
Singular Value Decomposition
Lecture Notes for Big Data Analytics

Imdad Ullah Khan

April 2019

Contents

1 Rank of a matrix 2
1.1 Rank Factorization of a matrix . 2

1.1.1 Equivalence between these definitions . 3
1.1.2 Singular and non-singular matrices . 3

2 Low Rank Approximation 3
2.1 Why Low Rank Approximability is Expected . 5

3 SVD Definition 7

4 Low Rank Approximation from SVD (Truncated SVD) 10
4.1 Spectral decomposition of a matrix - Decomposition into rank-1 matrices 10
4.2 Truncated SVD . 11

4.2.1 How to choose k . 12

5 Application of Low Rank Approximation 12
5.1 Data Compression . 12
5.2 Recommender System . 12

5.2.1 Using SVD to factorize the rating matrix 14
5.3 Latent Semantic Analysis and Word Embeddings 15
5.4 Denoising . 18

6 Relation of SVD and eigen-decomposition 18

7 Computing the SVD: The power method 19

1

1 Rank of a matrix

Given a n×m matrix A
Column Rank of A, col-rank(A) is the maximum number of linearly independent columns of
A
Row Rank of A, row-rank(A) is the maximum number of linearly independent rows of A For
any matrix A, rank(A) := col-rank(A) = row-rank(A) Looking at A as a linear transformation,
rank(A) is the (true) dimensionality of the range of A (dimensions of the output). Note that
n ×m matrix maps m × 1 vectors to n × 1 vectors, but the true dimensionality of output may
be very low. As we discussed, suppose rank(A) = 1 (all columns are linear dependent), then A
maps all vectors to a line (one-dimensional subspace of Rn)

For example

[
2 4
3 6

] [
x
y

]
=

[
2x+ 3y
4x+ 6y

]
, thus all vectors are mapped to the line y = 2x

Another equivalent definition of rank also called the decomposition rank of a matrix.

Rank-0 Matrices: A n×m matrix has rank 0 if all it’s entries are 0.

Rank-1 Matrices: A n ×m matrix A has rank 1 if it can be written as an outer product
of a n× 1 matrix u and a m× 1 matrix v, i.e. A = uvT

u
 [vT

]

u1v
T

u2v
T

...
. . .

...
unv

T

. . .

v1u v2u . . . vmu

. . .

A = uvT = ==

Notice that the jth column of A is just vj/vi times the ith column of A. Similarly all rows
are linearly dependent, thus the row and column ranks are 1.

Rank-2 Matrices: A n×m matrix A has rank 2 if it is the (non-trivial) sum of two rank-1
matrices. i.e.

A = uvT + wxT

(By non-trivial we mean that that A is not rank-0 or rank-1).

u1v

T + w1x
T

u2v
T + w2x

T

...
. . .

...
unv

T + wnx
T

. . .

v1u+ x1w v2u+ x2w . . . vmu+ xmw

. . .

A = uvT + wxT = =

u w

[

vT

xT

]
=

Rank-k Matrices A n ×m matrix A has rank k if it is the sum of k rank-1 matrices and
cannot be written as a sum of k − 1 or fewer rank-1 matrices.

1.1 Rank Factorization of a matrix

The above definition of is in terms of sum of matrices. Rephrased in terms of matrix multipli-
cation, an equivalent definition is that A can be written as, or “factored into” the product of a

2

long and skinny (n × k) matrix U (whose columns are the columns of rank-1 factors ui’s) and
a short and long (k < n) matrix V T (whose rows are the rows of the rank-1 factors vi’s) . And
that A cannot be likewise factored into the product n× (k − 1) and (k − 1)×m matrices.

A Un

m

n

k

×= V T

m

k

Figure 1: Rank factorization of a matrix

1.1.1 Equivalence between these definitions

All these definitions are equivalent. Any condition implies the other two in terms of row-rank
and col-rank. It is clear that each condition implies the other two

if A = UV T , then all of A’s columns are linear combinations of the k columns of U , and all
of A’s rows are linear combinations of the k rows of V T . The proofs are straight-forward.

1.1.2 Singular and non-singular matrices

If n× n matrix A has rank n, we say it is a “full rank” matrix. It uniquely maps n× 1 vectors
to n × 1 vectors (thus it is a bijection) we say the matrix is invertible. If rank(A) < n, then
A is called a singular matrix (rank deficient matrix). The resulting dimensionality is ≤ n − 1,
we cannot get pre-images from images and A is not invertible. There cannot be any inverse for
non-square matrices.

2 Low Rank Approximation

Suppose our data matrix A is a n ×m matrix (each row is a data point and each column is a
feature). If all data points x1, . . . ,xn ∈ X can be represented as a linear combination of some
other k basis vectors v1, . . . ,vk (rather than the given features), i.e. xi =

∑k
j=1 cijvj, where the

coefficients, uij are lengths of projections of xi on vj. This means we can write A as A = UV T .
Geometrically, this mean that all data lie in a k-dimensional subspace (spanned by v1, . . . ,vk).

3

v1

v2

all data points lie in the 2d plane

Figure 2: Data points lie in 2d plane

In this case we can just store the matrix U of coefficients and the matrix V of with basis
vectors v1, . . . ,vk as columns. Each row of U can be thought of a reduced dimensional version
of rows in A

Generally, we might not be able to get all the data lying in a k dimensional subspace, but
what if data is ‘close by’ a low dimensional subspace (see below on why should we expect this).
That is datasets may be approximately low ranks, i.e. while we may not get A = UV T but we
would like to find U and V such that A ' UV T

v1

v2

all data points lie close to the 2d plane

Figure 3: Data points lie close to the 2d plane

The primary goal of this lecture is to identify the “best” way to approximate a given matrix
A with a rank-k matrix, for a target rank k. Such a matrix is called a low-rank approximation.

Naturally, we need a measure of goodness of a low-rank approximation UV T for a data matrix
A. The most natural and easy to deal with error measure is the sum of squared errors i.e.

n∑
i=1

‖xi −
j∑

j=1

uijvj‖2 =: ‖A− UV T‖2F

Where for a matrix M , ‖M‖F =
√∑

i,j M
2
ij is called the Frobenius norm of a M . Note that

many other error measures (norms of the error matrix) can be used, while the Frobenius norm
is the most popular, spectral norm is also quite common.

4

Formally, the optimization problem of finding the best low-rank approximation w.r.t to Frobe-
nius norm error measure is as follows

arg min
V ∈ Rk×m, U ∈ Rn×k

‖A− UV T‖2F

This looks like a very difficult problem (it is non-linear and not convex) but can nonetheless
be solved surprisingly efficiently. We will discuss the power iteration method for this.

2.1 Why Low Rank Approximability is Expected

I am going to present two toy examples these datasets are made up but are very realistic and
based on slight adjustments to real datasets.

Housing Data Example Consider the following data about for sale houses

ID Beds Baths
Living
sq-ft

Lot
sq-ft

Floors
Garage
Cars

List
Price

Sale
Price

1 1 1 870 1100 1 0 31630 31544
2 1 1 1080 1400 1 0 35920 35916
3 2 1 1250 1500 1 0 48250 48025
4 2 1 1285 1550 1 0 48965 48738
5 2 2 1460 1800 2 1 67540 67633
6 3 2 1560 1800 1 0 68440 68763
7 3 2 1630 1900 2 1 79870 79533
8 3 2 2050 2500 2 1 88450 88054
9 3 2.5 2120 2600 2 2 102380 102576
10 4 2 2360 2800 2 1 103640 103892
11 4 2.5 2500 3000 2 1 109000 109523
12 4 2.5 2570 3100 2 1 110430 110393
13 4 3 2710 3300 3 2 125790 125945
14 5 2 2880 3400 2 2 133120 133503
15 5 2.5 2880 3400 3 2 135620 136124
16 5 2.5 3300 4000 3 2 144200 144365
17 5 3 3650 4500 3 2 153850 154444
18 5 3 3720 4600 3 3 165280 165439

List-Price = 10k× bed +5k×baths +9× liv-sqFT +8× Lot +10k× Cars

Sale Price = (1± 0.02)× List Price

But the rank of this matrix is not really eight (the features describing it). There are linear
dependencies among features. Note that there may be many more non-linear dependencies.

5

ID Beds Baths
Living
sq-ft

Lot
sq-ft

Floors
Garage
Cars

List
Price

Sale
Price

1 1 1 870 1100 1 0 31630 31544
2 1 1 1080 1400 1 0 35920 35916
3 2 1 1250 1500 1 0 48250 48025
4 2 1 1285 1550 1 0 48965 48738
5 2 2 1460 1800 2 1 67540 67633
6 3 2 1560 1800 1 0 68440 68763
7 3 2 1630 1900 2 1 79870 79533
8 3 2 2050 2500 2 1 88450 88054
9 3 2.5 2120 2600 2 2 102380 102576
10 4 2 2360 2800 2 1 103640 103892
11 4 2.5 2500 3000 2 1 109000 109523
12 4 2.5 2570 3100 2 1 110430 110393
13 4 3 2710 3300 3 2 125790 125945
14 5 2 2880 3400 2 2 133120 133503
15 5 2.5 2880 3400 3 2 135620 136124
16 5 2.5 3300 4000 3 2 144200 144365
17 5 3 3650 4500 3 2 153850 154444
18 5 3 3720 4600 3 3 165280 165439

List-Price = 10k× bed +5k×baths +9× liv-sqFT +8× Lot +10k× Cars

Sale Price = (1± 0.02)× List Price

Since I made up this data, it is not very hard to see that Living Sq-ft feature can be derived
as a linear combination of Lot sq-ft and Beds feature.

Shirt Dimension Example When you buy a shirt, there are many measurements involved,
chest and waist circumferences, sleeve and back lengths. One can easily think of many more. But
generally, in the market shirts are marked with collar measurement only and it fits reasonably
well in most cases. Here is a made up data, (the data is quite realistic only minor adjustments
are made to a real dataset to make the formula simpler)

The collar feature is a new dimension (linear combination of other features). So the data
actually lies in a one dimensional space and true rank of the data is 1.

6

Chest Back Waist Sleeve

104 81 98 67

107 81 100 67

110 82 102 67

113 82 104 67

116 83 106 68

120 83 110 68

124 84 114 68

128 84 118 68

132 85 122 68

136 85 126 68

Chest Back Waist Sleeve Collar
104 81 98 67 37

107 81 100 67 38

110 82 102 67 39

113 82 104 67 40

116 83 106 68 41

120 83 110 68 42

124 84 114 68 43

128 84 118 68 44

132 85 122 68 45

136 85 126 68 46

Collar =0.44× Chest +0.015× Back −0.2× Waist +0.153× Sleeve

3 SVD Definition

Our high-level plan for computing a rank-k approximation of a matrix A is: (i) express A as a list
of its ingredients, ordered by “importance” (ii) keep only the k most important ingredients. The

7

non-trivial step (i) is made easy by the singular value decomposition, a general matrix operation
discussed in the next section.

Theorem 1. Any n×m matrix can be written as a product of three matrices, A = UΣV T

• U is a n× n orthogonal matrix (columns are orthonormal)

• V is a m×m orthogonal matrix

• Σ is a n×m diagonal matrix, with non-negative entries and entries at the main diagonal
are sorted from highest value to lowest

A Un

m

n= V T

mn

m

Σn

m

σ1

σk

σ2

. . .

orthonormal non-negative
diagonal

orthonormal

u1 u2 un

vT
1

vT
2

vT
m

The SVD theorem is depicted in this diagram. Another version sometimes called compact
SVD is used often (as we will do). You should have asked this question, that what if rank(A)
is much smaller than min{m,n}, then how can we have n or m orhtonormal columns and rows
in U and V T , respectively. Well the answer is that we never said they only have real vectors.
Anyways, the compact SVD version addresses this issues.

Theorem 2. Any n ×m matrix with rank r ≤ min{m,n} can be written as a product of three
matrices, A = UΣV T

• U is a n× r orthogonal matrix (columns are orthonormal)

• V is a r × r orthogonal matrix

• Σ is a r ×m diagonal matrix, with non-negative entries and entries at the main diagonal
are sorted from highest value to lowest

A Un

m

n= V T

r

Σ

σ1

σr

σ2

. . .

orthonormal
non-negative

diagonal orthonormal

vT
1

r

r r

u1 ur

m

vT
r

8

• Columns of U are called left singular vectors

• Columns of V are called right singular vectors (note that these are rows of V T)

• Diagonal entries of Σ are called singular values

The proof of these theorems are not very deep and covered in any standard linear algebra
text. We discuss what does it mean geometrically. We know that an n × m matrix maps
vectors in Rm to vectors in Rn (in a linear fashion, 0 is mapped to 0 and straight lines are
mapped to straight lines). As we discussed with many examples that linear transformations can
achieve many things (scaling, rotation, reflections, shear). The SVD theorem says that no matter
how weired the linear transform A looks likes it only performs a rotation, followed by scaling,
followed by another rotation. Note that orthogonal matrices achieve rotations (and reflections
and permutations we noted this in the lecture on PCA too). While diagonal matrices do only
scaling.

Since by SVD, A = UΣV T , where U and V have orthonormal columns and rows, respectively,
and Σ is a diagonal matrix. The SVD says that we can replace any transformation by a rotation
(or reflection) from “input” coordinates into convenient coordinates, followed by a simple scaling
operation, followed by a rotation into “output” coordinates. Furthermore, the diagonal scaling
Σ comes out with its elements sorted in decreasing order.

v1

v2 i

j

σ1i

σ2j

σ1u1

σ2u2

V T Σ U

A

Figure 4: Any transformation is a rotation followed by scaling followed by a rotation

If we take the unit circle and transform it by A, we get an ellipse (because A is a linear
transformation). The left singular vectors u1,u2 are the major and minor axes of that ellipse
(being on the left they live in the “output” space). The right singular vectors v1,v2 are the
vectors that get mapped to the major and minor axes (being on the right they live in the
“input” space). If we break the transformation down into these three stages we see a circle being
rotated to align the v’s with the coordinate axes, then scaled along those axes, then rotated to
align the ellipse with the u’s:

9

4 Low Rank Approximation from SVD (Truncated SVD)

The SVD theorem says that no matter how weird the linear transform A looks likes it only
performs a rotation, followed by scaling, followed by another rotation. In other words A has
an equivalent representation as the product of 3 simple matrices two orthogonal spans and a
diagonal scaling. One of the most useful application of SVD (and the one most relevant to us)
is that the factorization of A into UΣV T can be used to get the best k-rank approximation of A
in terms of Frobenius norm, for any k.

4.1 Spectral decomposition of a matrix - Decomposition into rank-1
matrices

SVD expresses the n×m matrix A as a linear combination of min{m,n} rank-1 matrices, where
the coefficients are the singular values and the rank-1 matrices are the outer product of the
corresponding left and right singular vectors.

Let A = UΣV T , then

A =

min{m,n}∑
`=1

σ` u` ◦ vT
`

A

U

n

m

n=

V T

m

r

Σ

r

r

σr

. . .
un

vT
m

An

m

=

σ1
σ2
σ3

u2 u3

vT
3

vT
2

vT
1

vT
3

vT
1 vT

2

u2 u3

u1

u1

+ + + · · ·

σ2 σ3σ1

r

We picture this view as writing A as a sum of its ingredients in decreasing importance of
ingredients. The truncated SVD keeps the top k important ingredients and drop the remaining.

10

4.2 Truncated SVD

Define Ak to be the sum of the first k terms in the SVD decomposition of A, i.e.

Ak =
k∑

`=1

σ`u` ◦ vT
` +

r∑
`=k+1

σ`u` ◦ vT
`

A

U

n

m

n=

V T

m

r

Σ

r

r

...

A2
n

m

' +

r

.

Ak =
k∑̀
=1
σ`u` ◦ vT` +

r∑
`=k+1

σ`u` ◦ vT`

This only corresponds to setting the last r − k singular values σk+1 to σr to 0.
For 1 ≤ k ≤ r, let Uk ∈ Rn×k contain the first k left singular vectors (the first k columns

of U), Σk ∈ Rk×k be a diagonal matrix containing the first k singular values (the top-left k × k
principal submatrix of Σ), and V T

k be the first k right singular vectors (the first k rows of V T).
Let Ak = UkΣkV

T
k .

One can easily prove that Ak is the best rank-k approximation to A, i.e. it is the solution to
the above optimization problem.

Ak

U

n

m

n=

V T

r

Σ

σr

. . .

r

r r

u1 ur

m

vT
r

u2 uk

vT
1

vT
2

vT
k

σ1
σ2

σk

Σk
V T
k

Uk

11

4.2.1 How to choose k

What is the right number of singular values and vectors that we should keep and discard the
remaining. This is a similar question that we tackled in choosing the right number of clusters,
and then in choosing the right number of principal components.

If k is not given as part of input, then we select k by looking at singular values. We can
choose k (as the elbow-point) a point after which the remaining singular values are significantly
smaller than the preceding ones. Alternately, we can select the first k singular values such that
sum of singular values (or there squares) is at least a certain fraction of total sum. This threshold
can be chosen with trial and error or can be domain-dependent. Note that the sum of squares
of a signal (and array) is called the energy of the signal. Thus a threshold can be that choose
k such that

∑k
i=1 σ

2
i ∼ 0.85 (

∑r
i=1 σ

2
i), i.e. that is choose k so as 85% of the energy in singular

values is retained.

5 Application of Low Rank Approximation

5.1 Data Compression

We use SVD as a data dependent linear dimensionality reduction method. It provides in depth
insights into the data and is applicable in a wide range of field. Just like PCA it is also linear, so
especially when there is reason that original features are related in a linear fashion SVD provides
a very good dimensionality reduction.

A low-rank approximation provides a (lossy) compressed version of the matrix. The original
matrix A is described by nm numbers, while describing Uk and V T

k requires only kn + km =
k(n+m) numbers. When k is significantly smaller than n and m, k(n+m)� nm. For example,
when A represents an image (with entries = pixel intensities), m and n are typically in the 100s.
In other applications, m and n might well be in the tens of thousands or more. With images,
a modest value of k (say 100 or 150) is usually enough to achieve approximations that look a
lot like the original image. Thus low-rank approximations are a matrix analog to notions of
dimensionality reduction for vectors.

5.2 Recommender System

A natural interpretation of the truncated SVD of of a data matrix A that of approximating A in
terms of k “concepts”. The singular vectors are a numeric representations of rows and columns
of the concepts, while Σk measure the strength of these concepts.

The ith row of U represents the ith data item (ith row of A) as a linear combination of the
rows of concepts (with coefficients Σ). The jth column of V T represents the jth dimension (jth
columns of A) as a linear combination of the columns of concepts (with coefficient Σ).

We give an example for recommendation systems. Recall the recommendation system prob-
lem.

12

?

In the matrix factorization approach to recommender, factorizes the n×m rating matrix R
as R = PQ by solving the following optimization problem

min
P∈Rn×k

Q∈Rm×k

∑
(i,j)

(
Rij − PiQ

T
j

)2
+ λ

(
‖P‖2F + ‖Q‖2F

)
In this setting the matrix P is a k-dim representation of users (ith row is user i in a la-

tent/hidden feature space Rk) and the matrix Q is the k-dim representation of movies, (ith row
of P is the latent feature space representation of movie i, the ith column of R). PiQ

T
j is the

interaction between user i and movie j, the approximation of Rij. Thus we aim to find the best
k dimenisonal feature representation for users and movies.

The second term in the optimization objective is the so-called regularization term, with the
weight λ it keeps the value of P and Q from growing too large in order to avoid over-fitting.

?

QT

P

13

A dummy example is as follows:

diagram adapted from Cho-Jui Hsieh @ UCLA

Names are dummy

2d view of
latent feature space

diagram adapted from Cho-Jui Hsieh @ UCLA

latent feature space

Users and movies mapped to
Points are coordinates

(2-dim P and Q)

of users and movies

5.2.1 Using SVD to factorize the rating matrix

A schematic view of matrix factorization method for recommenders is given in the following
diagram.

u
se

rs

items

u
se

r
la

te
n
t

fe
at

u
re

s items latent features×

'rating matrix

R

P Q

pT
i qj ' R̂ij

We can use the SVD to factor the rating matrix R (one method is given in the following
diagram)

14

u
se
rs

items

u
se
r
la
te
n
t
fe
a
tu
re
s

items latent features
×

'rating matrix

R P Q

pT
i qj ' R̂ij

P = Uk

√
Σk

Q =
√
Σk V T

k

Rk

U

n

m

n=

V T

r

Σ

σr

. . .

r

r r

u1 ur

m

vT
r

u2 uk

vT
1

vT
2

vT
k

σ1
σ2

σk

Σk
V T
k

Uk

However, the main limitation of this approach to factorize R is that SVD has to use certain
value for the missing entries (which we expect to be numerous, as rating matrix generally are
very sparse.) Thus it is not very hard to see that SVD will tend to find embeddings for users and
movies to better fit the empty cells in the matrix. As in the optimization objective the majority
of errors will be due to the empty cells, thus to minimize the error SVD would tend to give pT

i qj

equal to 0 (if empty cells were filled with 0’s). Thus the approximation on the non-zero entries
(known ratings) is not going to be good. One can try other default values that could even be
data dependent such as matrix averages, row averages, column averages or with the ANOVA.
This approach works well when the matrix is close to a rank-k matrix and there are not too
many missing entries.

However, my intention was to introduce to matrix factorization (in particular for reocm-
menders) and that SVD can be used for it. It will work provably better for the general problem
of matrix completion if only a few entries in the table are missing.

5.3 Latent Semantic Analysis and Word Embeddings

A classic use of SVD is Latent Semantic Analysis, which is the basis of Word Embeddings and
Latent Semantic Indexing (when used in information retrieval). [1].

Recall our discussion on vector space modeling of text where we represented text documents
by vectors (set of words, bag of words or tf-idf vectors.). We discussed word2vec [2, 3] where
words are embedded into high dimensional Euclidean space such that words appearing in similar
context are likely to be close by (in terms of `2 distance).

Note that Y ZT is the best low rank approximation of X in terms of the Frobenius norm i.e.
‖X −Y ZT‖F is the smallest (amongst rank k matrices). This implies that on average we expect
every entry Xij of X to be close to yaizT

i . In other words yaz
T
i ' 1 when doci contains terma.

Here ya and zi refer to the ath row of Y and ith columns of ZT, respectively.

15

Uk

k

ΣkV
T
k

Term-Document Incidence Matrix, X Low rank approximation of X via SVD

x11 x12 x1n
x21 x22 x2n
...

...
...

...
...

...
...

...
...

xm1 xm2 xmn

documents︷ ︸︸ ︷
te

rm
s

Y Z

If two documents doci and docj both contains terma, then yaz
T
i ' yaz

T
j ' 1. This basically

means if two documents doci and docj contain the same word, then the corresponding vectors zi

and zj both have high dot product with the vector ya (low angle or cosine distance).

ya

zi

zj

In general, if two documents doci and docj contain many of the same terms, they will have
very small angle between them (high dot-product). Similarly, if two terms appear in many of the
same documents, then the corresponding vectors, rows ya and yb of Y will tend to have higher
dot products.

One can look at it as follows: The matrices Y and Z represent k abstract concepts (latent
factors)- the ath row of Y represent the term a as linear combination of the k concepts. Similarly,
each column of ZT represent the corresponding document as linear combination of the k concepts.

Latent Semantic Analysis (LSA) gives a way to embed terms (in the corpus) into the k-
dimensional space, where rows of Y are the representation.

Note that as we discuss later (see below), SVD of X gives us eigendecomposition of XXT as

XXT = UΣ2UT

In our setting XXT is the term co-occurrence matrix (if X is the term document incidence
matrix.) If X is the (normalized) term-document frequency matrix (each column is bag of words
representation of a document), then XXT is the correlation matrix between terms. Columns of
U are the eigenvectors of XXT.

16

Uk
ΣkV

T
k

Term-Document Incidence Matrix, X Low rank approximation of X via SVD

x11 x12 x1n
x21 x22 x2n
...

...
...

...
...

...
...

...
...

xm1 xm2 xmn

documents︷ ︸︸ ︷

te
rm

s

Y Z

k Topics

ya(i): How much term a associates with

zj(i): How much doc i belongs to
the Topic i

source: datacamp,com

The matrix XXT is somewhat of a matrix of pairwise similarity between terms (called gram
matrix or kernel matrix). Substituting some definition of similarity measure between terms
XXT with the corresponding similarity matrix, we get the different word embeddings such as
word2vec, GloVe etc.

Another interesting application of SVD is to represent electricity consumers based on their
hourly consumption in the training dataset. In this setting given consumer load data as a matrix,

17

where each row is a consumer and each column is a time-period (e.g. an hour). We perform
truncated SVD on this load matrix and use rows of UΣ as a a low dimenisonal representation of
each consumer. This succinct load data-drivern representation of consumers (and time periods)
is used for customer segmentation, identifying similar time periods by load patterns to predict
future consumers load.

5.4 Denoising

Suppose the matrix A represents some data with noise added to it (e.g. images with noise). If
the true underlying data is actually of low rank, then a low-rank approximation via SVD of the
A might throw out a significant amount of noise and very little ground truth data (the signal).

Thus, the resulting approximate data might be a cleaner, more informative and better version
of the given data. This will in particular help, if the singular values exhibit a good elbow
structure, since smaller singular values will more likely correspond to the added noise in data.

Noisy image Denoised image

rank k
approximation

SVD

6 Relation of SVD and eigen-decomposition

SVD and eigen-decomposition are related but there are quite a few differences between them.

• Not every matrix has an eigen-decomposition (not even every square matrix). Any matrix
(even rectangular) has an SVD.

• In eigen-decomposition A = XΛX−1, that is, the eigen-basis is not always orthogonal. The
basis of singular vectors is always orthogonal

• In SVD we have two singular-spaces (right and left)

• Computing the SVD of a matrix is more numerically stable

For n×m matrix SVD gives us
A = UΣV T

While eigendecomposition, when possibles gives us

A = XΛX−1

In this case we must have the following

18

• A is real symmetric matrix (we used covariance matrix only), otherwise eigendecomposition
may not exists

• U, V,X are orthonormal matrices

• Λ and Σ are diagonal matrices with values in decreasing orders (respectively eigenvalues
and singular values)

• U and V are respectively the left and right singular matrices of A

• X are eigenvectors of A

We can compute AAT using SVD of A as follows.

AAT = (UΣV T)(UΣV T)T = UΣV T
(
(V T)TΣTUT

)
= UΣV TV ΣUT = UΣ2UT

Thus, U is the eigenvectors of the covariance matrix of the data ATA, notice that we get it
directly from A = UΣV T , without having to explicitly compute the covariance matrix. If dataset
is large and dimensionality is also large, computing the covariance matrix is already computa-
tionally expensive. Thus, SVD provides another way of computing the principal components.

Recall that principal components are eigenvectors of ATA (if A is the data matrix with each
data point as a row and each dimension as a column). Eigenvalues are just the square roots of
the singular values.

7 Computing the SVD: The power method

There are pretty good algorithms for computing the SVD of a matrix; details are covered in
any numerical analysis course. The running time of the algorithm is the smaller of O(n2m) and
O(m2n), and the standard implementations of it have been heavily optimized. If you just want
to compute the top k singular values and their associated singular vectors (which is generally
what we want for low rank approximation), this can be computed significantly faster, in time
roughly O(kmn) using the power iteration method.

References

[1] Susan T. Dumais. Latent semantic analysis. Annual Review of Information Science and
Technology, 38(1):188–230, 2004.

[2] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In Yoshua Bengio and Yann LeCun, editors, 1st International
Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4,
2013, Workshop Track Proceedings, 2013.

19

[3] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality. In Proceedings of the 26th
International Conference on Neural Information Processing Systems - Volume 2, NIPS’13,
page 3111–3119. Curran Associates Inc., 2013.

20

	Rank of a matrix
	Rank Factorization of a matrix
	Equivalence between these definitions
	Singular and non-singular matrices

	Low Rank Approximation
	Why Low Rank Approximability is Expected

	SVD Definition
	Low Rank Approximation from SVD (Truncated SVD)
	Spectral decomposition of a matrix - Decomposition into rank-1 matrices
	Truncated SVD
	How to choose k

	Application of Low Rank Approximation
	Data Compression
	Recommender System
	Using SVD to factorize the rating matrix

	Latent Semantic Analysis and Word Embeddings
	Denoising

	Relation of SVD and eigen-decomposition
	Computing the SVD: The power method

