
Data Streams
Lecture Notes for Big Data Analytics

Naimat Ullah

March 2019

Contents

1 The data stream phenomenon 2
1.1 Characteristic of data streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Stream Analysis versus Traditional Data Analysis . . . . . . . . . . . . . . . . . 3
1.3 Data Stream Processing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Approximation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Data Stream Applications 4
2.1 Sensor Network Data and IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Network Monitoring and Management . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Web Click Stream Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Search Queries Stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 AMI Data Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Financial Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.7 Optimized Query Execution Plan . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Stream Model of Computation 9

4 Synopsis of the stream 10
4.1 Synopsis Based Exact Stream Computation . . . . . . . . . . . . . . . . . . . . 10
4.2 Finding Missing Integer(s): A motivating example . . . . . . . . . . . . . . . . . 11
4.3 Common Families of Synopses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3.1 Synopsis: Sliding Window . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3.2 Synopsis: Random Sample . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3.3 Sampling Algorithms – Reservoir Sampling . . . . . . . . . . . . . . . . . 12
4.3.4 Synopsis: Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.5 Synopsis: Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.6 Synopsis: Linear Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Models of data streams 16

1



6 Finding frequency of an element: The Count-Min sketch 17
6.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 The Count-Min sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3 Amplifying the probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Finding frequency of an element: The Count sketch 20
7.1 The Count sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.2 Amplifying the probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8 Computing higher frequency moments: The AMS Sketch 25

9 Comparison of Count and Count-Min Sketch 25

10 Lower bound on Sketches for Frequency 25
10.1 Index problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
10.2 Reduction from the Frequency estimation to Index problem . . . . . . . . . . . . 26

1 The data stream phenomenon

Stream Processing or Stream Analytics or Streaming Algorithms is the application of data
analysis and algorithmic methods on a continuous stream of data items and drawing meaningful
analytics and knowledge from it. Stream processing is generally performed in the following
settings.

• Single Pass over the stream: The common requirement is to process each item exactly
once. Though in certain cases we do use 2 pass or a small number of passes over the stream.

• Limited Memory: The common characteristic of stream processing is the requirement
to use poly-logarithmic space (in length of stream or domain of data objects). This im-
mediately implies that we cannot store the whole stream (and the single pass requirement
becomes clear)

• Constant per item processing: Given an object the requirement is to process it in
near real time. Usually the goal is to O(1) time on each stream element.

• Arbitrary arrival order: Generally, in streaming algorithm we do not make any as-
sumption on distribution or order of items. For instance we cannot say that objects are
streamed in a random order or that objects are coming from a certain distribution. In
other words, we essentially assume adversarial (worse-case) order.

1.1 Characteristic of data streams

Some characteristic of data streams or some key aspects in which data stream processing is
different than the usual data processing are given as follows. These are based on the textbook
Han & Kamber, Data Mining Concepts & Techniques [9].

2



• Huge volumes of continuous data, possibly infinite

• Fast changing and requires fast, real-time response

• Data stream captures nicely our data processing needs of today

• Random access is expensive

• Single scan algorithm (can only have one look)

• Store only the summary of the data seen thus far

• Most stream data are at pretty low-level or multi-dimensional in nature, needs multi-level
and multi-dimensional processing

1.2 Stream Analysis versus Traditional Data Analysis

The concept of stream processing will be more clear if we observe how it differs with the
traditional data analysis that we have been studying thus far in this course. The following
is a contrast with traditional data analysis and in what aspects stream data is fundamentally
different than traditional datasets based on a tutorial by Babcock et.al. in PODS 2002 [2].

Traditional Data (DBMS) Data Stream

Persistent storage Transient stream(s)

One-time query Continuous query

Random access Sequential access

Unbounded disk storage Bounded main memory

Only current state matters Arrival-order is critical

No real time services Real-time requirements

Low update rate Possibly multi-GB arrival rate (dynamic & fast)

Mixed granularity Data at fine granularity

Table 1: Comparison of stream data vs. traditional data (DBMS)

1.3 Data Stream Processing Model

Streams are long (potentially unbounded) exact algorithms with limited memory are possible
only for a few simple queries. In most cases it suffice to design approximate algorithms to
derive analytics from the stream. Assume we are given an input S of data items in a streaming
fashion and we are required to process S to compute a function f(S) to output.

3



Motwani, PODS (2002)

Memory

GigaBytes

Continuous Data Stream
potentially unbounded

Possibly multiple
(parallel) streams

Query Q

Approximate Answer

probabilistic guarantees

Stream
Processing
Engine

KiloBytes

Application

to Q with

. . .

Figure 1: Summary of the stream processing model

1.3.1 Approximation Algorithms

As mentioned above, in most of interesting cases of computing functions over streams, f(S) can
provably not be computed given the sublinear space and 1 pass requirements. We, therefore
often allow approximation algorithms that make errors with bounded probability.

Definition 1 (Approximation Algorithm with multiplicative guarantee). Let A be an algorithm
to compute f(S). Denote by A(S) the output of A on input S. We say that A is an (ε, δ)
approximation algorithm if

P ((A(S)− f(S)) > εf(S)) ≤ δ.

Instead of the above requirement of a multiplicative approximation guarantee, an algorithm
could provide an additive approximation guarantee.

Definition 2 (Additive Approximation Algorithm). Let A be an algorithm to compute f(S).
Denote by A(S) the output of A on input S. We say that A is an (ε, δ) additive approximation
algorithm if

P ((A(S)− f(S)) > ε) ≤ δ.

2 Data Stream Applications

Stream data comes in many domains and has various applications. Here are some application
domains from the textbook Han & Kamber, Data Mining Concepts & Techniques [9].

• Telecommunication calling records

• Business: credit card transaction flows

• Network monitoring and traffic engineering

• Financial market: stock exchange

4



• Engineering & industrial processes: power supply & manufacturing

• Sensor, monitoring & surveillance: video streams, RFIDs

• Security monitoring

• Web logs and Web page click streams

• Massive data sets (even saved but random access is too expensive)

We elaborate on some of these applications.

2.1 Sensor Network Data and IoT

source: Wikipedia

Figure 2: Every sensor in a network (WSN) pro-
duced a huge amount of data (streams) with
limited capacity and power

With the advent of IoT and sensor networks,
there has been a huge amount of data gen-
erated by sensor nodes. The data is practi-
cally unlimited but the sensor devices have
very limited computation power and memory.
The limited computation power and (battery)
power requirements to transmit data neces-
sitate processing the stream of data at the
sensor node without the need to storing or
transmitting the whole data. It is estimated
that 1 bit transmission consumes power al-
most equivalent to executing 800 instructions
[11]. Certain key statistical aggregates and
drawn analytics can be transmitted to a server
for detailed processing. We note that even if there is no storage or communication bandwidth
limitation, the near real time requirements for analytics warrants stream processing, while can
keep the whole dataset (in a persistent manner) at the back-end or further detailed processing.
Results of the basic stream analytics can be used to guide detailed and sophisticated analyses
offline in data warehouses.

2.2 Network Monitoring and Management

source: Wikipedia

Network Monitoring and Management

Figure 3: NetFlow architecture

NetFlow: A Cisco tool for network administrators is
widely used for performance metrics, security analysis,
detection and forensics. For each flow it reports among
other measurements

• Network Interface

• Source/Destination IP Addresses

• IP Protocol

5



• Source/Destination port

• TCP Flags

• Total packets/bytes in flow

Stream of this NetFlow data is widely used for net-
work traffic engineering and monitoring, Traffic Volume
estimation & analysis, Load balancing and Efficient Resource Utilization. This is also used for
various network security purposes such as (D)DOS Attack Detection and identifying Service
Level Agreement(SLA) Violation in real time.

Following are some example queries that can be (approximately) answered in the streaming
setting (single pass and sub-linear memory). It is not very hard to see how answers to these
queries can and will be used for the applications mentioned above.

• How many bytes sent b/w IP-1 and IP-2?

• How many IP addresses are active?

• What are the top 100 IP’s by traffic volume (busiest)?

• What is the average duration of IP session and standard deviation?

• What is the median number of bytes in an IP session?

• Find sessions that transmitted more than x bytes

• Find sessions whose duration is more than twice the average session duration,

• List all IP’s with a sudden spike in traffic

• List all IP involved in more than 1k sessions

As an example, AT&T Processes over 567 billion flow records per day, which amounts to
about ∼ 15 PBytes of data ( Fred Stinger (AT&T) FloCon (2017) Netflow Collection and
Analysis.. ). AT&T detects and characterizes approximately 500 anomalies per day using this
data.

2.3 Web Click Stream Analysis

Figure credit: Alex Smola @Yahoo research & ANU

Figure 4: Tracking and analysis of websites visits

Clickstream analysis or clickstream
analytics is the process of tracking,
collecting, processing and reporting
analytics about the number, order,
and routes of visits to components
(such as webpages) on a website. The
data is collected through cookies or
from the web server logs.

6



Monitoring stream of website ac-
tivity and collecting aggregates are
used to learn trends of user behav-
ior such as routing, stickiness (a user’s
tendency to remain at the website),
number of clicks on various buttons,
where users come from and where they go from the site. It is also used for various aggregate
measurements such as frequency of users visits, number of visits for a given web component,
number of unique visitors, top users and frequency norms of visits. These statistics are used to
enhance the user experience on the website, improve GUI and other design aspects related to
website usability. It also helps a great deal for technical aspects such as security and resource
allocation in website design.

Another very important use of clickstream analytics is to increase rev-
enue from e-commerce related websites. The goal is to improve the effec-
tiveness of the website as a channel-to-market. The information such as
number of visits to pages, time spent on pages and navigation between
pages is used to enhance the so-called conversion rate (converting page
visits to items sale) and digital marketing (recommending items based on
identified user interests). Search for keywords up-selling and cross-selling
to see more details of application of clickstream analysis.

2.4 Search Queries Stream

Figure credit: Alex Smola @Yahoo research & ANU

Figure 5: text

There are generally the following three types of search queries on general websearch.

1. Navigational search queries (e.g. facebook or youtube)

2. Informational search queries (e.g. Kruskal’s algorithm for
MST, Weather in Lahore)

7



3. Transactional search queries (Shoe stores in Lahore)

Briefly, review how advertisement works on a search engine.
Since advertisers bid on keywords, in order to determine the best
ad campaign search queries streams are processed to discover
trends and patterns in queries, identify relevant keywords for
website (ad campaign), to estimate competition scores or difficulty and predict keywords CPC
(cost per click).

2.5 AMI Data Streams

Figure 6: Electricity consumption data
analysis from AMI

Energy consumption Analysis from smart meters
transmitting information of load per minute. The
stream is of electricity consumption data (or any other
utility) from AMI (Automatic Metering Interface) (aka
smart meters). Some uses of stream analytics on this
data are

• To find average hourly load, load surges,
anomaly

• Short term load forecast (total or for individual
consumers)

• Identify faults, drops, failures

2.6 Financial Time Series

Here the data
is time stamped
real time (mul-
tiple) stocks data.
A classic ap-
plication is the
so-called algo-
rithmic trading,
which requires
near real time
prediction.

2.7 Optimized Query Execution Plan

In some cases the data doesn’t have to be streamed in, but one can deal with massive data that
is stored on disk in a streaming fashion (Single Pass, Sequential I/O). Such algorithms are also
judged by the per item processing time, storage required and computation time.

8



Suppose we have a large students database with many fields. We do not have the usual
(sub-linear) space restriction, streaming could still help us. We give an example of optimizing
query execution plans by selectivity estimation. Suppose we want to execute a query like

SELECT * FROM Table WHERE 25 <= age <= 35 AND 54 <= weight <= 60

Suppose there are n = 1M students in total. Brute force execution time is 2n compar-
isons, as we have to compare the two fields of every record.

If we have some statistical information about the distribution of each attribute in particular
age and weight, then runtime will be significantly different.

Age Freq

0− 10 7%

11− 20 8%

21− 30 10%

31− 40 12%

41− 50 13%

51− 60 25%

61− 70 20%

71+ 5%

Weight Freq.

0− 20 20%

21− 40 25%

41− 60 10%

61− 80 15%

81+ 30%

If we first first filter on Age, then on weight i.e. first compare every records age to see if is
within the range and then compare the weight of only the filtered records, then the query can
be executed in using 1.22n comparisons. On the other hand first filtering on weight, then on
age would require 1.1n comparisons.

These aggregate statistics can be obtained using one scan on the whole database for all
attributes or while the data is being stored in the database. These kind of techniques are often
used for executing joins though (not just select queries). These techniques can also be used for
performing Exploratory data analytics or Database monitoring.

3 Stream Model of Computation

A data stream is a sequence of m items S = a1, a2, a3, . . . , am, where each item is chosen
from some universe of size n. Typically we take the universe to be [n] := {1, 2, . . . , n}. Some
comments about streams:

• n and m are two size parameters.

• We do not assume anything about distribution of items

• Typically we work in the model where we see each item only once in the order given
by S, in general we cannot (or do not want to) save the whole stream. In the literature
there are algorithms that take more than one passes over the stream but here we restrict
ourselves to one-pass algorithms only.

9



• Our goal is to use a very small amount of memory for computing some function over
stream, f(S), i.e. space requirement of algorithm should be o(min{m,n}). Ideally we
should use O(log n + logm) space. Note that this space is needed anyway to store one
(or some constant number of) stream items for processing. Sometimes space requirement
could be relaxed to polylogarithmic in min{m,n} (like (log n)c for some constant c).

• In most of interesting cases of computing functions over streams, f(S) can provably not
be computed given the sublinear space and 1 pass requirements. We, therefore often allow
approximation algorithms that make errors with bounded probability.

4 Synopsis of the stream

The Fundamental Methodology in stream processing is to keep a synopsis of the stream and
answer query based on it. The synopsis is updated after examining each item in O(1) time.
The synopsis is a succinct summary of the stream (observed so far) with total size poly-log bits

Memory

GigaBytes

Continuous Data Stream
potentially unbounded

Possibly multiple
(parallel) streams

Query Q

Approximate Answer

probabilistic guarantees

Stream
Processing
Engine

KiloBytes

Application

to Q with

. . .

Figure 7: Stream processing: answer the query Q based on the synopsis of the stream

4.1 Synopsis Based Exact Stream Computation

Given a stream S = a1, a2, . . . , am, such that each ai ∈ [n]. Using a small synposis, we can
compute quite a few functions of the stream S. These examples are included as a motivation
and to make the concepts of stream computation and synopsis clear.

• Length of S (m): This can clearly be computed by storing a running counter. The size
of synopsis is one integer.

• Sum of S: This can also be computed by storing a running sum. I.e. an integer variable
initialized to 0 is added to the next stream item ai. At the end of stream or at query
time, the variable contain the sum of all elements of the S.

10



• Mean of S: The mean value can be computed from the sum and length of S (computed
above). Note the size of synposis in this case is 2 integers.

• Variance of S: This can be computed from keeping a synopsis of 3 integers to get the
sum of elements of S, sum of squares of elements of S, and length of S.

V ar(X) = E(X2)− (E(X))2

Recall that computing variance using the definition of V ar(X) = E((X − µ)2) will not
work in the streaming model.

All these use O(log n) bits memory and constant time per element. This is just to emphasize
the fact, that though the streaming model is restrictive, we can still achieve quite a lot.

4.2 Finding Missing Integer(s): A motivating example

Suppose you are given n−1 distinct positive integer in [n] and you want to find the one integer
that is missing. You can solve this problem easily by maintaining a bit vector B[1 . . . n] and
marking B[i] = 1 if the input integer is i. Then at the end of input, one scan through B and
identifying the index of 0 reveals the missing integer. Runtime of this algorithm is 2n− 1 and
space is n bits. Note that this is 2-pass algorithm.

We can solve the problem in a streaming model (low memory) by realizing that
∑n

i=1 i =
n(n+1)

2
and maintaining only one integer S that is the running sum of all input integers. Then

the missing integer is n(n+1)
2
−S. Runtime of this algorithm is n additions and space complexity

is 2n log n
What if two integers are missing and input is n− 2 distinct integers in [n]. You can do this

by maintaining the sum S and product P of input integers and in the end solving a system of
two equations and two unknowns. i.e.

n(n+ 1)

2
− S and n!− P

Though this will solve the problem, but observe that the product P of O(n) integers in [n]
is n! ∈ Ω(nn) (by Sterling’s approximation), hence storing P will take n log n bits, which is
about the same number of bits to store the whole input, (each integer taking log n bits and
there are n of them). Note that the original brute-force solution requires only n bits but that
was two pass algorithm.

Another method, (to find any constant k missing integers) which is more space efficient
is to maintain Si, where Si =

∑
j∈S j

i, i.e. the sum of ith powers of input integers. Since we

know
∑n

=1 j
i, in the end just as above we solve k equations with k unknowns to finding the k

missing integers.
Notice that the above puzzle and the algorithms for mean, variance, length etc. are data

stream algorithms that are exact and deterministic. Such algorithms are uncommon in the
streaming model, generally randomized and approximate algorithms are known for problems
in the streaming model. In the following we discuss some representative and widely applied
problems.

11



4.3 Common Families of Synopses

In these subsections, we are just going to mention the common families of synopses. You are
encouraged to read and explore more about these topics for your research (c.f. [5]).

4.3.1 Synopsis: Sliding Window

a1 a2 a3 a4

Figure 8: Data stream: sliding window example

Sliding window is the simplest syn-
opsis of the stream. In this we keep
the last w elements as synopsis and
perform all processing on this sub-
set. w is called the length of the
window. The synopsis is updated as
follows. On input ai (i ≥ w), ai−w
expires (is removed from the syn-
opsis) and ai added to the window.
The sliding window can be used for
queries like mean, sum, variance,
count of pre-specified element(s) (e.g. non-zero, even) in the stream. This can also be extended
to compute approximate median and k-median. A closely related synopsis is the so-called
moving window, where next window is made up of the next w elements in the stream.

4.3.2 Synopsis: Random Sample

Random SampleStream elements in an arbitrary order

Figure 9: The random subset is a representative sam-
ple of the stream

Random sample is the most versatile gen-
eral purpose synopsis with deep statis-
tical foundations. Recall from your un-
dergraduate statistics courses some rel-
evant concepts like population, sample,
confidence interval, size of sample, bias,
weighted sampling, etc. We keep a “rep-
resentative” subset of the stream as a
synopsis and compute answers to the
given query based on the sample (with
appropriate scaling etc.) Probabilistic guarantees on the approximation quality of the query
answer are derived using the fact that the sample is a (random) representative sample.

4.3.3 Sampling Algorithms – Reservoir Sampling

In the following we briefly discuss algorithms to get a random sample from a dataset. We first
discuss when the whole data is provided (in this case we assume the data is one-dimensional
and given as an array or list). This is followed by sampling one or more elements from a stream.
Sampling algorithm is a fascinating area, interested readers are highly encouraged to read P.
Haas, Data-Stream Sampling: Basic Techniques and Results [8].

12



Problem 1. Sample a random element from array A of length n. Generally, we require a
uniform sample, i.e. each data point is chosen equally likely, (pick A[i] with probability 1/n).

a1 a2 a4 a12a11

0 1 2 3 4 5 6 7 8 9 10 11 12

a3

r

Figure 10: Sample an element from A (length 12)

This problem can be solved as
follows: Generate a random num-
ber r ∈ [ 0, n ]. Many programming
languages provide a pseudo random
number generator function. Most of
them generate real numbers in [0, 1].
Thus, to get a number in [0, n] we
can do r ← rand()× n. The num-
ber r is then rounded and we return A [ dre ].

Problem 2. Given an array A of n elements, where the elements A[i] has an associated weight
wi. Sample a random element (by weight) from A, i.e. choose A[i] with probability wi/W , where
W is the total (sum of) weights of elements in A.

a1 a2 a4 a12a11a3

w1

0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12

r

w2 w3 w4 w11 w12

Wi =
∑i

j=1wj

Figure 11: Sample random element (by weight) from ar-
ray A of length 12

Let Wi =
∑n

j=1wi (this implies
W = Wn), we generate a random
number r in [ 0,W ]. As discussed
above this can be done for instance
as r ← rand() × Wn. Then we
return the element A [ i ] such that
Wi−1 ≤ r < Wi. This returns
A[i] with probability wi/W because
the probability that r is such that
Wi−1 ≤ r < Wi is Wi−Wi−1/W = wi/W .

Problem 3. Given a stream S =
a1, a2, . . . ,. Sample a random element from S, i.e. choose the element ai with probability 1/m.
Here m is the length of the stream.

If m is known, we can use the algorithm for uniform sampling an element from an array. In
other words, we pick a random index r between 1 and m and then choose ar (when it arrives).
When m is unknown (think of it as follows: elements are streamed one at a time and at any
time you may be asked to return a random sample. So m is known at the query time, but since
we cannot store the whole stream, we have to be prepared with a random sample from the
currently observed elements of the stream. The algorithm for this is called reservoir sampling.

Algorithm : Reservoir Sampling (S)

R← a1 . R (reservoir) maintains the sample

for i ≥ 2 do
Pick ai with probability 1/i
Replace with current element in R . If ai is picked

13



Let us analyze the probability that a given element ai is chosen. The probability that ai is
in the reservoir R (at query time m or end of the stream) is given by

= Pr that ai was selected at time i︸ ︷︷ ︸
1

i

×Pr that ai survived in R until time m︸ ︷︷ ︸
m∏

j=i+1

(
1− 1

j

)

=
1

i
× i

i+ 1
× i+ 1

i+ 2
× i+ 2

i+ 3
× . . . × m− 2

m− 1
× m− 1

m
=

1

m

Problem 4. Given a stream S = a1, a2, . . . ,. Sample k random element from S, i.e. the
element ai should be in the sample with probability k/m. Again, m is the length of the stream.

Reservoir sampling is easily extended to solve this problem.

Algorithm : Reservoir Sampling (S, k)

R← a1, a2, . . . , ak . R (reservoir) maintains the sample

for i ≥ k + 1 do
Pick ai with probability k/i
If ai is picked, replace with it a randomly chosen element in R

The probability that ai is in the reservoir R (at query time m or end of the stream) is given
by

= Pr that ai was selected at time i︸ ︷︷ ︸
k

i

×Pr that ai survived in R untill time m︸ ︷︷ ︸
m∏

j=i+1

(
1−

(
k

j
× 1

k

))

=
k

i
× i

i+ 1
× i+ 1

i+ 2
× i+ 2

i+ 3
× . . . × m− 2

m− 1
× m− 1

m
=

k

m

For more discussion on efficiently sampling k elements in streaming fashion with probability
proportional to weights but with dynamic weights see [3].

4.3.4 Synopsis: Histogram

As we discussed earlier, a histogram is great tool to summarize and describe data. In the
streaming setting, the histogram synopsis is some summary statistics (e.g. frequencies, means)
of groups (subsets, buckets) in streams values. What statistic is recorded and computed and
how buckets are formed depend on the application at hand. Quite a few different types of
histograms are used in the literature as stream synopsis. Some of these are listed below. Equi-
width histogram, Equi-depth histogram, V -optimal histogram, Multi-dimensional histogram.

14



4.3.5 Synopsis: Wavelets

Wavelets are essentially histograms of features (coefficients) in the frequency domain represen-
tation of the stream. Interested readers are referred to [5].

4.3.6 Synopsis: Linear Sketch

Among the above synopses, sample is a general purpose synopsis and can be used to answer any
query about the whole stream. However, in sampling we only process the sampled elements and
do not take any advantage from observing the whole stream. Sketches, histograms and wavelets
take advantage from the fact the processor see the whole stream (though can’t remember the
whole stream). We discuss linear sketch in some detail and give some example of uses of them.
Sketches are generally specific to a particular purpose (meaning sketches are designed to answer
specific queries).

S : a1, a2, a3, a4, . . . , am

ai ∈ [n]

f1 f2 f3 fn. . .F :

fj = |{ai ∈ S : ai = j}| (frequency of j in S )

S : 2, 5, 6, 7, 8, 2, 1, 2, 7, 5, 5, 4, 2, 8, 8, 9, 5, 6, 4, 4, 2, 5, 5

. . .
1 2 3 n

F : 1 5 0

1 2 3 94 5 76 8

3 6 2 2 3 1

First, we briefly discuss how a sketch
based streaming algorithm view a stream.
A data stream is a sequence of m items S =
a1, a2, a3, . . . , am, where each item is chosen
from some universe of size n. Typically we
take the universe to be [n] := {1, 2, . . . , n}.
We are interested in computing some sta-
tistical property of the multiset of items in
S. The stream describes some one-dimensional function (a signal), this is represented as an ar-
ray of length n. Quite often the signal is the frequency vector F = f1 f2 . . . . . . . . . fn
where fi is the frequency of element i, i.e. fj = |{i : ai = j}|.

A linear sketch interprets the stream as defining the frequency vector. Often we are inter-
ested in functions of the frequency vector from a stream.

S = < a1, a2, a3, . . . , am > ai ∈ [n]

fi : frequency of i in S F = {f1, f2, . . . , fn}

F0 :=
n∑
i=1

f 0
i . number of distinct elements

F1 :=
n∑
i=1

fi . length of stream, m

F2 :=
n∑
i=1

f 2
i . second frequency moment

Definition 3 (Linear Sketch). Given a stream S, a data structure sk(S) is called a sketch if

• sk(S) is computed in streaming fashion (by processing each item in the steam)

• We can easily combine the sketches of two streams S1 and S2. More precisely, there
is a space efficient streaming algorithm to compute sk(S1 ◦ S2), where S1 ◦ S2 is the
concatenation of these two streams.

15



...

polylog(n,m) sketch matrix

F

sketch vector

Figure 12: Linear sketches

Basically (and quite often) we want to be
able to efficiently update the sketch while process-
ing the next item in the stream (think of S1 =
a1, a2, . . . , ai−1 and S2 = ai. But technically since
we can have multiple streams the definition takes
care of it. Linear sketch can be computed as a lin-
ear transform of F. They are best suited for data
streams and are highly parallelizable. Sketches are
very useful the problems of computing norms of F
that we focus on . Furthermore, sketches can be
readily extended to variations of the basic stream model. We discuss some basic stream input
models below.

5 Models of data streams

Various stream models differ how the items in the stream describe the signal. There are no
standard definitions and a lot of variations. We consider the following three models and give
examples of streams and the underlying signal.

1. Time Series Model: In this case if A is the underlying signal, then each ai represents
A[ai]. For example if we want to record traffic on a given router every 5 minutes. A is
an array of real number such that A[i] is the traffic at the ith 5-min internal and the
the values of traffic reported by the router every 5 minutes are stream items (ai). Other
example include the number of emails every day processed by a mail server, hourly trade
volume in a certain stock exchange etc.

For stream S : 〈7, 3〉, 〈3, 3〉, 〈2, 9〉, 〈7, 2〉, 〈9, 1〉, 〈3, 1〉

The final frequency vector will be F =
1 2 3 4 5 6 7 8 9

0 9 1 0 0 0 2 0 1

2. Cash Register Model: In this model each stream item is an increment to A[i], so
stream item ai is like a pair (j, c), (c > 0) and it means that Ai[j] = Ai−1[j] + c. This
is the most common model and is very applicable to the case of frequency, (so far we
considered c = 1 only). Applications: Suppose we want to monitor bandwidth consumed
by different IP’s. Each time an IP x uses a link it sends a certain number of packets, that
could be treated as increments to x’s previous usage, CDR (call data record) is exactly
this thing.

For stream S : 〈7, 3〉, 〈3, 3〉, 〈2, 9〉, 〈7, 2〉, 〈9, 1〉, 〈3, 1〉

The final frequency vector will be F =
1 2 3 4 5 6 7 8 9

0 9 4 0 0 0 5 0 1

3. Turnstile Model: In this case ai’s are updates to A[ai] (instead of just increments we
allow decrements also). Again think of ai as a pair (j, c), where c could be positive or

16



negative. Usually it is very hard to get tight results in this model, that is one reason
(certainly for us) not to study this. In some cases we restrict A[j] to always stay non-
negative.

For stream S : 〈7, 3〉, 〈3, 3〉, 〈2, 9〉, 〈7,−2〉, 〈9, 1〉, 〈3,−1〉

The final frequency vector will be F =
1 2 3 4 5 6 7 8 9

0 9 2 0 0 0 1 0 1

6 Finding frequency of an element: The Count-Min sketch

we are given a data stream S = a1, a2, a3, . . . , am, where each ai ∈ [n]. This implicitly defines a
frequency vector F = f1 f2 . . . . . . . . . fn where fi is the frequency of i in the stream,
i.e. fj = |{i : ai = j}|. Our goal is to estimate the frequencies fi for all elements.

6.1 Applications

One can easily imagine applications for such queries on a data stream in the cash-register model
but with c fixed to be 1. It is an easy exercise to extend this to any increments values. We can
trivially solve this by keeping a counter array of length n, but we want streaming solution.

For a quick application of estimates of frequency vectors we have used it to compute kernel
values between two objects. Which as we discussed earlier is defined to be the dot-product
between the corresponding feature vectors. For more details see [7, 10]

6.2 The Count-Min sketch

The Count-Min sketch is a simple sketch and has found many applications. It was introduced by
Cormode & Muthukrishnan[6]. The algorithm takes an error bound ε and an error probability
bound δ and provides an additive approximation guarantee. We begin with a simpler version.

Let h : [n] → [1, k] be a function chosen uniformly from a 2-universal family of hash
functions. A 2-universal family H of hash functions have that property,

Prh∈RH[h(x) = h(y)] = 1/k

We keep an array Count[1 . . . k] of k integers. Consider the following simple algorithm.

Algorithm : Count-Min Sketch (k, ε, δ)

count← zeros(k) . sketch consists of k integers

Pick a random h : [n] 7→ [k] from a 2-universal family H
On input ai

count[h(ai)]← count[h(ai)] + 1 . increment count at index h(ai)

On query j . query: F[j] =?

return count[h(j)]

17



S : 2, 5, 6, 7, 8, 2, 1, 2, 7, 5, 5, 4, 2, 8, 8, 9, 5, 6, 4, 4, 2, 5, 5

F :

count :

1 5 0

1 2 3 94 5 76 8

3 6 2 2 3 1

1 2 3

1 + 2 3 + 6
5 + 2
+3 + 1

Sketch

True
Frequencies

Mapping by

h : {1, 2, . . . , 8, 9} 7→ {1, 2, 3}

Figure 13: Count-Min Sketch

Note that when k < n (which is typically the case, actually we require that k ∈ o(n)
i.e. k � n), the algorithm provides an upper bound on actual frequency (since the algorithm
returns Count[h(j)], other elements that hash to the same value, i.e. elements i, such that
h(i) = h(j) also contribute to the returned value Count[h(j)]).

f1 f2 f3 fn. . .F :

fj = |{ai ∈ S : ai = j}| (frequency of j in S )

. . .
1 2 3 n

1 2 3 4 5

h(·)

f4

4

f1
+
fn

f3

f4

f2
++count

Let f̃j = Count[h(j)] be the estimate provided by the algorithm
for query j then from the above reasoning we get that

f̃j ≥ fj.

For j ∈ [n], we estimate the excess (error), Xj in f̃j. Clearly,
Xj = f̃j − fj. Let 1h(i)=h(j) be the indicator random variable for
the event h(i) = h(j).

1h(i)=h(j) =

{
1 if h(i) = h(j)

0 otherwise

Note that i makes contribution to f̃j iff h(i) = h(j) (1h(i)=h(j) = 1) and when it does
contribute, its contribution is exactly fi. We therefore get that

Xj =
∑
i∈[n]\j

fi · 1h(i)=h(j).

By the goodness of h, (h is a 2-universal hash function), we have that ∀ i 6= j P[h(i) =
h(j)] = 1

k
. This gives us

E[1h(i)=h(j)] = P[h(i) = h(j)] = 1/k.

We find the expectation of Xj.

E(Xj) = E(
∑
i∈[n]\j

fi · 1h(i)=h(j)) =
∑
i∈[n]\j

E(fi · 1h(i)=h(j)) Linearity of expectation

=
∑
i∈[n]\j

fi · E(1h(i)=h(j)) =
∑
i∈[n]\j

fi ·
1

k
≤
∑
i∈[n]\j

‖F‖1 ·
1

k

Since all frequencies are non-negative it is actually the L1 norm of the frequency vector, that
is why we denoted it by the L1 norm of F .

18



F
1 2 3 n

fr
eq
u
en

cy

. . . . . .

. . .

h(·)

Bad caseGood case

Sketchcount :

Figure 14: Comparison of good vs. bad case

Theorem 4 (Markov’s Inequality). If Z be a non-negative random variable, then

P[Z ≥ t · E(Z)] ≤ 1

t

Substitute k = 2/ε (since k, the length of hash table is in our control) and using Markov’s
inequality we get that

P[Xj ≥ ε‖F‖1] = P[Xj ≥ 2E[Xj]] ≤ 1/2

Summarizing the analysis of this algorithm we get

• f̃j ≥ fj

• f̃j ≤ fj + ε‖F‖1 with probability at least 1/2

Hence Algorithm 1 is an (ε‖F‖1,
1
2
)-additive approximation algorithm. Space required by

the algorithm is k integers (plus some more for processing etc.) and k = 2/ε is a constant.

6.3 Amplifying the probability

We can amplify the probability of success by selecting t independent hash functions h1, h2, . . . , ht
each from a 2-universal family of hash functions and proceed as follows. Each hi : [n]→ [1 . . . k]

Algorithm : Count-Min Sketch (k, ε, δ)

count← zeros(t× k) . sketch consists of t rows of k integers

Pick t random functions h1, . . . , ht : [n] 7→ [k] from a 2-universal family

On input ai
for r = 1 to t do

count[r][hr(ai)]← count[r][hr(ai)] + 1
. increment count[r] at index hr(ai)

On query j . query: F[j] =?

return min
1≤r≤t

count[r][hr(j)]

19



So we keep t estimates instead of 1, and since every estimate is an upper bound, it is clear
that we should return the minimum of all estimates (the one which has minimum contribution
from other elements).

1

2

3

9

4

5

7

6

8

1

2

3

1

2

3

h1(·)h2(·) S : 2, 5, 6, 7, 8, 2, 1, 2, 7, 5, 5, 4, 2, 8, 8, 9, 5, 6, 4, 4, 2, 5, 5

count :

1 2 3

0 + 1 + 2 3 + 6
5 + 2
+3 + 1

Sketch

h1(·)

h2(·)

F : 1 5 0

1 2 3 94 5 76 8

3 6 2 2 3 1
True
Frequencies

1 + 5 + 6 3 + 3 + 10 + 2 + 2

Figure 15: An example of the count-min sketch

1 2 3 . . . . . . k
count[ 1 ][ · ] +1
count[ 2 ][ · ] +1
count[ 3 ][ · ] +1

...
count[ t ][ · ] +1

ht(a)h1(a)

On input a

On query a mini count[ i ][hi(a)]

Figure 16: The Count-min sketch

Define Xjr to be the contribution of
other elements to Count[r][h(j)]. We
know that if the length of hash table is
k = 2/ε

P[Xjr ≥ ε‖F‖1] ≤ 1/2

Now if f̃j ≥ fj+ε‖F‖1, then for all 1 ≤
r ≤ t, we must have that Xjr ≥ ε‖F‖1,
and the probability of this event is (since
hr’s are independent) is bounded as

P[ ∀ r Xjr ≥ ε‖F‖1] ≤ (1/2)t

Substitute t = log(1
δ
) (the number of hash functions is in our control) and we get

P[ ∀ r Xjr ≥ ε‖F‖1] ≤ (1/2)log 1/δ = δ

Summarizing the analysis of this algorithm 2 we get

• f̃j ≥ fj

• f̃j ≤ fj + ε‖F‖1 with probability at least 1− δ

Hence Algorithm 2 is an (ε‖F‖1, δ) additive approximation algorithm. Space required by
the algorithm is k · t integers (plus some more for processing etc), and k = 2

ε
and t = log(1/δ).

7 Finding frequency of an element: The Count sketch

Since the Count-Min sketch always provides an upper bound, errors always accumulate, the
Count sketch attempts to have the errors cancel each other. It was introduced [4]. Again we
begin with a simpler version and later extend it.

20



7.1 The Count sketch

Let h : [n] → [1, k] and g : [n] → {+1,−1} be two hash functions independent of each other.
We keep an array Count[1 . . . k] of k integers. Consider the following simple algorithm.

Algorithm : Count Sketch (k, ε, δ)

Pick a random h : [n] 7→ [k] from a 2-universal family H
Pick a random g : [n] 7→ {−1, 1} from a 2-universal family

count← zeros(k) . sketch consists of k integers

On input ai
count[h(ai)]← count[h(ai)] + g(ai)

. increment or decrement, depending on value of g(ai) count at index h(ai)

On query j . query: F[j] =?

return g(j)× count[h(j)]

S : 2, 5, 6, 7, 8, 2, 1, 2, 7, 5, 5, 4, 2, 8, 8, 9, 5, 6, 4, 4, 2, 5, 5

F :

count :

1 5 0

1 2 3 94 5 76 8

3 6 2 2 3 1

1 2 3

+1 + 2 +3− 6
+5− 2
−3− 1

Sketch

True
Frequencies

Mapping by

h : {1, 2, . . . , 8, 9} 7→ {1, 2, 3}

+1

−1

1

2

3

9

4

5

7

6

8

g(·)

Figure 17: An example of the Count Sketch

f1 f2 f3 fn. . .F :

fj = |{ai ∈ S : ai = j}| (frequency of j in S )

. . .
1 2 3 n

1 2 3 4 5

count

h(·)

f4

4

±f1
+

g(n)fn

g(3)f3

±f4

±f2
++

Figure 18: Count Sketch

Let f̃j be the estimate provided by the algorithm for query
j, (i.e. f̃j = g(j) · Count[h(j)]), we will first show that in
expectation the algorithm provides the correct answer

E(f̃j) = fj.

For j ∈ [n], we will estimate the error in f̃j. Examining the
algorithm it is easy to see that the i ∈ [n] contributes to
Count[h(j]] iff h(i) = h(j) and when it does contribute, its
contribution is either fi or −fi, depending on g(i).

From the above reasoning we get Count[h(j)] =
∑

i∈[n] fi ·
g(i) · 1h(i)=h(j). On query j the output of the algorithm, f̃j

f̃j = g(j)Count[h(j)] = g(j) ·
∑
i∈[n]

fi · g(i) · 1h(i)=h(j) = g(j)

f(j)g(j) +
∑
i∈[n]\j

fig(i) · 1h(i)=h(j)


= f(j) · (g(j))2 +

∑
i∈[n]\j

fi · g(i)g(j) · 1h(i)=h(j) = f(j) +
∑
i∈[n]\j

fi · g(i)g(j) · 1h(i)=h(j)

21



The expected value of f̃j is

E(f̃j) = E

f(j) +
∑
i∈[n]\j

fi · g(i)g(j) · 1h(i)=h(j)

 = f(j) + E

 ∑
i∈[n]\j

fi · g(i)g(j) · 1h(i)=h(j)


= f(j) +

∑
i∈[n]\j

E
(
fi · g(i)g(j) · 1h(i)=h(j)

)
linearity of expectation

= f(j) +
∑
i∈[n]\j

fi · E (g(i)g(j)) · E
(
1h(i)=h(j)

)
h and g are independent

As above E(1h(i)=h(j)) = P[h(i) = h(j)] = 1
k

and E(g(i)g(j)) = −1(1
2
) + 1(1

2
) = 0. We get that

E(f̃j) = fj.

Next we calculate the variance of f̃j.

V ar(f̃j) = V ar
(
f(j) +

∑
i∈[n]\j

fi · g(i)g(j) · 1h(i)=h(j)

)
= V ar

( ∑
i∈[n]\j

fi · g(j)g(i) · 1h(i)=h(j)

)
= (g(j))2 · V ar

( ∑
i∈[n]\j

fi · g(i) · 1h(i)=h(j)

)
= V ar

( ∑
i∈[n]\j

fi · g(i) · 1h(i)=h(j)

)
the above equalities use V ar(a+X) = V ar(X), V ar(aX) = a2V ar(X) and (g(j))2 = 1

=
∑
i∈[n]\j

V ar
(
fi · g(i) · 1h(i)=h(j)

)
=
∑
i∈[n]\j

E
(
fi · g(i) · 1h(i)=h(j)

)2 −
(
E(fi · g(i) · 1h(i)=h(j))

)2

the above two equalities use independence of g and h and V ar(X) = E(X2)− (E(X))2

=
∑
i∈[n]\j

E
(
fi · g(i) · 1h(i)=h(j)

)2 −
∑
i∈[n]\j

(
E(fi · g(i) · 1h(i)=h(j))

)2
linearity of expectation

=
∑
i∈[n]\j

E
(
fi · g(i) · 1h(i)=h(j)

)2 − 0 =
∑
i∈[n]\j

f 2
i E
(
g(i) · 1h(i)=h(j)

)2 − 0 using E(aX) = aE(X)

=
∑
i∈[n]\j

f 2
i E
(
g(i)2 · 12

h(i)=h(j)

)
=
∑
i∈[n]\j

f 2
i · 1/k ≤

∑
i∈[n]

f 2
i ·

1

k
≤
∑
i∈[n]

(‖F‖2)2 · 1/k

Theorem 5 (Chebyshev’s Inequality). If Z be a random variable, then

P[|Z − E(Z)| ≥ t
√
V ar(X)] ≤ 1

t2

Apply the Chebyshev’s inequality with V ar(f̃j) ≤ (‖F‖2)2

k
, we get that

P

[
|f̃j − fj| ≥ ε

√
k

√
(‖F‖2)2

k

]
≤ 1

kε2
=⇒ P

[
|f̃j − fj| ≥ ε‖F‖2

]
≤ 1

kε2

22



Substitute k = 3/ε2 (since k is length of the hash table which in our control) and using
Chebyshev’s inequality we get that

P
[
|f̃j − fj| ≥ ε‖F‖2

]
≤ 1/3

Summarizing the analysis of this algorithm we get

• E(f̃j) = fj

• f̃j ≤ fj + ε‖F‖2 with probability at least 1
3

• f̃j ≥ fj − ε‖F‖2 with probability at least 1
3

OR

• fj − ε‖F‖2 ≤ f̃j ≤ fj + ε‖F‖2 with probability at least 1
3

Hence Algorithm 3 is an (ε‖F‖2,
1
3
)-additive approximation algorithm. Space required by

the algorithm is k integers (plus some more for processing etc), and k = 3
ε2

is a constant.

7.2 Amplifying the probability

We can amplify the probability of success by selecting t independent hash functions h1, h2, . . . , ht
and t independent hash functions (signs) g1, g2, . . . , gt each from a 2-universal family of hash
functions and proceed as follows. Each hi : [n]→ [1 . . . k] and gi : [n]→ {+1,−1}

Algorithm : Count Sketch (k, ε, δ)

count← zeros(t× k) . sketch consists of t rows of k integers

Pick t random functions h1, . . . , ht : [n] 7→ [k] from a 2-universal family

Pick t random functions g1, . . . , gt : [n] 7→ {−1, 1} from a 2-uni. family

On input ai
for r = 1 to t do

count[r][hr(ai)]← count[r][hr(ai)] + gr(ai)
. inc/dec count[r] at index hr(ai)

On query j . query: F[j] =?

return median
1≤r≤t

gr(j)× count[r][hr(j)]

It is clear that why should we return median of the t estimates, as each one of them can be
an over or under estimate. For the analysis, let f̃jr, (1 ≤ r ≤ t), be the r-th estimate, i.e.

f̃jr = gr(j) · Count[r][h(j)]

From above analysis we know that when k = 3/ε2,

P
[
|f̃jr − fj| ≥ ε‖F‖2

]
≤ 1/3

23



1 2 3 . . . . . . k
count[ 1 ][ · ] −1
count[ 2 ][ · ] +1
count[ 3 ][ · ] +1

...
count[ t ][ · ] −1

ht(a)h1(a)

On input a

On query a medi gi(a) count[ i ][hi(a)]

Note that since we returned the median
of t estimates, if the median is more than x
units away from the actual value, then at least
half of all the estimates are more than x units
away from the actual value. The probability
of many independent estimates being far away
is much smaller. More precisely, Let

Xr =

{
1 if |f̃jr − fj| ≥ ε‖F‖2

0 otherwise

Basically Xr is the indicator random variable, indicating whether f̃jr has too much error. We
count how many of the estimates have too much error, i.e. let

X =
t∑

r=1

Xr.

Now since we said that if our answer is wrong (has error beyond the ε‖F‖2 margin), then at
least half of the estimates would be wrong. In other words X would be more than t/2. But we
will show that only with very small probability X could be so large. By the way we have

E(X) =
t∑

r=1

E(Xr) =
t∑

r=1

1

3
=
t

3

Theorem 6 (Chernoff Bound). Let Z1, Z2, . . . , Zn be independent random variables, 0 ≤ Zi ≤
1. Let Z = Z1 + Z2 + . . . + Zn. Suppose µ = E(Z) = E(Z1) + E(Z2) + . . . + E(Zn). Then for
any γ ≥ 0

• P [Z ≥ (1 + γ)µ] ≤ exp

(
− γ2

2 + γ
µ

)

• P [Z ≤ (1− γ)µ] ≤ exp

(
−γ

2

2
µ

)
The computer science version of this says that P[|Z − µ| ≥ γµ] ≤ 2−Ω(µγ2)

Since the expected number of erroneous estimates is t/3, if the median of estimates is wrong,
then the number of erroneous estimates must be at least t/2 = t/3 + t/6, i.e. X must deviate
from its expected value be at least t/3 and by the Chernoff bound the probability of that
happening is given as follows:

P[X ≥ (1 + 1/2) t
3
] ≤ exp

(
− (1/2)2

2 + (1/2)
· t

3

)
= exp

(
− t

30

)
. We want this probability to be

at most δ (the given bound on error probability), substitute t = 30 ln(1
δ
). Note that t is in our

control, the number of times we want to run Algorithm 3 in parallel. Overall we get,

• E(f̃j) = fj

24



• |f̃j − fj| ≤ ε‖F‖2 with probability at least 1− δ

Hence Algorithm 4 is an (ε‖F‖2, δ) additive approximation algorithm. Space required by
the algorithm is k · t integers (plus some more for processing etc), and k = 3

ε2
and t = 30 ln(1/δ)

(assuming my calculations are right).

8 Computing higher frequency moments: The AMS Sketch

Notes on Alon-Mathias-Szegedy sketches [1] to estimate higher frequency moments of a stream
will be included later. Comprehensive slides for the AMS sketch to estimate F2 are already
shared.

9 Comparison of Count and Count-Min Sketch

Note that the Count sketch uses more space than the Count-Min sketch, but does it give better
estimates. Recall our discussion on the Lk norms.

• The deviation for the Count-Min sketch is bounded by ε‖F‖1 and that of the Count sketch
is bounded by ‖F‖2.

• For all vectors z ∈ Rn, ‖z‖1 ≥ ‖z‖2, hence Count-Min sketch will always give looser
bound.

• The two give exactly the same answer when only one element has non-zero frequency,
since for F = (f1, 0, 0, 0, 0, 0), ‖F‖1 = ‖F‖2 = 1.

• Count outperforms the Count-Min sketch by the most when all frequencies are equal.
Say F = (1, 1, 1, . . . , 1), in this case ‖F‖1 = n and ‖F‖2 =

√
n. So for say ε = 1/10, the

Count-Min estimate is within n/10 of the actual answer (with probability 1 − δ), which
the Count estimate is within

√
n/10 of the actual answer.

• As the distribution of frequencies spreads out, Count outperforms the Count-Min.

10 Lower bound on Sketches for Frequency

In this section, I want to show that the Count-Min sketch is asymptotically the best with
respect to space requirements. This is to give you a general idea of how lower bounds work
and what do they mean. Please read it on your own and if you encounter something like this
in your research, you would be familiar with the typical structure and terminology. We use a
reduction from the well known Index problem from communication complexity.

25



10.1 Index problem

In this problem there are two players, Alice and Bob. Alice holds a binary array A of length n
(bit string). Bob has an index j ∈ [n]. Bob wants to find out the value of A[j]. All communica-
tion has to be one-way, i.e. only Alice can send information to Bob. Bob knows the value of n
but doesn’t know the contents of A. We denote an instance of index problem as the pair (A, j).
The question is how many bits Alice needs to send to Bob so as he determines the value of
A[j]. We want to reduce the communication complexity of the protocol (algorithm). We only
require that Bob determines A[j] with high probability (one-way probabilistic communication).
Please note a few things about the Index problem.

• It is very easy if Alice is allowed to send all n bits, since then Bob will check A[j]. This
requires n bits communication.

• With some XoR tricks, may be we can reduce to n− 1 or so bits communication.

• Bob can randomly guess the value of A[j], and his guess will be correct with probability
1/2. But we want it to be correct with probability 1− δ for a small input parameter δ.

• The Index problem has many applications in Private Information Retrieval etc.

We use the following theorem from information theory.

Theorem 7. (Lower bound on index problem) For Bob to determine the A[j] correctly with
probability at least 1/2− δ, Alice needs to send Ω(δ2n) bits.

Basically it says that to improve upon the random guess we need Ω(n) bits communication.

10.2 Reduction from the Frequency estimation to Index problem

Theorem 8. To estimate fj within error ε‖F‖1 with constant probability, one needs at least
Ω(1/ε) space.

Proof. Assume that there is a solution that estimates fj within error ε‖F‖1 with probability at
least 1− δ and it uses O(1/ε) space. This means there is an algorithm G that outputs estimate

f̃i such that P
[
|f̃j − fj| ≤ ε‖F‖1

]
≤ 1− δ and G uses space at most 1/ε.

We will show that if there is such an algorithm G, then using G we can efficiently solve the
Index problem. To see that suppose we have an instance of the index problem (A, j). We make
a stream S with each element from the set {0, 1, . . . , n}. The stream will realize the following
frequency vector.

f0 = 2 · |{i : A[i] = 0}|, i.e. the frequency of 0 is twice the number of 0’s in A and fi = 2,
if A[i] = 1. In other words, for each 0 in A we put two 0’s in S and for each 1 at location

i, we put two i’s in S. As an example, for A =
1 2 3 4 5 6

1 0 1 0 1 1
, the stream S will be

1, 1, 0, 0, 3, 3, 0, 0, 5, 5, 6, 6

26



This S defines the frequency vector F =
0 1 2 3 4 5 6

4 2 0 2 0 2 2

Let ε = 1/2n, clearly ‖F‖1 = 2n = 1/ε and ε‖F‖1 = 1. Lets apply the algorithm G on S
and estimate the frequency of j (within error ε‖F‖1).

If for f̃j, G outputs anything above 1, then A[j] = 1 and otherwise A[j] = 0. Because if
A[j] = 0, then fj = 0, and the algorithm can overestimate it by at most 0+1 = ε‖F‖1 with high
probability G, and if A[j] = 1, then fj = 1 and the algorithm will return something between 1
and 3 with high probability.

The contradiction comes from the fact that now Alice can make a stream S given the array
A with her. And run algorithm G on S and send to Bob whatever data structure G is using (the
sketch G computes). Since it was claimed that G uses space O(1/ε), hence the communication
from Alice to Bob is at most O(1/ε) = O(n), which contradicts the theorem above.

References

[1] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.

[2] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom.
Models and issues in data stream systems. In Proceedings of the Twenty-first ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 3-5,
Madison, Wisconsin, USA, pages 1–16. ACM, 2002.

[3] M. Beg, M. Ahmad, A. Zaman, and I. Khan. Scalable approximation algorithm for graph
summarization. In Advances in Knowledge Discovery and Data Mining (PAKDD), pages
502–514, 2018.

[4] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. In Proceedings of the 29th International Colloquium on Automata, Languages and
Programming, ICALP ’02, page 693–703. Springer-Verlag, 2002.

[5] Graham Cormode, Minos Garofalakis, Peter J. Haas, and Chris Jermaine. Synopses
for massive data: Samples, histograms, wavelets, sketches. Found. Trends Databases,
4(1–3):1–294, 2012.

[6] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-
min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

[7] M. Farhan, J. Tariq, A. Zaman, M. Shabbir, and I. Khan. Efficient approximation algo-
rithms for strings kernel based sequence classification. In Advances in Neural Information
Processing Systems (NeurIPS), pages 6935–6945, 2017.

27



[8] Peter J. Haas. Data-Stream Sampling: Basic Techniques and Results, pages 13–44. Springer
Berlin Heidelberg, 2016.

[9] Jiawei Han and Micheline Kamber. Data Mining. Concepts and Techniques. Morgan
Kaufmann, 2nd ed. edition, 2006.

[10] P. Kuksa, I. Khan, and V. Pavlovic. Generalized similarity kernels for efficient sequence
classification. In SIAM Intern. Conf. on Data Mining (SDM), pages 873–882, 2012.

[11] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. Tag: A tiny
aggregation service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev., 36(SI):131–146,
2003.

28


	The data stream phenomenon
	Characteristic of data streams
	Stream Analysis versus Traditional Data Analysis
	Data Stream Processing Model
	Approximation Algorithms


	Data Stream Applications
	Sensor Network Data and IoT
	Network Monitoring and Management
	Web Click Stream Analysis
	Search Queries Stream
	 AMI Data Streams
	 Financial Time Series
	Optimized Query Execution Plan

	Stream Model of Computation
	Synopsis of the stream
	Synopsis Based Exact Stream Computation
	Finding Missing Integer(s): A motivating example
	Common Families of Synopses
	Synopsis: Sliding Window
	Synopsis: Random Sample
	Sampling Algorithms – Reservoir Sampling
	Synopsis: Histogram
	Synopsis: Wavelets
	Synopsis: Linear Sketch


	Models of data streams
	Finding frequency of an element: The Count-Min sketch
	Applications
	The Count-Min sketch
	Amplifying the probability

	Finding frequency of an element: The Count sketch
	The Count sketch
	Amplifying the probability

	Computing higher frequency moments: The AMS Sketch
	Comparison of Count and Count-Min Sketch
	Lower bound on Sketches for Frequency
	Index problem
	Reduction from the Frequency estimation to Index problem


