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Proximity Problems on High Dimensional Data
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High Dimensional Data

Text represented as set or bag or tf-idf of words

1000’s of unigram, millions of bigrams plus contextual attributes
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source: towardsdatascience.com

Bengfort,, Bilbro & Ojeda: Applied Text Analysis with Python
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High Dimensional Data

Utility matrix for recommenders (Amazon product catalogue)

The netflix prize training set: ∼ 1M ratings of the form ⟨user, movie,
date of grade, grade⟩

480,189 users, 17,770 movies

?
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High Dimensional Data

Images and videos from multi-mega pixels digital cameras

R. Grosse @ Uni. of Toronto

N ×M matrix

NM × 1 vector

...

...

...
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High Dimensional Data

Social networks as adjacency matrix

A row of Facebook graph’s adjacency matrix has more than a billion
dimensions
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Proximity Problems

Given a set X of m-dim vectors, with |X | = n

Two generic proximity computation problems are building blocks of almost
all data analytics

1 Distance Matrix Computation

Find n × n matrix with all pairwise distances

2 k-nearest neighbors (k-NN) problem

Given a query point q in the same space as X , return the k closest
points in X to q
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Proximity Problems: Fixed Radius Nearest Neighbros

Given a set X of m-dim vectors, with |X | = n

k-nearest neighbors (k-NN) problem

Given a query point q in the same space as X , return the k closest
points in X to q

A variant of the k-NN problem is

Fixed radius nearest neighbors problem

Given a query point q in the same space as X and a radius r > 0,
find all points in X to within radius r from q

This variant is the same as the k-NN problem, in the sense that they are
reducibile to each other
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Proximity Problems: Applications
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Applications: Near Duplicate Detection

Given a set X of m-dim vectors, with |X | = n

Distance Matrix: n × n matrix with all pairwise distances

Near-duplicates detection

Find all pairs of points with distance less than δ, or all pairs with
distance less than 2σ from the mean distance

News Aggregation, Mirror webpages, Plagiarism Detection

A story written by one journalist appears differently on many websites

different spacing, added advertisements and differences in metadata

Find such articles for news aggregation site e.g. Google news
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Applications: Agglomerative Clustering

Given a set X of m-dim vectors, with |X | = n

Distance Matrix: n × n matrix with all pairwise distances

The distance matrix is input for

Agglomerative clustering

Principal Component Analysis

Spectral Clustering

Multi-dimensional Scaling
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Applications: Image Completion

Image Completion, Scene completion, image or art restoration
Hays and Efros , Scene Completion Using Millions of Photographs, SIGGRAPH 2007

Input: Image with missing section

Feature extraction

Image database (in millions)

k nearest neighborsContext matchingOutput: Reconstructed Image

Heavy duty graphics
and image procesing
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Applications: kNN Classification

k-NN is a simple method used for classification

The class label of a test instance x is predicted to be the most common
class among the k nearest neighbors of x in the train set

k-NN Classifier

Assign the test instance ( ? ) class A (⋆) or
class B (▲)

k = 3 nearest neighbors (ℓ2 distance)
1 ⋆ and 2 ▲ =⇒ assigned label = ▲

k = 7 nearest neighbors (ℓ2 distance)
4 ⋆ and 3 ▲ =⇒ assigned label = ⋆
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Applications: kNN Regression

In k-NN regression value of the target variable y for an instance x is
estimated as average of y ’s values of the k instance that are nearest to x

medium.com
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Applications: Collaborative Filtering

Collaboratively filter (personalize) ratings using only the rating matrix U

Find the set N of users with similar ratings as of i

Find the top k similar rows to the ith row

Estimate U(i , j) as an “average” of U(a, j)’s for a ∈ N

highly similar

(rating based)

low similarity

likes

likes

likes

will
probably

lik
e

Collaborative Filtering

Imdad ullah Khan (LUMS) Proximity Problem and Curse of Dimensionality 15 / 50



Applications: Autocorrect utility

Search Engines’ Autocorrect utility

On a query phrase q, find the most similar query phrases in a dataset

Has to be done in near real-time

source: towardsdatascience.com

Lateral Phishing Emails:

Phishing emails sent from a legitimate but compromised email address

Checking if recipient list is very dissimilar from usual recipients
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Approaches for kNN problem

Imdad ullah Khan (LUMS) Proximity Problem and Curse of Dimensionality 17 / 50



Brute Force Algorithms

Given a set X of m-dim vectors, with |X | = n

Almost all d(x , y) measures require traversal of all coordinates of x and y

Runtime of the brute force algorithm for D matrix computation

O(n2 ×m)

Runtime of the brute force algorithm for k-NN(q) is

O(n ×m)

Runtimes grows linearly with dimensionality and quadratically or linearly
with number of points

In dimensionality reduction we dea with the factor of m, here we deal with
the factor n
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List

Store X in a list

No preprocessing

On query run a findmin algorithm on distance to q

Runtime is O(n) distance computations

For m = 1, store X in a sorted array

Best data structure for 1-d NN(q)

With Binary search for q runtime is O(log n) distance computations
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Voronoi Diagrams

Voronoi diagram (m = 2) Partition of plane into nearest neighbor regions

Region Ri of a point xi ∈ X is the set of all points that are NN of xi

Ri : intersection of perp. bisectors of segments b/w xi and other points

For m = 2, Fortune’s algorithm for voronoi diagram in O(n log n)

Voronoi diagrams of 20 points under (left) Euclidean and (right) Manhattan distance. source: Wikipedia

Hard to even describe in higher dimensions
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kd-Tree

kd-tree data structure: Partition the space into non-uniform cells

A binary tree where each level compare 1 dimension (cutting dimension)

Internal nodes correspond to hyperplanes splitting space in 2 half spaces

Halve the points by a hyperplane perpendicular to one dimension

Recursively construct kd-tree for the two halves, until one point remains

Cycle through all dimensions
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kd-Tree

Searching for nearest neighbor in kd-tree

T. Nguyen @ Oregon State

kd-trees are very effective for dimensions ≤ 10 or so
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kd-Tree

Searching for nearest neighbor in kd-tree

T. Nguyen @ Oregon State

kd-trees are very effective for dimensions ≤ 10 or so
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Curse of dimensionality
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Curse of dimensionality

Richard Bellman coined the phrase, referring to difficulty of dynamic
optimization with many variables

Broadly, we face these issues when working with high dimensional data

Computational challenging, processing, storing, communication

In general as number of features increases redundancy also increases

More noise added to data than signal

Quality of Analytics degrades

Hard to visualize and interpret
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Aspects of Curse of dimensionality

Issues with Higher Dimensional Data

Computational and Storage Challenges

Complexity of exact algorithms for proximity computation problems

Data Sparsity (Sparse training set generalization)

Issues for Nearest Neighbors

Huge Search Space

Diminishing volume of n-ball

Stability of nearest neighbors

Distance Concentration

Angle Concentration
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Computational Complexity

Given a set X of m-dim vectors, with |X | = n

Almost all d(x , y) measures require traversal of all coordinates of x and y

Runtime of the brute force algorithms for D matrix computation

O(n2 ×m)

Runtime of the brute force algorithms for k-NN(q) is

O(n ×m)

Both runtimes grow linearly with dimensionality
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Data Sparsity

As dimensionality increases the relative input space covered by a fixed-size
training set diminishes

Many methods require a sizeable number of examples/samples in every
region of the space to support a hypothesis or train a generalizable model

1000 students (discretized) scores in course ∈ {0, 25, 50, 75, 100}%

Two courses c1 and c2 → 5× 5 grade combinations

Each combination has average 1000/25 = 40 students

Good enough sample size, can infer rules like

if grade(c1) ≤ 50 ∧ grade(c2) ≥ 75, then student is Math major

For 4 course, number of grade combinations is 54 = 625

1.6 students per combination

For 10 course, average students per combination is 0.0001024

Almost all combinations are never observed
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Huge Search Space for Nearest neighbor

For large dimensions partition the space into cells (grids or mesh)

Search for kNN in the cell containing query q and ‘neighboring’ cells

Number of ‘neighboring’ cells in 2-d is 32 = 9, in 3-d 33, in m-d, 3m

Grid can be non-uniform as in kd-tree
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Huge Search Space for Nearest neighbor

Another way to look at this

Higher dimensional neighborhood is very large and not local

▷ The notion of nearest neighbor breaks down

Suppose n points are placed uniformly at random in [0, 1]m

Grow a hypercube around q to contain f fraction of points (k = fn)

Expected edge length ℓ : Em(ℓ) = f 1/m

In 10d to get 10% points around q need a cube with edge length 0.8

To get only 1% point need to extend cube 0.63 along each dimension

q

1110

q

q
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Huge Search Space for Nearest neighbor

Another way to look at non-locality of higher dimensional neighborhoods

Suppose 5000 points are randomly placed in [0, 1]m. Let q = 0

In 1d must go a distance 5/5000 = 0.001 on average to capture 5 NN

In 2d must go
√

5/5000 = 0.031 units along both dimensions

In 3d must go 3
√
0.001 = 0.1 = 10% of the total (unit) length

In 4d must go 4
√
0.001 = 0.177 = 17.7% of unit length

In 10d must go 50.1% of unit length along each dimension

In md must go (5/5000)1/m along each dimension

q

1110

q

q

In high dimensional space nobody can hear you scream
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Diminishing Volume of m-ball

A manifestation of this phenomenon that points in higher dimensions are
isolated is the diminishing relative volume of the m-ball in m-cube

The m-ball (m-dim hypersphere) of radius r centered at origin

Bm,r :=
{
x ∈ Rm : d(x, 0 ≤ r) =⇒ ∥x∥2 ≤ r

}
Volume of Bm,r : Vm(r) =

πm/2

Γ(m/2 + 1)
rm

Γ(·) essentially is factorial of fractional numbers

Vm(r) =
πm/2

m/2!
rm For simplicity assume m is even

The m-cube (m-d hypercube) is the set [−1, 1]m (note edge length is 2)

Volume of m-cube: 2m
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Diminishing Volume of m-ball

In m-d ratio of volume of unit m-Ball to that of m-cube (edge length 2)

π
m/2/m/2!

2m
approaches 0 very fast

1

dim m volume of m-ball volume of m-cube ratio

2 π 22 ∼ 0.785

3 4π/3 23 ∼ 0.523

4 π2/2 24 ∼ 0.308

6 π3/6 26 ∼ 0.080

m π
m/2

m/2! 2m → 0
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Diminishing Volume of m-ball

Ratio of volumes of unit m-Ball and [−1, 1]m

π
m/2/m/2!

2m
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In higher dimensions all the volume is in ‘corners’

Points in high dimensional spaces are isolated (empty surrounding)

The probability that a randomly generated point is within r radius of
q approaches 0 as dimensionality increases

The probability of a close nearest neighbor in a data set is very small

Caveat: Real datasets are not random

Overcome this by getting larger training set (exponential in m)
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Diminishing Volume of m-ball

ratio of volumes of unit m-Ball and [−1, 1]m

π
m/2/m/2!

2m
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In higher dimensions all the volume is in ‘corners’

Probability of a close nearest neighbor in random data set is very small

Overcome this by getting larger training set (exponential in m)

To cover [−1, 1]m with Bm,1’s, the number of balls n must be

n ≥ 2m

Vm(1)
=

2m

π
m/2/m/2!

=
m/2! 2m

πm/2

m↣∞∼
√
mπ

(
m2m/2

2πe

)m/2

For m = 16 (a very small number) this n is substantially bigger than 258
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Instability of Nearest neighbor

In higher dimension the notion of nearest neighbor breaks down

No difference (contrast) between nearest and farthest neighbors

A points nearest neighbor loses meaning

q
center

nearest neighbor

farthest neighbor
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Instability of Nearest neighbor

A nearest neighbor query is ϵ-unstable (ϵ > 0), if the distance from q and
most other points are at most (1+ ϵ) times the distance from q to its 1NN

dm
in

(1
+
ε)d

m
in

We show that as dimensionality increases the probability of all nearest
neighbors queries becoming unstable increase (distance concentration)
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Distance Concentration

Another facet of curse of dimensionality is the phenomenon of distance
concentration

Assume points in Rm and ℓ2 distance measure

As m increases, almost all pairs of points have their ℓ2 distances

similar to distance of other pairs and

and very high

normalized distance is close to 1 (both high and similar are
encompassed)

We demonstrate it by observing distribution of pairwise distances for n
points in Rm (again real-life datasets are not random...)
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Distance Concentration

Another facet of curse of dimensionality is the phenomenon of distance
concentration

All pairwise distances are very high

Consequences:

Distance measure loses its meaning

We discussed it earlier that proximity measure is the building block of
data analytics, when it becomes meaningless the building collapses

Nearest neighbor is as good as farthest neighbor

e.g. in such cases very hard to build clusters

no justification to group a pair of points and not another
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Distance Concentration: Analytical Bounds

Generate a set X of n points at random in [0, 1]m

Maximum possible distance b/w a pair x, y ∈ X is d(x, y) ≤
√
m

Consider the squared-ℓ2 distance (for convenience)

d2(x, y) := ∥x− y∥2 ≤ m
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Distance Concentration: Analytical Bounds

Generate a set X of n points at random in [0, 1]m

For a fixed coordinate i < m, Pr [|xi − yi | ≥ 1/4] > 1/2

1/40

1

yi

1/4

xi
1

yi = xi + 1/4

yi = xi − 1/4

Let Vi =

{
1 if |xi − yi | ≥ 1/4

0 else
▷ Indicator if coordinate difference is big

Let V =
m∑
i=1

Vi =
∣∣{i : |xi − yi | ≥ 1/4

}∣∣
E (V ) ≥ m/2 ▷ linearity of expectation

On average at least half coordinates differences are ≥ 1/4 (‘big difference’)
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Distance Concentration: Analytical Bounds

Theorem (Chernoff Bound (tail inequality))

Let V = V1 + V2 + . . .+ Vm be the sum of m independent Bernoulli random
variables and let E (V ) = µ. The (loose) Chernoff bounds are:

• Pr
(
V ≥ (1 + δ) µ

)
≤ e

−δ2µ/3 for 0 < δ < 1

• Pr
(
V ≥ (1 + δ) µ

)
≤ e

−δµ/3 for δ > 1

• Pr
(
V ≤ (1− δ) µ

)
≤ e

−δ2µ/2 for 0 < δ < 1

For fixed x, y
[
V ≥ m

4 =⇒ ∥x− y∥2 ≥ m
64

]
w.p ≥ 1− e−

m
16 ▷ δ = 1

2

From this using union bound we get the following result

If m = Ω(log n), then w.h.p for all x, y ∈ X we have d2(x, y) ≥ m
64

This means all pairs are far (dist ≥
√
m/8)
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Distance Concentration: Simulation

Julie Delon @ Uni. Paris Descartes
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Angle Concentration

In large dimensions (at least for random points) the distance measure
(at least ℓ2 distance) is more or less meaningless

Can we use cosine distance?

The same concentration phenomenon is observed for pairwise angles

Max num of pairwise orthogonal vectors (x · y = 0, θx,y = 90°) in R2 is 2

Max num of pairwise orthogonal vectors in R3 is 3

Max number of pairwise almost orthogonal vectors in Rm

(x · y ≤ ϵ, θx,y = 90° ± ϵ) is eΩ(m)
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Angle Concentration: Random Direction

Generating a random direction in Rm

Equivalently a random unit vector in Rm

We will need it in subsequent sessions

It is not a straight-forward task in higher dimensions

An immediate way to pick a random unit vector:

choose a random point in v ∈ [−1, 1]m and normalize it as v̂ = v/∥v∥

1

The red points have significantly high probability
of begin chosen compared to the green points

0
Clearly the distribution is skewed
towards the diagonal directions
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Angle Concentration: Random Direction

Generating a random direction in Rm

choose a random point in v ∈ [−1, 1]m

normalize it as v̂ = v/∥v∥

distribution skewed towards diagonal directions

1

The red points have significantly high probability
of begin chosen compared to the green points

0

A quick fix, due to Marsaglia & Zaman

Generate v ∈ [−1, 1]m

If v is outside the unit hypersphere (v21 + v22 + . . . v2m > 1) discard it

Normalize any non-discarded v
we get a point on the surface of the unit-ball equally likely

Computationally expansive ▷ diminishing volume of unit ball

Just in 2d choose a random number in [0, π] and make a unit vector
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Angle Concentration: Random Direction

Generating a random direction in Rm

Use spherical symmetry of the standard normal distribution

Pick each coordinate vi independently from N (0, 1) and normalize v

Known to be uniformly distributed over the surface of the unit m-ball
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Angle Concentration: Approximate Random Direction

Generating a random direction in Rm

Approximately generate unit directions
generate directions towards corners of the m-cubes [−1, 1]m

For m ≫ 1, these 2m directions approximately cover surface of m-ball

Achlioptas (2003), Database-friendly random projections: ...

(1, 1)
(1, 1, 1)
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Angle Concentration: Analytical Bounds

Generate a set X of n vectors in [−1, 1]m ▷ and normalize them

x and y are orthogonal if cos θx,y = ⟨x, y⟩ =
∑
i
xiyi ∼ 0

For a fixed x, let Vi = xiyi and let V =
m∑
i=1

Vi = cos θx,y

−xi
m

≤ Vi ≤ xi
m

and E
(
Vi

)
= 0

On average the vector x is orthogonal to any vector y
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Angle Concentration: Analytical Bounds

Theorem (Hoeffding’s Inequality)

If Xi ’s are random variables bounded by the interval [ai , bi ]. Let S =
m∑
i=1

Xi . Then

Pr(|S − E [S ] ≥ t) ≤ 2 exp

(
− 2t2∑m

i=1(bi − ai )2

)

Using this we get that

Pr(V ≥ ϵ) ≤ 2 exp

(
− 2ϵ2∑m

i=1(2xi/m)
2

)
= 2e−

ϵ2n/2

From this using union bound we get the following result

If m = Ω(log n), then w.h.p for all x, y ∈ X we have cos θx,y ≤ ϵ

This means all pairs are almost orthogonal (angle ≤ arccos(ϵ))
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