) =
[
9 7 5 2 4

]

(1±
ε)d

ij

xi =
[
3 2 0 7 1 8 8 7 5 3 . . . . . . 5 3 1 4

]

xj =
[
2 4 1 7 0 8 9 7 6 2 . . . . . . 2 9 8 7

]
d ij
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Dimensionality Reduction

Given a point set X = {x1, . . . , xn} ⊂ Rm, Find

a dimensionality reduction function f : Rm 7→ Rk , k ≪ m such that

∀ xi , xj ∈ X (1− ϵ)d(xi , xj) ≤ d(f (xi ), f (xj)) ≤ (1 + ϵ)d(x , y)

f(xi) =
[
8 7 1 0 3

]

f(xj) =
[
9 7 5 2 4

]
(1±

ε)d
ij

d ij

xi =
[
3 2 0 7 1 8 8 7 5 3 . . . . . . 5 3 1 4

]

xj =
[
2 4 1 7 0 8 9 7 6 2 . . . . . . 2 9 8 7

]

A special case of low distortion embedding

distance measure d is the same in both domain and co-domain

Different than data compression

do not require x ≃ f (x), but only d
(
f (xi ), f (xj)

)
≃ d(xi , xj)
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Dimensionality Reduction

Two broad methods:

Specific methods depends on
the objective

Feature Selection Feature Extraction

1 Feature Selection

Select a few variables that are the most relevant and discard the rest

2 Feature Extraction

Create new features from data

New features usually are linear or non-linear combination of old ones

Objective: least reconstruction error or maximum inter-class separation
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Dimensionality Reduction: Feature Selection
m terms︷ ︸︸ ︷
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Feature Selection: Select a fixed subset of coordinates

All meaningful information (at least about some classes of points) may
be in the remaining coordinates

Select a random subset of coordinates

All meaningful information may still be in the not-sampled coordinates
(esp. for small sample size and many classes)

Feature Aggregation A form of feature extraction. Aggregate groups
of coordinates e.g. means of k groups of n/k coordinates

Can construct examples where it will not work
Depends on how groups are made, a deterministic strategy can be
countered by adversary and randomized one may also have problems
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Dimensionality Reduction: Feature Selection

Eliminate/select feature based on a goodness measure - (ir)relevance score

Feature variance - eliminate coordinate with close to 0 variance

Eliminate one in every pair of attributes with close to ±1 correlation

Eliminate features “independent” of class variable (ρ or χ2)

For each feature find training accuracy of classifier based on that
feature only - eliminate those with low accuracy

Score based on normalized mutual information, information gain,
conditional entropy ▷ relevance score

We discussed a domain specific criterion of eliminating features - stop
word removal for text analysis
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Dimensionality Reduction

Given a point set X = {x1, . . . , xn} ⊂ Rm, Find

a dimensionality reduction function f : Rm 7→ Rk , k ≪ m such that

∀ xi , xj ∈ X (1− ϵ)d(xi , xj) ≤ d
(
f (xi ), f (xj)

)
≤ (1 + ϵ)d(x , y)
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Dimensionality Reduction can be Data Dependent or Data Oblivious
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Dimensionality Reduction

As a warm-up exercise, suppose the m-d data lies on a line

`
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Projection

Let v be a unit vector, let ℓ be a line in the direction of v

Find the point p on ℓ that is closest to a vector u

The line connecting u to p is perpendicular to v

Otherwise p will not be the closest point (Pythagoras theorem)

The point (vector) p is called the the projection of u on v

x

y

p = (p1, p2)

u
`

v
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Dot product and Projection

Find the projection p of u on v

For general vectors we derive it from dot product

p is just scaled vector v, p = av, find that scalar a

u− p = u− av is perpendicular on v
v · (u− av) = 0

Hence v ·u− v · av = v ·u− av · v = 0

Which means av · v = v · u

a =
v · u
v · v

=
v · u
∥v∥ x

y

p = (p1, p2)

u
`

v

= αv
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Dimensionality Reduction

As a warm-up exercise, suppose the m-d data lies on a line ℓ

`

v

Let v be the unit vector in direction of ℓ

For xi ∈ X , let f (xi) := v · xi
In this case, since v · xi = xi (as xi lies on ℓ), we get

∀i , j ∥f (xi )− f (xj)∥ = ∥v · xi − v · xj∥ = ∥xi − xj∥
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Dimensionality Reduction

If the m-d data lies on a plane with orthonormal basis v1, v2, . . . , vk

v1

v2

Let V be the matrix with v1, v2, . . . , vk as columns

For xi ∈ X , let f (xi) := xV, we get

∀i , j ∥f (xi )− f (xj)∥ = ∥xiV − xjV∥ = ∥xi − xj∥

We get 0 error (no-distortion) dimensionality reduction ▷ Do not know V
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Dimensionality Reduction: Sidenote

`

v1

v2

b/w point and `

erro
r

perpendicular distance

We can find the low dimensional space to which the data is close by

Similar to (multiple) linear regression, but

1 Error here is perpendicular distance not vertical distance

2 Goal there is to minimize sse, here it is to minimize pairwise distances

With modified goals can take this approach but it is data dependent
dimensionality reduction ▷ Principal Component Analysis (pca)
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Linear Dimensionality Reduction

Given a point set X = {x1, . . . , xn} ⊂ Rm, Find

a linear function f : Rm 7→ Rk , k ≪ m such that

∀ xi , xj ∈ X (1− ϵ)d(xi , xj) ≤ d
(
f (xi ), f (xj)

)
≤ (1 + ϵ)d(x , y)

f can be represented by a linear transformation A, i.e. f (X ) = AX
▷ X : the n ×m data matrix with each xi ∈ X as a row

credit: Lopez-Paz & Duveaud

Feature selection/extraction are also linear dimensionality reduction
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Johnson-Lindenstrauss Lemma

Theorem

Given X = {x1, . . . , xn} ⊂ Rm. For ϵ ∈ (0, 1/2), there exists a linear map

f : Rm → Rk , k = c log n/ϵ2 such that for any xi , xj ∈ X

(1− ϵ)∥xi − xj∥2 ≤ ∥f (xi )− f (xj)∥2 ≤ (1 + ϵ)∥xi − xj∥2

Distance matrix computation now takes O(n2
log n

ϵ2
) instead of O(n2m)

Nearest neighbor computation now takes O(n
log n

ϵ2
) instead of O(nm)

Note: the lemma works only for ℓ2 distance
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Johnson-Lindenstrauss Lemma

source: van de Meent @ Northeastern Uni.
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Johnson-Lindenstrauss Lemma

source: van de Meent @ Northeastern Uni.
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Johnson-Lindenstrauss Lemma

source: van de Meent @ Northeastern Uni.
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Johnson-Lindenstrauss Lemma: Proof

A constructive proof of JL lemma:

project X onto k random directions

Choose k random unit vectors v1, v2, . . . , vk ∈ Rm

Let V be the m × k matrix with v1, v2, . . . , vk as columns

Each row of Y = XV is the reduced dimensional version of xi

x11 x12 x1m

x21 x22 x2m

...
...

...

xn1 xn2 xnm

...
...

...

. . . . . .

. . . . . .

. . .
. . .

. . .
. . .

. . . . . .

n×m m× k n× k

=

X V Y
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Johnson-Lindenstrauss Lemma: Proof

Recall how to generate random unit vectors ▷ random directions

v = (N (0, 1),N (0, 1), . . . ,N (0, 1)︸ ︷︷ ︸
m-coordinates

), normalized by ∥v∥ is a provably

random unit vector ▷ a point on the surface of the unit m-ball

We also discussed that the more discrete version v ∈ [−1, 1]m is a good
enough approximation of a random unit vector

We give the sketch of the constructive proof of JL-Lemma by projecting
on such random unit vectors
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Approximate Random Direction

Generating a random direction in Rm

v = (N (0, 1),N (0, 1), . . . ,N (0, 1)︸ ︷︷ ︸
m-coordinates

)

normalized by ∥v∥

Approximately generate unit directions
generate directions towards corners of the m-cubes [−1, 1]m

For m ≫ 1, these 2m directions approximately cover surface of m-ball

Achlioptas (2003), Database-friendly random projections: ...

(1, 1)
(1, 1, 1)
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Johnson-Lindenstrauss Lemma: Proof

Generate a random direction v ∈ {−1, 1}m

For x ∈ X let fv (x) = ⟨x, v⟩ = x · v =
∑m

i=1 xivi

E
[
(fv (x)− fv (y))

2
]
= E

[ m∑
i=1

v2i (xi − yi )
2

]
=

m∑
i=1

(xi − yi )
2E [v2i ]

Note that dimensionality of x and y is reduced to only 1

E
[
v2i
]
= 1 =⇒ E

[
∥fv (x)− fv (y)∥2

]
= ∥x− y∥2

Two Issues with this result

1 We want to preserve distances almost surely, not in expectation only

2 We want guarantee on distances not squared distances

E [X 2] = µ2 ≠⇒ E [X ] = µ

X =

{
0 w. prob. 1/2

1 else
E [X ] = 1, while E [X 2] = 2 , and

√
2 ̸= 1
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Johnson-Lindenstrauss Lemma: Proof

Resolve issues with probability amplification - repeated independent trials

Generate k random directions v1, v2, . . . , vk ∈ {−1, 1}m, scale by 1/
√
k

For x ∈ X , let f (x) = (fv1(x), fv2(x), . . . , fvk (x)) i.e. f (x)[i ] = x · vi

E
[
∥f (x)−f (y)∥2

]
= E

[ k∑
j=1

(
fv j (x)−fv j (y)

)2]
=

k∑
j=1

E

[ n∑
i=1

(vji )
2(xi−yi )

2

]

E

[ n∑
i=1

(vji )
2(xi − yi )

2

]
=

n∑
i=1

(xi − yi )
2E

[
(vji )

2
]
=

∥x − y∥2

k

Thus E
[
∥f (x)− f (y)∥2

]
= ∥x − y∥2

In expectation, mapping f preserves the squared ℓ2 distance between a pair
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Johnson-Lindenstrauss Lemma: Proof

The ℓ22-distance in reduced dimensions is concentrated around its mean

Using Hoeffding’s inequality (intervals for Xj ’s hidden in constants), we get

There exists constants c1 and c2, such that

Pr
(
∥f (x)− f (y)∥2 ≥ (1 + ϵ)∥x − y∥2

)
≤ e−c1ϵ2k

Pr
(
∥f (x)− f (y)∥2 ≤ (1− ϵ)∥x − y∥2

)
≤ e−c2ϵ2k

Thus, there is some constant c , such that

Pr
(
(1− ϵ)∥x − y∥2 ≤ ∥f (x)− f (y)∥2 ≤ (1 + ϵ)∥x − y∥2

)
≥ 1− e−cϵ2k

Choose k so e−cϵ2k < 1/n3 =⇒ k ≥ 1/ϵ2(log(n) + log(1/c))

By union bound probability that some pair is ‘bad’ is at most 1/n

With prob. ≥ 1− 1/n squared ℓ2-distance is preserved for all pairs
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Johnson-Lindenstrauss Lemma: Remarks

Exact proof of JL-lemma uses vectors vj ’s from N (0, 1)m

Original proof was actually different, required vj ’s to be orthonormal

Dimensionality of resulting space, k is O(1/ϵ2(log(n) + log(1/c)))

k is independent of m (original dimensions) and depends on n only

k ∝ ϵ (the error margin), require less error, k naturally would grow

This is essentially the best for linear maps ▷ Larsen & Nelson (2016), The

Johnson Lindenstrauss lemma is optimal for linear dimenisonality reduction

Even other maps can’t do much better ▷ Larsen & Nelson (2017),

Optimality of the Johnson-Lindenstrauss lemma

Can precompute the matrix V ▷ Data Oblivious

No need to store this matrix - can generate it using a random number
generator with fixed seeds or hash functions ▷ streaming algorithms
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Johnson-Lindenstrauss Lemma: Remarks

JL lemma works only for the ℓ2 distance

Meaning random projection may not work for other distance measures

To preserve ℓ1-distance within (1± ϵ), the number of dimensions
required k is ≥ n1/2−O(ϵ log(1/ϵ))

▷ Brinkman & Charikar (2003), On the impossibility of dimension reduction in ℓ1
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