
Principle Component Analysis
Lecture Notes for Big Data Analytics

Imdad Ullah Khan

March 2019

Contents

1 Dimensionality Reduction 1
1.1 Aims of PCA . 2

2 Differences between PCA and JL-Transform 2
2.1 Data-driven vs. Data Oblivious dimensionality reduction 2
2.2 Randomized vs Deterministic . 2
2.3 Preservation of pairwise distances . 2
2.4 Meaningful coordinates in the compressed space 3
2.5 Dimensions of reduced space . 3

3 Principal Component Analysis 3
3.1 Zero-Centering the data and uniform scaling all coordinates 3

3.1.1 Covariance, Correlation and the Variance-Covariance matrix 4
3.2 PCA: The Idea . 5

3.2.1 Projections . 5
3.2.2 A bigger example . 8
3.2.3 Choosing the best direction for projecting: : Minimum Reconstruction Error 10
3.2.4 Direction with Min Reconstruction Error := Direction with Max Variance . 11
3.2.5 Subsequent projections: Larger k . 13

3.3 PCA: Linear Algebraic Formulation . 14
3.4 Diagonal Covariance matrix . 14

3.4.1 Eigenbases, Diagonalization, Eigen Decomposition 15
3.4.2 Eigen Decomposition . 16
3.4.3 Real Symmetric Matrices . 17
3.4.4 Orthogonal Matrices . 17
3.4.5 Eigendecomposition of covariance matrix 18

3.5 PCA: The Algorithm . 18
3.5.1 Complexity of the Algorithm . 19

1

3.5.2 Number of principal components needed: Scree Plot 20
3.5.3 The Power Iteration method to compute eigen vectors 20

4 PCA: Case Studies and Examples 23
4.1 Images as Vectors . 24

5 Limitations of PCA and other feature extraction methods 25

1 Dimensionality Reduction

Given a dataset described by a set of (generally many) features, we aim to generate another set of
(generally much fewer) features that best describes the data (with as low distortion as possible).
As we discussed in the curse of dimensionality lecture, that too many features generally degrade
the quality of analytics and at least the computational cost of working with high dimensional
data is very high.



x11 x12 x1n
x21 x22 x2n
...

...
...

...
...

...
...

...
...

xm1 xm2 xmn





a11 a12 . . . a1k
a21 a22 . . . a2k
...

...
...

...
...

...
am1 am2 . . . amk



n features/dimensions︷ ︸︸ ︷ k dimensions︷ ︸︸ ︷

m
p
oi
n
ts

m
p
oi
n
ts

Figure 1: Schematic view of dimensionality reduction

In this course we will study many techniques for dimensionality reduction, namely, the
Johnson-Lindenstrauss transform and (it’s variations), the AMS transform (that is originally
meant for something different), Locality Sensitive Hashing, and Principal Component Analysis.

The specific definition and measure of distortion depends on the given data set and the target
application. The Johnson-Lindenstrauss lemma was meant to (almost) preserve the Euclidean
distance between every pair

In this lecture, we study another widely used method called principal component analysis for
dimensionality reduction.

1.1 Aims of PCA

� Low dimensional data visualization

� Get a sense of source of variations in data

� Understand pairwise correlation between attributes of data

2

� Reduce dimensions with little ‘distortion’

Visualizing high dimensional data (using 1 axis per attribute) cannot be performed for more
than 3 dimensions. PCA brings to forth a low dimensional picture, that shows the data from a
“more informative” view point. The operations of PCA reveal the internal structure of the data
in a way that best explains the variance in the data.

2 Differences between PCA and JL-Transform

2.1 Data-driven vs. Data Oblivious dimensionality reduction

Recall that the Johnson-Lindenstrauss transform is oblivious to data, i.e. it compresses each data
point without looking at data at all. The main advantage of this approach is its computational
efficiency. However, for the same reason it has a disadvantage since it does not exploit the
structure of data. PCA, on the hand, is a data-driven method, it exploits the structure of data
to reduce its dimensionality. This improves the quality of the data, in the sense that it preserve
the structure of data better, but it has higher computational cost.

2.2 Randomized vs Deterministic

Recall that the JL transform a data point x = (x1, x2, . . . , xn) to the compressed version y =
(〈x, r1〉, 〈x, r2〉, . . . , 〈x, rk〉), where for 1 ≤ i ≤ k, ri is a random unit vector in Rn (i.e. n
independent random numbers from N (0, 1) (normalized to have length 1)). PCA also projects
each data points onto k vectors. But these k vectors are chosen based on the given dataset.
Hence, this is a deterministic process, will always produce the same results for the same dataset
and the number of reduced dimensions k.

2.3 Preservation of pairwise distances

JL transforms (probabilistically) guarantees that pairwise Euclidean distances between com-
pressed data points are (approximately) preserved. PCA offers no such guarantee about pairwise
distances between the compressed data points

2.4 Meaningful coordinates in the compressed space

The dimensions of the reduced space (the k unit vectors) in the case of JL-method have no
intrinsic meaning, while those used in PCA are often very meaningful as they are derived for
data.

2.5 Dimensions of reduced space

Recall that the guarantees of the JL-method required that k = Ω(logN), where N is the number
of data points. Since in big data era, this N is generally very large, we conclude that JL generally

3

gives good results (pairwise distance preservation) only when k is large (usually in low hundreds).
PCA on the other hand, can give very “good” results even when k ≤ 3. Indeed, if the purpose
of PCA is to meaningfully visualize data, then the dimensions have to be at most 2 or 3.

3 Principal Component Analysis

In this section, we will discuss the overall idea of PCA and its etymology. Later we will discuss
the linear algebra underlying PCA followed by the algorithmic details and some case studies.
We will also discuss some cases where PCA does not work as well. Let our dataset be a set of m
points X ⊂ Rn (each point is a n-dimensional vector).

3.1 Zero-Centering the data and uniform scaling all coordinates

Throughout we will assume that the dataset is zero-centered, i.e. it’s mean (centroid),
∑m

i=1 xi
is 0. This can be enforced by subtracting the mean vector x̄ = 1

m

∑m
i=1 xi from every data point

in X. This shifting the data to center around origin does not change the positions of the point
relative to each other, in the sense that ranks of points in every dimension remain the same. For
example, in 2d the highest and lowest point, leftmost and rightmost point, middle point vertically
and horizontally remain the same. This is very important as it keeps the required linear algebra
very simple and much cleaner.

Figure 2: Zero mean and unit variance achieved by z-score normalizing each coordinate

PCA like many other data analytics processes is very sensitive to units or scales of coordinates.
Therefore, we will assume that all coordinates ofX are in some uniform scale, if not we can enforce
it by scaling it down (the best in this case will be z-score normalization). Recall that z-score
normalization or standardization of a variable ui is given by

u′ji =
uji − ūi
σi

,

where ūi is the mean and σi is the standard deviation of the variable ui. It is easy to see that
the resultant variable ui has mean 0 and variance and standard deviation equal to 1.

4

3.1.1 Covariance, Correlation and the Variance-Covariance matrix

Recall that the variance in a set of data points or variance of a variable (in our case a column of
the matrix) is the most commonly used measure of spread in the data. It is the average squared
distance from the mean, formally for a variable ui (the ith column), its variance is given by

σ2
i =

1

m

∑m
j=1(xji − ūi)2, where ūi is the mean of variable ui.

The covariance between two variables ui and uj is a measure of how they vary with each
other. It is the degree to which ui and uj are linearly correlated. Formally, it is given by

Cov(ui, uj) = Cov(i, j) = Cij =
1

m

m∑
l=1

(xli − ūi)(xlj − ūj)

Using pairwise covariance among many variables, makes sense only if they are in the same scale
(and units). The correlation (aka Pearson Correlation) is essentially a normalized version of
covariance. Correlation between two variables ui and uj is given by

rij =
Cov(ui, uj)

σiσj

i.e. it is the covariance divided by the product of standard deviations. It is easy to see that for
all i, j we have −1 ≤ rij ≤ 1. Notice that when the variables ui and uj are standardized, then
since the standard deviations of both are 1, covariance is equal to the correlation.

The Variance-Covariance Matrix (aka covariance matrix) of a n-dimensional data sets is
a n×n matrix C, where the (i, j)th entry equal to Cov(i, j). For standardized dataset, all entries
on the principal diagonal (the variances) are 1, while the off diagonal entries are the pairwise
correlations. Note that this is a symmetric matrix. Suppose each xi ∈ X is a document in the
bag of words model (each column represents a word in vocabulary and the (i, j)th entry of X is
a the frequency of jth word in xi). Then the dot-product of column j and column l, i.e. value
of XTX(j, l) is a measure of how frequently the jth and lth words co-occur in the documents.



x11 x12 x1m
x21 x22 x2m
...

...
...

...
...

...
...

...
...

xn1 xn2 xnm



m features/dimensions︷ ︸︸ ︷

n
p
oi
n
ts

X

u1 u2 um. . .

C or Σ



Cov(u1, u1) Cov(u1, u2) . . . Cov(u1, um)
Cov(u2, u1) Cov(u2, u2) . . . Cov(u2, um)

...
... . . .

...

...
... . . .

...

...
... . . .

...

...
... . . .

...

Cov(um, u1) Cov(um, u2) . . . Cov(um, um)



m︷ ︸︸ ︷

m

Figure 3: Variance-Covariance matrix example

For a standardized dataset the variance-covariance matrix C is given by C = XTX.

5

3.2 PCA: The Idea

3.2.1 Projections

The overall idea of PCA is projecting the dataset onto a line or a lower dimensional subspace,
and recording the projection vectors.

Assume that dataset is a set of m vectors of dimensions n, i.e. X ⊂ Rn and |X| = m. We
store the data and pictures it as a m × n matrix (each row is a data point) and each column
is a dimension (attribute/variable). Suppose names of the original variables are u1,u2, . . . ,un.
Note that we think of them as standard bases vectors of Rn. In other words, each data point is
a linear combination of u1, . . . ,un and the coordinate (xi1, xi2, . . . , xin) of xi are the coefficients
of that linear combination, i.e.

xi = xi1u1 + xi2u2 + . . .+ xinun

We would like to project X onto a k-dimenisonal subspace spanned by (bases) vectors
v1, . . . ,vk ⊂ Rn. In other words we would like to express each point xi in reduced dimen-
sional space as linear combination of v1, . . . ,vk Let x′i be the reduced dimensional version of xi,
then we want

x′i = ai1v1 + ai2v2 + . . .+ aikvk,

where for j = 1 to k aij = 〈xi,vj〉 = xi · vj



x11 x12 x1m
x21 x22 x2m
...

...
...

...
...

...
...

...
...

xn1 xn2 xnm





a11 a12 . . . a1k
a21 a22 . . . a2k
...

...
...

...
...

...
an1 an2 . . . ank



m dimensions︷ ︸︸ ︷ k dimensions︷ ︸︸ ︷

n
p
oi
n
ts

n
p
oi
n
ts

u1 u2 um v1 v2 vk

The goal of PCA is to find these vectors v1, . . . ,vk ⊂ Rn. Since we want them to span
a k-dimensional subspace, we would require them to be linearly independent. Actually, they
should be mutually orthogonal and of unit lengths (so orthonormal). We want to lose “as
little information” as possible, we will formulate the objective (goodness measure) for finding
v1, . . . ,vk.

Space Saving Keep in mind the following made-up example to quantify the space saving by
reducing dimensions. Suppose we have 1m vectors in dimensions 1k. If storing a real number
takes 4 bytes, then the space required to store matrix X is 4b bytes. If k = 10, then the space
required to store the matrix X ′ is 1m× 10× 4 bytes (for the values a··) plus the 10×n× 4 bytes
(for the vectors v1, . . . ,vk).

For now let’s assume that the value 1 ≤ k ≤ n is given as input. Later we will discuss some
rules of thumb for what would be the best k.

6

Example with k = 1: Suppose we have records of 10 students’ performance in two courses.
We want the resultant space to be only one-dimensional (just one number to represent each
student or one vector v1). In other words, we want projection onto a line.

c1 c2
s1 92 73
s2 85 82
s3 71 75
s4 68 84
s5 65 67
s6 62 73
s7 58 83
s8 45 51
s9 38 57
s10 55 65

c1 c2
s1 28.1 2
s2 21.1 11
s3 7.1 4
s4 4.1 13
s5 1.1 −4
s6 −1.9 2
s7 −5.9 12
s8 −18.9 −20
s9 −25.9 −14
s10 −8.9 −6Raw Data Zero-Centered Data

Feature Selection: We can just pick one vector from u1, . . . ,un as the basis. This could

the vector c1 =
[
1 0

]T
or c2 =

[
0 1

]T
. Projecting onto these any of these vectors means

just keeping the corresponding component and dropping the remaining coordinate(s). In the

following figure we show the projection on the vector
[
1 0

]T
. Each blue point original is now

represented by its projection onto the horizontal axis (red points).

Projection on v1 =

[
1
0

]
Projection on v1 =

[
1/2
1/2

]

Average: We can project onto the vector v1 =
[
1/2 1/2

]T
. Hence for instance, the coordinates

of student s1 (the value of a11) will be 〈s1,v1〉 = 92/2 + 73/2 = 82.5 (the average value). It should
be clear that we can achieve weighted averages via projecting onto appropriately chosen vectors.

Random Projection: We can also project the data onto a random direction, as we did in
the Johnson-Lindenstrauss transform. The following is an example projection onto the random

vector
[
1 −0.2369

]T
.

7

Projection on v1 =

[
1

−0.237

]
Projection on v1 =

[
0.87
0.49

]

Optimal Projection: PCA projects the data onto the so-called principal components, that in
this case would the “best vector” for projection. We will define the goodness measure and discuss

how to find them. It turns out that the best vector for projection onto is
[
0.8736 0.4867

]T
3.2.2 A bigger example

Consider the following data

c1 c2 c3 c4
s1 95 89 70 64
s2 91 91 71 70
s3 79 77 65 58
s4 76 74 68 69
s5 76 69 65 64
s6 78 68 65 64
s7 79 70 47 42
s8 62 61 47 46
s9 68 63 88 88
s10 68 67 90 89
s11 66 63 82 75
s12 66 67 78 70
s13 68 63 75 72
s14 64 63 76 70
s15 53 46 79 72
s16 43 42 61 60

c1 c2 c3 c4
s1 24.3 21.9 −0.4 −3.1
s2 20.3 23.9 0.6 2.9
s3 8.3 9.9 −5.4 −9.1
s4 5.3 6.9 −2.4 1.9
s5 5.3 1.9 −5.4 −3.1
s6 7.3 0.9 −5.4 −3.1
s7 8.3 2.9 −23.4 −25.1
s8 −8.8 −6.1 −23.4 −21.1
s9 −2.8 −4.1 17.6 20.9
s10 −2.8 −0.1 19.6 21.9
s11 −4.8 −4.1 11.6 7.9
s12 −4.8 −0.1 7.6 2.9
s13 −2.8 −4.1 4.6 4.9
s14 −6.8 −4.1 5.6 2.9
s15 −17.8 −21.1 8.6 4.9
s16 −27.8 −25.1 −9.4 −7.1

Suppose we project this data onto the vector v1 =
[
0.6 0.6 −0.4 −0.4

]T
. For instance for

s1 as the one coordinate (in the basis v1), we can save 〈s1,v1〉 = 24.3 ∗ .6 + 21.9 ∗ .6 + −0.4 ∗

8

−.4 +−3.1 ∗ −.4 = 28.7. Similarly, the vector for s1 in the bases system (v1) is given by

s′1 = 〈s1,v1〉v1 = 28.7 ∗
[
0.6 0.6 −0.4 −.0.4

]T
=
[
17.5 16.5 −11.2 −11.1

]T
For all vectors there representation is given in the following table.

ai1 = 〈s·,v1〉
s1 28.7

s2 24.7

s3 16.3

s4 7.4

s5 7.6

s6 8.2

s7 25.5

s8 8.4

s9 −18.9
s10 −17.8
s11 −12.8
s12 −7
s13 −7.7
s14 −9.7
s15 −28.1
s16 −24.9

〈s·,v1〉v1

s′1 17.5 16.5 −11.2 −11.1
s′2 15 14.2 −9.6 −9.5
s′3 9.9 9.4 −6.3 −6.3
s′4 4.5 4.2 −2.9 −2.8
s′5 4.6 4.4 −3 −2.9
s′6 5 4.7 −3.2 −3.2
s′7 15.5 14.6 −9.9 −9.9
s′8 5.1 4.8 −3.3 −3.3
s′9 −11.5 −10.8 7.4 7.3

s′10 −10.8 −10.2 6.9 6.9

s′11 −7.8 −7.3 5 4.9

s′12 −4.3 −4 2.7 2.7

s′13 −4.7 −4.4 3 3

s′14 −5.9 −5.6 3.8 3.8

s′15 −17.1 −16.1 10.9 10.9

s′16 −15.1 −14.3 9.7 9.6

c1 c2 c3 c4
s1 24.3 21.9 −0.4 −3.1
s2 20.3 23.9 0.6 2.9

s3 8.3 9.9 −5.4 −9.1
s4 5.3 6.9 −2.4 1.9

s5 5.3 1.9 −5.4 −3.1
s6 7.3 0.9 −5.4 −3.1
s7 8.3 2.9 −23.4 −25.1
s8 −8.8 −6.1 −23.4 −21.1
s9 −2.8 −4.1 17.6 20.9

s10 −2.8 −0.1 19.6 21.9

s11 −4.8 −4.1 11.6 7.9

s12 −4.8 −0.1 7.6 2.9

s13 −2.8 −4.1 4.6 4.9

s14 −6.8 −4.1 5.6 2.9

s15 −17.8 −21.1 8.6 4.9

s16 −27.8 −25.1 −9.4 −7.1

If we compare each s′i with the original si, we see that there is some sense in the data,
coordinates with big values are still bigger, and the coordinates with smaller values are somewhat
smaller. But this we saved 75% of storage size. Recall that we only have to store the 4 coordinates
for v1, which does not add much when there are millions of data points.

We take it one step further, and project the data onto two dimensional subspace spanned by

v1 =
[
0.6 0.6 −0.4 −0.4

]T
and v2 =

[
0.4 0.4 0.6 0.6

]T

9

ai1 ai2
s1 28.7 15.8

s2 24.7 19.3

s3 16.3 −1.5
s4 7.4 4.5

s5 7.6 −2.3
s6 8.2 −1.9
s7 25.5 −24.4
s8 8.4 −32
s9 −18.9 20.1

s10 −17.8 23.5

s11 −12.8 8.1

s12 −7 4.4

s13 −7.7 3

s14 −9.7 0.9

s15 −28.1 −7.1
s16 −24.9 −30.2

ai1v1 + ai2v2

s′1 23.4 22.8 −1.8 −1.7
s′2 22.3 21.9 1.8 1.9

s′3 9.4 8.8 −7.2 −7.2
s′4 6.2 6 −0.2 −0.2
s′5 3.8 3.4 −4.3 −4.3
s′6 4.3 4 −4.3 −4.3
s′7 6.4 4.9 −24.3 −24.3
s′8 −6.9 −8 −22.2 −22.2
s′9 −4 −2.8 19.2 19.2

s′10 −2 −0.8 20.8 20.8

s′11 −4.7 −4.1 9.8 9.7

s′12 −2.6 −2.3 5.3 5.3

s′13 −3.6 −3.2 4.7 4.7

s′14 −5.6 −5.2 4.3 4.3

s′15 −19.8 −19 6.7 6.7

s′16 −26.5 −26.4 −8.2 −8.3

c1 c2 c3 c4
s1 24.3 21.9 −0.4 −3.1
s2 20.3 23.9 0.6 2.9

s3 8.3 9.9 −5.4 −9.1
s4 5.3 6.9 −2.4 1.9

s5 5.3 1.9 −5.4 −3.1
s6 7.3 0.9 −5.4 −3.1
s7 8.3 2.9 −23.4 −25.1
s8 −8.8 −6.1 −23.4 −21.1
s9 −2.8 −4.1 17.6 20.9

s10 −2.8 −0.1 19.6 21.9

s11 −4.8 −4.1 11.6 7.9

s12 −4.8 −0.1 7.6 2.9

s13 −2.8 −4.1 4.6 4.9

s14 −6.8 −4.1 5.6 2.9

s15 −17.8 −21.1 8.6 4.9

s16 −27.8 −25.1 −9.4 −7.1

Our approximations s′is for si’s are almost exact, we project onto a 3d space spanned by

v1 =
[
0.6 0.6 −0.4 −0.4

]T
, v2 =

[
0.4 0.4 0.6 0.6

]T
, and v3 =

[
−0.7 0.7 0.1 −0.1

]T
.

ai1 ai2 ai3
s1 28.7 15.8 −0.9
s2 24.7 19.3 2.6

s3 16.3 −1.5 2

s4 7.4 4.5 0.8

s5 7.6 −2.3 −2.3
s6 8.2 −1.9 −4.4
s7 25.5 −24.4 −2.5
s8 8.4 −32 2.4

s9 −18.9 20.1 −2.1
s10 −17.8 23.5 0.8

s11 −12.8 8.1 0.4

s12 −7 4.4 3.5

s13 −7.7 3 −1.2
s14 −9.7 0.9 1.9

s15 −28.1 −7.1 −2.5
s16 −24.9 −30.2 1.5

ai1v1 + ai2v2 + ai3v3

s′1 24 22.2 −1.9 −1.6
s′2 20.5 23.7 2 1.5

s′3 8 10.2 −7.1 −7.5
s′4 5.6 6.6 −0.2 −0.3
s′5 5.4 1.8 −4.5 −4
s′6 7.4 0.8 −4.7 −3.8
s′7 8.1 3.1 −24.5 −24
s′8 −8.5 −6.3 −22 −22.5
s′9 −2.5 −4.3 19 19.5

s′10 −2.6 −0.3 20.8 20.7

s′11 −5 −3.8 9.8 9.7

s′12 −5 0.2 5.6 4.9

s′13 −2.7 −4.1 4.6 4.9

s′14 −6.9 −3.9 4.5 4

s′15 −18.1 −20.7 6.5 7

s′16 −27.5 −25.3 −8 −8.5

3.2.3 Choosing the best direction for projecting: : Minimum Reconstruction Error

Again, for now we focus on k = 1, suppose we project 2d data onto a line, what is the error that

we get? Suppose the 2d dataset of 10 students were projected onto the vector
[
0.5 0.5

]T
. Let ei

10

be the perpendicular distance between si and its projection s′i, then the errors over all points
is summarized in the following tables.

c1 c2
s1 28.1 2
s2 21.1 11
s3 7.1 4
s4 4.1 13
s5 1.1 −4
s6 −1.9 2
s7 −5.9 12
s8 −18.9 −20
s9 −25.9 −14
s10 −8.9 −6

ai1v1

s′1 15 15
s′2 16 16
s′3 5.5 5.5
s′4 8.5 8.5
s′5 −1.4 −1.4
s′6 0 0
s′7 3 3
s′8 −19.4 −19.4
s′9 −19.9 −19.9
s′10 −7.4 −7.4

‖si − s′i‖
e1 18.5
e2 7.1
e3 2.2
e4 6.3
e5 3.6
e6 2.8
e7 12.7
e8 0.8
e9 8.4
e10 2.1

ei

ej

Projection on v1 =

[
1/2
1/2

]
Projection on v1 =

[
0.87
0.49

]

Similarly, if the dataset was projected onto the vector
[
0.8736 0.4867

]T
. The resultant points

and correposponding errors are given in the following table and also depicted in the figure above.
The total (sum of) error in all points as a result of the first projection is 64.3467, while that in
the second projection is 51.6030.

3.2.4 Direction with Min Reconstruction Error := Direction with Max Variance

In general, our criteria for selecting the vector for projection is to find such a vector that results
in the minimum reconstruction error or minimum information loss. Let X be the dataset and let
v1 be the unit vector on which we project X, i.e. x′i = 〈xi,v1〉v1. Then the total reconstruction
error is given by∑

xi∈X

ei =:
∑
xi∈X

‖xi − x′i‖ =
∑
xi∈X

(distance b/w xi and line spanned by v1)

11

c1 c2
s1 28.1 2
s2 21.1 11
s3 7.1 4
s4 4.1 13
s5 1.1 −4
s6 −1.9 2
s7 −5.9 12
s8 −18.9 −20
s9 −25.9 −14
s10 −8.9 −6

ai1v1

s′1 22.3 12.4
s′2 20.8 11.6
s′3 7.1 4
s′4 8.7 4.8
s′5 −0.9 −0.5
s′6 −0.6 −0.3
s′7 0.6 0.3
s′8 −22.9 −12.8
s′9 −25.7 −14.3
s′10 −9.3 −5.2

‖si − s′i‖
e1 11.9
e2 0.7
e3 0
e4 9.4
e5 4
e6 2.7
e7 13.4
e8 8.3
e9 0.4
e10 0.9

Note that this (xi − x′i) is the perpendicular distance between xi and the line spanned by v1 or
between xi and its projection on v1.

For technical reasons, we will consider the sum of squared reconstruction error, as it is easy to
deal with and it has a nice connection with the variance in the data. Therefore, the optimization
problem of finding the optimal vector v1 has the following objection function.

arg min
v1,‖v‖=1

∑
xi∈X

‖xi − x′i‖2 := arg min
v1,‖v‖=1

∑
xi∈X

(distance b/w xi and line spanned by v1)2 (1)

ei =

x′
i

distance

‖x
i
‖

ai1
= 〈xi,v

1〉

xi

v1

b/w xi and line

`

Consider the above diagram with a typical data point xi and it’s projection on the line
spanned by the vector v1. By the Phythogorus theorem, we have

(distance b/w xi and line spanned by v1)2 = ‖xi‖2 − 〈xi,v1〉2

Since for a fixed xi, ‖xi‖2 is constant. Minimizing the left hand side is equivalent to maximizing
〈xi,v1〉2. Thus the objective function of PCA (with k = 1) can be equivalently stated as

arg max
v1,‖v‖=1

∑
xi∈X

〈xi,v1〉2 =: arg max
v1,‖v‖=1

∑
xi∈X

a2i1 (2)

12

Note that since our data is zero-centered, for 1 ≤ j ≤ n,
∑m

i=1 x
2
ij = σ2

j , the variance in
the jth coordinate of X. By linearity of dot-product (p · (q + r) = p · q + p · r), we have
that

∑m
i=1〈xi,v1〉 = 〈

∑m
i=1 xi,v1〉. Since the first term in the dot product is 0, we get that∑m

i=1〈xi,v1〉 =
∑m

i=1 ai1 = 0. Hence the projections ai1’s are zero-centered and
∑

xi∈X a
2
i1 is the

variance in ai1’s.
We conclude that the objective of PCA (with k = 1) is (2) is finding a (direction) v1 in which

there is the most variance in the data X.
To see a general example (in addition to the specific examples above), observe in the following

diagram, the data has much higher variance in the direction of v1 and much smaller variance in
the direction of v2. Thus PCA will seek to find v1. Observe that the vector v1 is the optimal
vector satisfying both (1) and (2) (as they are both the same).

v1

v2

Figure 4: Higher variance in the direction of v1 than in the directions of v2

3.2.5 Subsequent projections: Larger k

PCA reduces dimensionality from n to k by projecting each point into a k-dimensional subspace
such that the sum of squared distances of points to this k-dimensional subspace is minimum.
That is the objective of PCA with k ≥ 2 is

arg min
k-dim subspace S

∑
xi∈X

‖xi − x′i‖2 := arg min
k-dim subspace S

∑
xi∈X

(distance b/w xi and S)2, (3)

where x′i is the projection of xi ∈ X on the subspace S. As above this is equivalent to

arg max
k-dim subspace S

∑
xi∈X

(length of projection of xi on S)2 (4)

Just as we did for k = 1 (that we represented the line by its unit basis vector), here also
we represent the desired k-dimensional subspace S by its k (linear independent) bases vectors

13

v1,v2, . . . ,vk above. Note that if v1, . . . ,vk are not linearly independent, then they will not
span a k-dim subspace.

Furthermore, to keep the algebra simple, we require that v1,v2, . . . ,vk make orthonormal
bases for S. This makes life very easy. Because computing length of projections on a space S
given by its orthonormal bases is just the sum of projections on each basis vectors, i.e. This
simple fact follows from the Pythogorus theorem.

(length of projection of xi on S = span(v1, . . . ,vk))2 =
k∑
j=1

〈xi,vj〉2 (5)

arg max
v1,...,vk
‖vp‖=1
vp⊥vq

m∑
i=1

k∑
j=1

〈xi,vj〉2︸ ︷︷ ︸
squared projection length on span(v1, . . . ,vk)

(6)

The vectors v1, . . . ,vk maximizing the objective function (6) are called the top k principal
components of X. In summary, the general problem of principal component analysis is given as

Problem 1 (Principal Component Analysis). Given X ⊂ Rn, |X| = m and an integer k ≥ 1,
find vectors v1, . . . ,vk to maximize (6) and projection of X onto v1, . . . ,vk.

3.3 PCA: Linear Algebraic Formulation

In matrix notation, the projection of X onto a vector v1 can be rewritten as

Xv1 =



x11 x12 x1m
x21 x22 x2m
...

...
...

...
...

...
...

...
...

xm1 xm2 xnm





v11
v12
...
...
...
v1m


=



〈x1,v1〉
〈x2,v1〉

...

...

...
〈xn,v1〉


Since we are interested in squares of projections, we take the dot-product of Xv1 with itself.

Xv1 ·Xv1 = (Xv1)TXv1 = v1
TXTXv1 =

n∑
i=1

〈xi,v1〉2

Let C = XTX be the covariance matrix, we restate the objective function (2) (for k = 1) as

arg max
v1,‖v‖=1

∑
xi∈X

〈xi,v1〉2 := arg max
v1,‖v‖=1

v1
TXTXv1 := arg max

v1,‖v‖=1

v1
TCv1 (7)

14

3.4 Diagonal Covariance matrix

In this special not very realistic case assume k = 1 and the covariance matrix C is a diagonal

matrix, i.e. C =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

. Furthermore, assume that λ1 ≥ λ2 ≥ . . . ≥ λn.

Note that the latter assumptions are not very strict as the covariance matrix only contain
non-negative entries and the order can be achieved by re-arranging rows of any matrix. The only
restricting assumption is C being diagonal, which correspond to all correlations being 0. We
make this assumption for developing an understanding and will remove it soon.

We want to find a vector v such that

arg max
v,‖v‖=1

∑
xi∈X

〈xi,v〉2 := arg max
v,‖v‖=1

vTXTXv := arg max
v,‖v‖=1

vTCv = arg max
v,‖v‖=1

m∑
i=1

λiv
2
i (8)

Recall that C is just a scaling linear transformation and we want to find a unit vector v for
which

∑m
i=1 λiv

2
i is maximum.

Lemma 1. The standard basis vector v = e1 =
[
1 0 . . . 0

]T
is the optimal solution to (9)

Proof. We will show that for any other unit vector u we have that

m∑
i=1

λiv
2
i ≥

m∑
i=1

λiu
2
i

Since ‖u‖ = 1 i.e.
∑m

i=1 u
2
i = 1, we get that

∑m
i=1 λiu

2
i is just weighted average of λi’s

weighted by ui’s. For v = e1 we have
∑m

i=1 λiv
2
i = λ1 = maxi λi. We know that any average is

always at most the maximum, we get that v = e1 maximizes (9)

Thus for a dataset whose covariance matrix C is a diagonal matrix its top principal component
to project the data on is e1. For general covariance matrix (k = 1) we extend the above idea.

3.4.1 Eigenbases, Diagonalization, Eigen Decomposition

Recall we discussed that we can translate (find coordinates of) a vector given in standard bases
of Rn in another bases (a set of linearly independent vectors). Similarly we can perform transfor-
mation in the other bases and reverse translate them into the standard bases. Supposes we are
given a bases (in the form a matrix) B. Columns of B are basis vectors (linearly independent).
This necessarily means that B is invertible.

In the following red the coordinates in standard bases are denoted by color red and those in
the bases B are denoted in blue color. The following is a schematic diagram of transforming a
vector x by a n× n linear transformation T .

15

B =

b1 b2 . . . bn


x x′

B

x′BxB

B−1

T

TB

B−1B

TB = B−1TB T = BTBB
−1

Suppose that the new bases B is composed of n eigen vectors of T . i.e. B = {b1, . . . ,bn} be
bases - columns B are eigenvectors of T . For 1 ≤ i ≤ n, Tbi = λibi

How does Tx looks like in eigenbasis?

Tx = T (α1e1 + . . .+ αnen) = T (β1b1 + . . .+ βnbn)

= β1Tb1 + . . .+ βnTbn = β1λ1b1 + . . .+ βnλnbn

=

b1 b2 . . . bn


λ1 . . .

λn


β1...
βn

 = BDxB = BDB−1x

where D =

λ1 . . .

λn


We get that

Tx = BDB−1x
We discussed that the reason for this is that it is much easier to compose the transformation

many times, in this form it is very easy to take T to a higher power (compose it many times)

� T = BDB−1

� T 2 = BDB−1BDB−1 = BDIDB−1 = BDDB−1 = BD2B−1

� T 3 = BD2B−1BDB−1 = BD2DB−1 = BD3B−1

� T 4 = BD3B−1BDB−1 = BD3DB−1 = BD4B−1

� T k = . . . = BDkB−1

It is easy to see that Dk =

λ
k
1

. . .

λkn


16

3.4.2 Eigen Decomposition

Also called spectral decomposition is the factorization of a matrix in terms of its eigenvalues and
eigenvectors. Only diagonalizable matrices can be factorized in this way. If a square matrix A
has n linearly independent eigenvectors qi (i = 1, . . . , n). Then A can be factorized as

A = QΛQ−1

where Q is the square n × n matrix whose ith column is the eigenvector qi of A, and Λ is
the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ(i, i) = λi. We
apply eigendecompostion to the covariance matrix C.

QT Λ Q

Figure 5: Eigen decomposition example

3.4.3 Real Symmetric Matrices

Recall that the covariance matrix has all values reals and it is symmetric. We use the following
well-known and fundamental result from linear algebra.

For every n× n real symmetric matrix, the eigenvalues are real and the eigenvectors can be
chosen real and orthonormal.

Thus a real symmetric matrix A can be decomposed as

A = QΛQ−1

where Q is an orthogonal matrix whose columns are the eigenvectors of A, and Λ is a diagonal
matrix whose entries are the eigenvalues of A.

Λ

m

λ1

λm

λ2

. . .

diagonal

m

m

m

orthonormal

q1 q2 qn

orthonormal

m

m

qT
1

qT
2

qT
m

QT=

m

m C

17

3.4.4 Orthogonal Matrices

An orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows
are orthonormal vectors, i.e. length of each column is 1 and all pairs of columns are orthogonal,
their dot-product is 0. We discuss some relevant properties of orthogonal matrices.

� QTQ = QQT = I, where QT is the transpose of Q and I is
the identity matrix.

� An equivalent characterization: inverse of an orthogonal
matrix Q is its transpose Q−1 = QT

� An orthogonal matrix Q is necessarily invertible

� As a linear transformation, an orthogonal matrix preserves
length of vectors, i.e. ‖Qv‖ = ‖v‖ for any vector v (they
are called unitary transformations). In other words as lin-
ear transformation an orthogonal matrix Q only achieves a
rotation, reflection or permutation of coordinates.

Qe2

Qe1

e2

e1

3.4.5 Eigendecomposition of covariance matrix

Recall that we want to find a vector v such that

arg max
v,‖v‖=1

∑
xi∈X

〈xi,v〉2 := arg max
v,‖v‖=1

vTXTXv := arg max
v,‖v‖=1

vTCv = arg max
v,‖v‖=1

m∑
i=1

λiv
2
i (9)

Let C = QDQT , where Q is the orthogonal matrix of eigenvectors of C and D is a diagonal
matrix with eigenvalues corresponding to columns in Q in increasing order.

We know that e1 is the direction of matrix stretch underD. To get the direction of max stretch
under C = QDQT , we need to find out the vector that gets mapped to e1 under QT , because
that vector will get stretched the most under DQT and Q being orthogonal will not stretch or
shrink it any further. In other words we the vector of max stretch under C is (QT)−1e1. Which
by orthogonality of QT is Qe1. Recall that definition of linear transform Qe1 is just the first
column of Q or the eigenvector of C corresponding to the leading eigenvalue. Thus the first
principal component for projection of a dataset X is the leading eigenvector of C = XXT .

To get the top k principal components we use the first k leading eigenvectors of C. This is
very easy to see, again first in the case when C is a diagonal matrix.

This completes the linear algebraic formulation of PCA. We project the data onto the top k
eigenvectors of the covariance matrix. We formulate this in the algorithm below.

There are a few important issues that we need to address

3.5 PCA: The Algorithm

Here we give the step by step algorithm for principal component analysis and dimensionality
reduction via PCA.

18

INPUT: Data set: X = {x1, . . . ,xn}, each xi is m dimensional vector.

Make dataset into a n×m matrix, each row is a data point.

Step-1: Zero Center the data

x =
1

n

∑n
i=1 xi . m-d mean vector, coordinate-wise mean

Replace each data point xi by xi = xi − x

Step-2: Compute the covariance matrix With zero-centering this is also the correlation
matrix

C = XTX . Normalize it by n or n− 1

Step-3: Compute eigenvectors of C and let Q be the matrix with eigenvectors of C as its columns

Transform the data matrix i.e. Y = XQ

To reconstruct original data we can use X = Y QT

For reducing dimenisons from m to k, remove the last m − k columns of Q to get Qk and
compute Y ′ = XQk. Y

′ is a n× k matrix

To (approximately) reconstruct use X ′ = Y ′QT
k

3.5.1 Complexity of the Algorithm

Complexity of this PCA algorithm is as follows:

� Zero centering the data takes O(nm) (input scan)

� Computing the covariance matrix takes O(m2n) – there are O(m2) entries in C and each
value takes O(n) multiplication and addition

� Eigenvalue decomposition require O(m3) time for a m×m matrix.

� Transformation and dimensionality reduction require n×m× k time

� Total runtime is O(nm2 +m3).

For large datasets this algorithm becomes computationally infeasible. We use SVD method
to compute PCA, in order to avoid computing the covariance matrix. Eigenvectors can also be
computed using power iteration methods discussed below.

19

credit: K. Mueller : Stoneybrook

3.5.2 Number of principal components needed: Scree Plot

This is essentially the same question as what is the right number of clusters for a dataset. Recall
we discussed that we quantify the goodness of clustering by some measure and find a point k
such if we cluster the dataset into more than k cluster the goodness measure does not improve
much.

We use a similar idea here. It is very important to determine the goal of PCA. If we want
to get the best graphical visualization of data then clearly the number of principal components
should be 2 or 3. For dimensionality reduction, it would depend on the required accuracy of the
analytic task at hand. Since we know that the variance explained by a principal component is
the corresponding eigenvalues. We select k such that that the remaining m− k eigen values are
very small. This is essentially applying the elbow method to the so-called Scree plot - a bar graph
(or line plot) of eigenvalues that shows the fraction of total variation in data explained by the
corresponding eigenvalues. We select the (elbow or knee) point, where there is a “substantial”
drop in the eigenvalue.

A quantified measured is to threshold the amount variance explained by the k components
relative to the total variance in the data. i.e. choose k such that∑k

i=1 λi∑m
i=1 λi

≥ (1− ε) for a user parameter 0 < ε < 1

3.5.3 The Power Iteration method to compute eigen vectors

Note two important aspects of eigenvalues. First the top eigenvector (the eigenvector corre-
sponding to the largest eigenvalue) of a matrix A corresponds to the direction in which the
linear transformation A stretches the vector the most. Secondly, it is well-known that if A has
eigenvalues λ1, λ2, . . . ,, then Ak has eigenvalues λk1, λ

k
2, . . . ,,

We use these ideas to develop a numerical method to compute the top eigenvector of a
matrix. We know that a matrix in addition to stretching, rotates and reflects vectors. In 2d, we

20

pictured linear transformation by the change to unit square that became a parallelogram after
the transformation. One of the corners of the parallelogram had the longest stretch. It will
be good to picture what happens to a unit circle that will become an ellipse as point on the
circle are unit vectors. The farthest corner of the parallelogram or the longest axis of the ellipse
corresponds to the top eigenvector.

λ1u1

λ2u2

Now imagine the same ellipse for the matrix Ak for a large integer k, it is not very hard to see
that ellipse will be very long and thin (in 2d), as its longest axis will have length λk1 and second
longest axis will have length λk2 (their difference will be amplified). Note that λ1 does not have
to be bigger than 1 for this phenomenon.

If we repeatedly transform a random vector v with the matrixA, i.e. computeA(A(A . . . A(A(v)))),
the vector v will get stretched so much in the direction of the top eigenvector of A that the final
image (Ak(v)) will lie almost entirely in the direction of the top eigenvector. Another way to see
this almost all points on the unit circle get mapped to points that are close to the longest axis
of the ellipse (image of the circle by Ak).

Algorithm Power Iteration to compute top eigenvector of a matrix A = XTX

v0 ← random-unit-vector() . Generate random direction

i← 0

while stopping criteria is not met do

vi+1 ← Avi

vi+1 ←
vi+1

‖vi‖
. Normalize to get unit vector

i← i+ 1

The stopping criterion usually is based on a threshold for convergence , i.e. continue until
‖vi+1‖ − ‖vi‖ is below a certain threshold.

21

Running time of this algorithm depends on the so-called spectral gap of the matrix,
λ2
λ1

. One

can prove the following lemma regarding the quality of this algorithm (the dot-product between
the output of the algorithm and the top eigenvector of A, notice that if this dot-product is 1, it
means the output is “inline” with the top eigenvector)

Lemma 2. Let u be the top eigenvector of the matrix A. For a random vector v0 and a positive
integer k, we have that

Pr

[
|〈Akv0,u〉| ≥ 1− 2

√
n

(
λ2
λ1

)k]
≥ 1

2

The probability can be amplified by repeating the algorithm many times independently and
selecting the output with largest Avk.

Remark 1. Notice that in the above algorithm vk = Akv. In order to avoid k matrix vector mul-
tiplications, one can compute vk by computing Ak using repeated squaring A,A2, A4, A4, A8, . . .
and do one matrix-vector multiplication in the end. Computing Ak using repeated squaring takes
O(log k) matrix-matrix multiplications. For large k this is substantially faster.

Some comments of the power method to compute eigenvectors.

� If |λ2/λ1| is close to 1, then convergence is very slow

� Matrix vector multiplication is very fast if the matrix is sparse (many 0 values), in that
case using algorithm for sparse matrices, this is quite fast algorithm

� As stated it only computes the top eigenvector (the top principal component in our case),
to get more principal components we do the following

– After computing v1, the first eigenvector, we project the matrix onto v1 and subtract
it out i.e. Compute A′, which is the “residual matrix”. Row i of A′ is ai−〈ai,v−1〉vi

– Recursively compute the top k − 1 eigenvectors of A′

– To compute the bottom eigenvector (e.g. of the Laplacian matrix, that we will study
for spectral clustering), the algorithm is called inverse power iteration method

– This follows from the fact that eigenvalues of Ak are λk1, λ
k
2, . . . ,. For k = −1, we get

that eigen values of the inverse A−1 of A are 1/λ1, 1/λ2, . . . ,.

– Notice that since λ1 ≥ λ2 ≥ . . . ≥ λn, we get that 1/λ1 ≤ 1/λ2 ≤ . . . ≤ 1/λn.

– Thus applying the power iteration method to A−1 gives us the smallest eigenvalue

– With a little bit of linear algebra computing the inverse can be avoided

– To compute all eigenvectors the algorithm used is called the QR algorithm

22

4 PCA: Case Studies and Examples

A classic application of PCA is to represent images in a lower dimensionality space. PCA has
been used (with reasonable success) for image compression and face recognition tasks.

source: learnopencv.comJ. Niebles & R. Krishna @ Stanford

Figure 6: Face detection

Applications of face detection, face verification and face recognition include

GILLES SABRIE—THE NEW YORK TIMES/REDUX

Figure 7: Face recognition

J. Niebles & R. Krishna @ Stanford

Figure 8: Emotion and Expression Detection

23

J. Niebles & R. Krishna @ Stanford

Figure 9: Photo Album Organization Figure 10: Facebook Auto Tag Suggestions

4.1 Images as Vectors

Dataset For each face there should be a few training examples

All faces should be centered

Figure 11: Input Images

R. Grosse @ Uni. of Toronto

N ×M matrix

NM × 1 vector

...

...

...

Figure 12: Represent images by vectors

Mean face x̄

Figure 13: Mean face

Top eigenvectors: u1, . . . , uk (visualized as images - eigenfaces)

Figure 14: Eigen faces

24

Represent each image as a linear combination of the top k eigenfaces, i.e. project faces onto
these components

Figure 15: Represent a face as a linear combination of top k eigenfaces

Effect of number of principal components on reconstruction

Recognition: Project the training sample onto the same k principal components after sub-
tracting the mean face. Use k-nearest neighbors (by the new representations) and make a pre-
diction based on that.

Face Detection: For a region R of the image, project R onto the principal components. If
the `2 distance of the new representation of R with R is not significant, then R is a face.

5 Limitations of PCA and other feature extraction meth-

ods

PCA does not take into account any class labels (a completely unsupervised approach) thus it
does not necessarily help separate data based on classes and may not lead to better classification
(based on reduced dimensional data).

25

First principal component

data projected on v1

not separated classes

Linear Discriminant Analysis (LDA): Seeks a projection that best discriminates the data

Projection respecting classes

data projected on v1

well-sepearated classes

Principal components are linear combinations of the original features. If original features are
related in a non-linear fashion PCA may not capture it

Non-linear structure may not be captured

x1

x2

v1

First principal component

In addition of PCA other related linear dimensionality reduction methods include

� Factor Analysis

� Independent Component Analysis: Seeks a projection that preserves as much infor-
mation in the data as possible

26

Non-linear methods include

� Laplacian Eigenmaps

� ISOMAP

� Local Linear Embedding Embedding to low dimensional manifolds

27

	Dimensionality Reduction
	Aims of PCA

	Differences between PCA and JL-Transform
	Data-driven vs. Data Oblivious dimensionality reduction
	Randomized vs Deterministic
	Preservation of pairwise distances
	Meaningful coordinates in the compressed space
	Dimensions of reduced space

	Principal Component Analysis
	Zero-Centering the data and uniform scaling all coordinates
	Covariance, Correlation and the Variance-Covariance matrix

	PCA: The Idea
	Projections
	A bigger example
	Choosing the best direction for projecting: : Minimum Reconstruction Error
	Direction with Min Reconstruction Error := Direction with Max Variance
	Subsequent projections: Larger k

	PCA: Linear Algebraic Formulation
	Diagonal Covariance matrix
	Eigenbases, Diagonalization, Eigen Decomposition
	Eigen Decomposition
	Real Symmetric Matrices
	Orthogonal Matrices
	Eigendecomposition of covariance matrix

	PCA: The Algorithm
	Complexity of the Algorithm
	Number of principal components needed: Scree Plot
	The Power Iteration method to compute eigen vectors

	PCA: Case Studies and Examples
	Images as Vectors

	Limitations of PCA and other feature extraction methods

