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6 Data Dependent LSH] 23

Recall the two proximity computation problems underlying nearly all data analytics: the
distance matrix and k-nearest neighbors computation. Given a set X of m-dim vectors, with
|X| = n, the runtime of the brute force algorithms for computing the distance matrix and
k-nearest neighbors is O(n?xm) and O(n xm), respectively. The runtimes grows linearly with
dimensionality m and quadratically or linearly with number of points n. In dimensionality
reduction we dealt with the factor of m, and now we deal with the factor n.

Recall that the Dictionary ADT can be implemented with hash functions and the concept
of collisions and chaining.

1 LSH: Definition

Hashing is perfect for duplicate detec-

tion, since the same items will always pwaohes 02 2+ O BH 0V L |
hash to the same bucket, but it does not M \ .
help for near duplicate detection as sim- General Hashing .
ilar items, i.e. within the st threshold \l
for near-duplicates, would not necessar- Hash Table ‘ ‘ ‘ ‘ ‘ ‘ ‘
ily hash to the same bucket. For near-

duplicate detection, we need hash func- paaobees 3L 2 O D 0 NV L |

tions where meaningful collisions are de-
sired, i.e. we want similar objects hash
to same buckets, and that is what Lo-
cality Sensitive Hashing (LSH) is essen- Hsh Table ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
tially meant for.

A family H = {hy,ho,...,} is a
(dy,ds, p1, po)-family of LSH functions, if
for a randomly chosen function h from H, for objects x and y

Locality Sensitive Hashing

Figure 1 Uniform vs. locality sensitive hashing

1. If d(z,y) < dy, then Prlh(x) = h(y)] > p1,i.e. h(z) = h(y) with probability at least p;

2. If d(z,y) > dy, then Prih(z) = h(y)] < pa, ie. h(z) = h(y) with probability at most po

Consider the above statements. The first one bounds the false negatives, which are highly
similar pairs that do not hash to the same bucket. The second one bounds the false positives
which are not highly similar pairs that do hash to the same bucket. The problem with only
the first one is that it does not talk about false positives. The problem with only the second
is that it does not talk about false negatives.

Keeping in view the near duplicates detection task, we would like p; to be very high (close
to 1) to reduce false negatives. Similarly, we would like p, to be very low (close to 0) to
reduce false positives. Furthermore, since we have no guarantee about pairs whose distance is



between d; and dy, we would also like d; and dy both to be close to ¢ (near duplicate threshold)
to reduce the range of distances with no guarantees. Figure 2] shows what is guaranteed by
a random function in the LSH family H and Figure |3| depicts the ideal case we would like to
have.
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Figure 2 Guaranteed that, if d(x,y) < d; then 0
the items will go to same bucket with probabil-

ity at least py, and if the d(z,y) > dy then the  Figure 3 Ideal case in terms of distance
items will go to same bucket with probability

at most po

t d(zi,2))

Sometimes we use the following equivalent definition of LSH functions in terms of similarity.
A family ‘H = {hy, ha,..., } is a (1, S, p1, p2)-family of LSH functions, if for a randomly
chosen function h from H, for objects x and y

o If sim(z,y) > s1, then Pr{h(z) = h(y)] > m

o If sim(z,y) < s9, then Prh(z) = h(y)] < p2

Figure 4| shows what is guaranteed by a random function in the LSH family H in terms of
similarity and Figure [5| depicts the ideal case we would like to have, in terms of similarity.

1.1 A Motivating Example: LSH for Plagiarism Detection

Before we go into the details of constructing LSH families and working with them for different
distance measures, lets see how LSH can be applied for the plagiarism detection task as a
motivating example.

Suppose we have 1M documents, each of length 2000 (e.g. TF-IDF). Our goal is to find
near duplicates, i.e. those pairs of documents whose similarity is more than 90% = .9 (distance
is less than 10% = .1).

The naive (brute-force) approach is to compute all pairwise distances and output those that
are less than .1. There a total of means (134) ~ 1T = 10'2 pairs and distance computation
between a pair will take at least 2000 steps (e.g. Euclidean or cosine distance). So total
number of operations is 2 x 10%°.
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Figure 4 Guaranteed by a random function in
the LSH family H in terms of similarity, i.e. if ¢ sim(zi, ;)
sim(x,y) > s1, then the items will go to the
same bucket with probability at least p; and if
the sim(x,y) < sy, then the items will go to
the same bucket with probability at most ps

Figure 5 Ideal case in terms of similarity

Now suppose we use a random function h from a family #H of (.15, .4,.8,.2) LSH functions.
Elaborating the properties of these functions, this means that if we randomly choose a function
h from H, then for any two documents = and y

o If d(z,y) < .15, then Pr[h(z) = h(y)] > .8
o If d(x,y) > .40, then Pr[h(z) = h(y)] < .2

Assume that all function in H are
of the form h : R™ — [2500], i.e each
function maps documents to the set X
{1,...,2500} of bucket IDs. Further-

more, we assume that these LSH func-

h(")
tions have one more good property, i.e. Document / =
they map the document to any of these e — / 2500 buckets

2500 buckets almost uniformly, as in
Figure [6} (This assumption is not re-
alistic, as LSH does not offer any such 1M docs with 2000 terms each
guarantee, but we use it to make the
concepts clear. )
The algorithm now is as follows. Figure 6 A function in A maps docs to the 2500 buck-

Choose a function h at random from ets almost uniformly (not a realistic assumption)
‘H and hash all documents with h, i.e.
compute h(z) for each document z. For each ¢ € [2500], compute exact distance between all
pairs in bucket ¢ and if this distance is less .1, output the pair.
Each bucket on average has 1M /2500 = 400 documents. The total pairwise distance

computations are 2500 (480) ~ 200M and each distance computation takes 2000 steps, so total




number of operations is 200 x 2000 ~ 4 x 10'! operations. This is about 2500 times faster
than the naive approach.

Though the runtime has reduced by a significant factor, we need to account for the quality
of the algorithm (or specified family of LSH functions). The false positives are those pairs
whose distance is more than 0.1, but we still computed their distances. Note, however, that
we don’t output them, so this is not a qualitative mistake but only a waste of time. The false
negatives are those pairs whose distance is less than 0.1 but we didn’t compare them, and
hence did not output as well. This is actually a mistake in the output.

Although we don’t know how many are actually false positives and false negatives, but
we can bound their sizes by looking at even relaxed definition of false negatives and false
positives.

From our LSH specification:

o E(FN) < E({(x,y) : d(x,y) <.15 A h(x) # h(y)}|) < 20% , i.e. expected number
of pairs of documents whose distance is less than .15 and going to different buckets is
at most 20%. This includes all the false negatives. Hence, our average error is bounded

by 20% (of (3)).

o F({(x,y) : d(x,y) > .4 A h(x) =h(y)|}) < 20% , i.e. expected number of pairs
of documents whose distance is more than .4, and going to the same buckets is most
20%. This also includes all our false positives. Hence, in expectation there will be small
wasted computation

1.2 Applying LSH for Nearest Neighbor Problem

Next we use a LSH for the nearest neighbor search problem. Suppose we have a fixed radius
nearest neighbor search problem at hand.

Suppose we have a dataset X of 1M documents each of length 1000 (e.g. TF-IDF vectors).
For a query document q (also a 1000 length TF-IDF vector) we want to find documents in X
such that d(e,q) < .1 (i.e. the given radius r = .1).

The naive approach of computing distance of ¢ with every document in X will take 1M
distance computation which amounts to ~ 10? arithmetic operations.

Now suppose we use a random function h from a family #H of (.15, .4, .8,.2) LSH functions.
Elaborating the properties of these functions, this means that if we randomly choose a function
h from H, then for any two documents = and y

o If d(x,y) < .15, then Pr[h(x) = h(y)] > .8
e If d(x,y) > .40, then Pr[h(x) = h(y)] < .2

The schema of the algorithm is as follows:

We use a random h from H of (.15, .4,.8,.2)-LSH family and run the naive approach only
on the subset of documents with h(-) = h(q).

We call a document z a false positive if d(z,q) > 0.1, yet h(xz) = h(q). These documents
result in wasted computation, because by the algorithm prescription we unnecessary compute



v -0L

bMow = o %
ww—0%
-y

N WP w~Q

n objects of m dimensions

Q
A
-

n objects of m dimensions

k buckets k buckets

Figure 7 Find k-NN of ¢ in a dataset X’ of n objects of m dimensions

their distance with ¢, but will never output them. A document x is called false negative if
d(z,q) < 0.1 and h(z) # h(g). Again false negatives result in qualitative error, i.e. missed
near neighbor, we were supposed to output it, yet the algorithm did not even compare it with
q.

We summarize the analysis of runtime efficiency of this algorithm and it’s quality

o BE(FN) < E({(x,y) : d(x,y) <.15 A h(x) # h(y)}]) < 20%
e BE({(x,y) : dx,y) = 4 A h(x) =h(y)|}) < 20%

e On average < 20% missed near nbrs and hopefully small wasted computation

2 Designing LSH Family for Hamming Distance

LSH families are designed for specific distances, we first discuss in detail a LSH family for
Hamming distance and elaborate all aspects of it. Then we discuss basic ideas of LSH functions
for other distance measures. We also mention some distance for which it is either known that
no LSH family exists or it is open problem to design one.

2.1 Hamming Distance (Hamming Similarity)

Hamming distance is used for character vectors of fixed length, i.e vectors whose coordinates
take values from a finite (usually small) set called alphabet. The Hamming distance dg(x,y)
between two vectors x and y of length n is the number of coordinates in which they differ.
Note that this is just the count of different coordinates. Hence, 0 < dy(x,y) < n.

It is easy to see that if two vectors are exactly the same, then dy(x,y) = 0, and if they
are totally different, i.e. they don’t agree at any coordinate, then dy(x,y) = n, the length of
vectors. Hamming distance is gnerally used for binary vectors, in which case, it is the count
of locations, where the bit of x is 1 and that of y is 0 or vice-versa.

It is easy to verify that Hamming distance is indeed a distance metric, i.e. it satisfies all
the axioms. Hamming similarity is defined as sy = n — dy(x,y). This is the generally used
definition of Hamming distance and Hamming similarity.



Since we have restricted ourselves to n-dimensional vectors, for technical reasons, that will
be clear later, we will use

number of coordinates different in x and y

dy(z,y) =
n(@.y) n (the total number of bits in each vector x and y)

In this setting, similarity is defined as sy (x,y) = 1—dg(z,y). When it is clear from the context

that we are talking about Hamming distance and similarity, we will drop the subscript H.

2.1.1 Bit-Sampling: LSH for Hamming Distance

We give a family of locality sensitive hash func-
tions for Hamming distance between binary strings vl 2l s | alsle] 7 ]s] o
(bit strings) of length n [4]. Each hash function
in this family takes as input a bit string of length

n (bi,ba,...,b,), where each b; € {0,1} and out- flx) =1 b= halx) = 0
puts one bit, 0 or 1. In other words, each hash haly) =0 haly) =0 haly) =1
function h is given as h : {0,1}" — {0,1}. Let o2 s a]s o] ]s]s]

H = {h; : 1 < i < n}. There are n hash func- 'y ‘0‘1‘1‘0‘0‘1‘0‘1‘0‘
tions in H and the hash function h; is defined as

hi(x) := hi(by,ba,...,b,) = b;, i.e. h; maps the n- Figure 8 LSH functions for Hamming
bits string (b, by, ..., b,) to the value of it’s ith bit. distance between bit strings (x,y) of
For example: hy(10101011) = 1, h1(00110011) = 0, length 9

hy(10101011) = 0, and h3(10101011) = 1. This

seemingly simple family is indeed a locality sensitive hashing family.

Lemma 1. H is a (rq,re, 1 —r1, 1 — ry)-locality sensitive hash family

Proof. Choosing a random function h; from H corresponds to choosing a random index ¢ from
the n indices.

Suppose that two elements (bit vectors in this case) = and y have distance at most rq, i.e.
d(x,y) < ry. Then, since in total each of x and y has n bits, there are at least (1 —r)n bits
that z and y agree on. Hence, the probability we choose one of those bits (i.e. we choose h;
where i is the index of a same bit) is at least @ = 1 — r;. Similarly, for the other side,
observe that if d(z,y) > re, i.e. there are at most n — ron bits same in = and y, then the

probability of choosing a same bit index is at most “=2% =1 — rs. O]
Y n

3 LSH: Probability Amplification

There is no notion of absolute locality sensitive hashing - it is parametric. We can make state-
ments of sensitivity to locality in terms of the four parameters si, so, p1, po. The parameters
of a given LSH family may not be good enough for the given application. Hence, we use the
general approach of probability amplification, the magic of independent trials, to bring the
parameters to the desired range. Revisit Figures [2] and [3] the one guaranteed by the LSH
specifications and the one we would ideally like with like p; = 1 and p, = 0, respectively.
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For easier terminology, let us call two data items that hash to the same buckets as a
candidate pair (for near duplicate problem). A LSH function takes as input a pair = and y
and outputs Yesif x and y are a candidate pair and No otherwise, i.e. h(z) = h(y) implies that
h declares x and y a candidate pair. We do not need to go into the detail of how h computes
the value. In fact, the values of h(x) and h(y), which are bucket IDs, are irrelevant. We only
need to check for equality. Recall that two objects that are indeed near duplicates (d(z, y)]leqt)
but hash to different buckets (h(z) # h(y)) is referred to as false negative whereas two objects
that are not near duplicates (d(z,y) > t) that hash to the same bucket (h(x) = h(y)) are
called false positive.

We will manipulate existing LSH function to bound the number of false positives and false
negatives in a range that works for us.

Dealing with False Positives: We use several independent hash functions from H
and consider pairs that are declared candidate by all of them. This can be viewed as an
AND operation on the output of the hash functions. We hash to the same buckets by the
AND of (the output of) these hash functions. If two data items have large distance, then
they are increasingly less likely to hash to the same bucket as the number of hash functions
increase (because of the AND construction). Hence, dissimilar vectors are less likely to become
candidate pair and there are fewer false positives.

Dealing with False Negatives: In order to reduce the false negatives, we give such
pairs more chances to become candidate pairs. This is achieved by an OR. construction.
Again, use several independent hash functions from H and consider pairs that are declared
candidate by any of them. This can be viewed as an OR operation on the output of the hash
functions. Similar vectors are now more likely to become candidate pairs.

3.1 Construction of new LSH families from old ones

A LSH scheme refers to constructing new families of LSH functions from existing ones with
different parameters. We give two constructions to make new families of LSH families.

3.1.1 The AND Construction:

Let H be a (s, s2, p1, p2)-locality sensi-
tive hash family. First, note that there is v e sals e a] s o
nothing special about similarity thresh- x |1lol1l1lol1l1lolo
olds s; and sg, they could be 2/3,1/3 or
5/6,1/s etc. See the proof above. The

hy = {ho, hs, h7}

. . /L-/_ = {hy, hy, hs} hy(x) # b (y) hhy(x) # hy(y) hy(x) = hy(y)
AND construction can be applied to H , 1 1 ' ' ‘ ‘
as follows. et oo ]s|a|s|s]m]s]s]
Each function A’ in the new family y ‘0‘1‘1‘0‘0‘1‘0‘1‘0‘
H’ consists of r functions h;1, Ao, . . ., Ry

from H. H' consists of (") functions of Figure 9 Applying the AND construction to
the form h; = {hila hig, ey h“«} S Hl (817 827p17p2)_LSH famlly H
operates such that hl(x) = hl(y) if and



only if V j h;j(z) = hj(y). In other words, ' € H' only declares a candidate pair if all r
functions from H do, as shown in Figure [9]

R(z) = hi(y) < hi(z) = ha(y) A hia(z) = hia(y) A ... A hip(2) = hip(y)

It is easy to see that the functions in H’ are more restrictive than those in H as it only
declares a pair as a candidate pair if each of the r constituent functions from H declare it as
candidate pair. We establish the following property about function in H’'.

Lemma 2. H' is a (s1, s2, p}, py)-family of LSH functions

Proof. Its proof follows from the fact that if we randomly choose a function b = h;1, hio, .. ., by
in ‘H’, it corresponds to choosing r independent random hash functions {h;1, hia, . . ., h; } from
‘H. For a pair of points x and y:

o If sim(x,y) > s1, then Prih;;(z) = hi;(y)] > p1 for h;j € H. Therefore,

r

Prhi(z) = hi(y)] = [ [ Prihi(z) = his(y)] 2 9

j=1

e Similarly, if sim(z,y) < sg, then Pr([h;j(x) = h;j(y)] < pq, for h;; € H. Therefore,
Prhi(x) = hi(y)] = [ Prihi(z) = hi(y)] < v
j=1

]

Note that using an r-wise AND construction on H results in H', which is a (s, s2, pi, ps)-
family of LSH functions and has both probabilities smaller than H whereas our goal was to
make only pe smaller. So we choose r such that p} becomes very small (close to 0) but pj is
not very small.

3.1.2 The OR Construction:

Similar to the AND construction, let
H is a (si1,S2,p1,pe)-locality sensitive e s als el a]s|o
hash family. Each function A" = x l1lol1l1lolil1lolo
{hi1, hia, ..., hyp} in the new family H”
of (Z) functions consists of b functions

W = {ha, hs, h7}

hy = {1, ha, hs}  Ri(x) =hi(y) h3(x) # hi(y) h(x) = h3(y)
hii, hio, . .., hy from H and operates such . {h] hl} ’
. . i3 = 16, g
that hl(z) = hl(y) if and only if 3 12348 6 |7 |80
3 j hij(x) = hy(y). In other words, y o 1|1fofof1]o]1]o

h" € H" declares a candidate pair if any . _
of the r functions from #H do (see Figure Figure 10 Applying the OR construction to
10)). (s1,s2,pl,p2)-LSH family H

9



It is easy to see that the functions in H” are less restrictive than those in ‘H as it declares
a pair as a candidate pair if any of the b constituent functions from H declares it as candidate
pair. We establish the following property about function in cal H"”

Lemma 3. H" is a (s1,52,1 — (1 — p1)®, 1 — (1 — p2)°)-family of LSH functions

Proof. Its proof follows from the fact that if we randomly choose a function b = h;1, hig, . .., hip
in H”, it corresponds to choosing b independent random hash functions {h;1, hia, . . ., hyp} from
. Note that the event that h}(z) = h!(y) means that 3j € [1,b], hi;(z) = h;;(y), which is
equal to the complement of the event that Vj € [1,b], h;j(x) # hi;(y). For a pair of points x
and y:

o If sim(x,y) > s1, then Prlh;;(z) = hij(y)] > p1, for any h,;; € H. Therefore,
b

Pr(h(x) = b (y)] = 1 = [ Prihij(e) # his(@)] 2 1= (1= p)°
j=1

e Similarly, if sim(z,y) < sg, then Pr{h;j(x) = h;j(y)] < pe for h;; € H. Therefore,

Prihj(z) = b (y)] = 1 = [ ] Prihi(x) # hi(9)] < 1= (1= po)°

Jj=1

]

Note that using b-wise OR construction on H results in ‘H”, which is a (s1,80,1 — (1 —
p1)%, 1 — (1 — py)®)-family of LSH functions and has both probabilities larger than H whereas
our goal was to make only p; larger.So, we choose b such that 1 — (1 — p;)® becomes very large
(close to 1) but 1 — (1 — py)® doesn’t grow too much.

3.2 Generic LSH scheme

The generic guiding principle of a LSH scheme is to compose the AND and OR construction so
as to keep the number of false positives and false negatives in a bounded range. We combine
both construction in a cascade to get the good of both worlds.

3.2.1 AND-OR Construction

Let H be a (si, s, p1,p2)-LSH family. Apply the r-wise AND construction on H to make
a LSH family H’ that is a (s, s, p},py) family of LSH functions. Then, apply the b-wise
OR construction on _H' to get a LSH family H” that is a (s1,s2,1 — (1 —p)°, 1 — (1 — p})?)
family of LSH functions.

r-wise AND
_—

H o (51,527p17p2)‘famﬂy H (51,32>p§ap5)‘famﬂy

10



H'+ (51,5, p5, p)-family 2% 17+ (51,50, 1 — (1= p})%, 1 — (1 — ph)")-family
In other words, choose b collections of r independent random hash functions from H, i.e.
choose b meta hash functions fi, fo, ..., fy, where each f; € H' is the AND (concatenation) of
r hash functions from #H. More formally, fi(z) = ha(x), hia(x), ..., hi(z).
Then, a pair of item x and y are considered a candidate pair if

(fi(z) = fi(y)) OR (fa(z) = fa(y)) OR ... OR (fo(x) = fo(y))

You can visualize this as bands of b x r signature matrix. The final guarantees on the
specification of H” follow from Lemma 2 and Lemma 3 applied to appropriate base LSH
families.

This is called r-way AND construction followed by b-way OR construction and is denoted
by (r,b) AND-OR Construction.

Theorem 4. Let H be a (s1, S2,p1, p2)-family of LSH functions. and let H" be the hash families
constructed by (r,b)-AND-OR construction. Then, H" is (s1,82,1 — (1 —p5)°, 1 — (1 — p)®)
famaly of LSH functions.

Proof. The proof follows from successive applications of Lemma 2 and Lemma 3 above. We
apply the OR construction on H’, the output of the AND construction. Similarly, we apply
result of Lemma 3 on the result of Lemma 2. O]

3.2.2 OR-AND Construction

We can also do the above composition in reverse order, i.e. b-way OR construction followed
by r-way AND construction. This is denoted by (b,7) OR-AND construction.

H ¢ (51,52, p1, pa)-family =225 H' 1 (s1,50,1— (1— 1), 1 — (1 — po)")-family

e B N (51, 82, (1_(1—291)17)?7 (1_(1—p2)b>r)‘famﬂy
Theorem 5. Let H be a (s1, S2,p1, p2)-family of LSH functions. and let H" be the hash families
constructed by (b, r)-OR-AND construction. Then H" is (s1, 52, (1—(1—p1)®)", (1= (1—p2)®)")

famaly of LSH functions.

H' - (51,89, 1=(1=p1)°, 1= (1=py)")-family

Proof. The proof follows from successive applications of Lemma 2 and Theorem 1 above. We
apply the AND construction on H' the output of the OR construction. Similarly we apply
result of Lemma 2 on the result of Lemma 3. O

Multiple compositions one after the other can also be done.

11



3.2.3 The S-curve

We represent LSH families by 4 parameters s; and s, and the respective probabilities of
candidacy when a pair has some given similarity. Regardless of b and r if we plot the function
(1—(1—p")"), we get a S-shaped curve, i.e. for any value of b and r, we clearly see that this
function stays low until a certain value of p, then rises (with reasonably steep slope) and then
stays high for larger value of p. We try to understand how the values of b and r and the order
of composition affect the S-curve with the help of examples.

Example of AND-OR Composition: Consider the AND-OR compositions for various
values of p,r and b in Table [I}

(T‘, b) - (4’ 4) (Tv b) - (4v 6) (T’ b) - (67 4)
pl1-(1-p) | 1-(Q—p) | 1-(1-p)
0.1 0.0004 0.0006 0
0.2 0.00638 0.00956 0.00026
0.3 0.03201 0.04763 0.00291
0.4 0.09853 0.1441 0.01628
0.5 0.22752 0.32107 0.06105
0.6 0.42605 0.56518 0.17396
0.7 0.66655 0.80745 0.39387
0.8 0.8785 0.95765 0.70359
0.9 0.98601 0.99835 0.9518

Table 1 Effect of construction and values of b and r of steepness of the S-curve, AND-OR
composition

Figure [L1] plots 1 — (1 — p")® from Table [1]
Note that a (s, sg,.2,.8) family is converted by

e (r,0) = (4,4) AND-OR construction into a (s1,$2,0.00638,0.8785)
e (r,b) = (4,6) AND-OR construction into a (s1,52,0.00956,0.95765)
e (r,b) = (6,4) AND-OR construction into a (s1, $2,0.00026, 0.70359)

There is a small range out of which the probability sharply decrease (for small values of
p) or increase (for larger values of p). This is exactly what we want - recall our goal of the
step function in Figure . We would choose b and r (for AND-OR construction) such that
the higher probability p, is in this “right interval”, and the lower probability p; is on the
left portion of the curve. Indeed any S-curve has a fixed-point, i.e. there is a p satisfying
p=1—(1—p")’. Above this value of p, the probability of candidacy (1 — (1 — p")?) increases
and vice-versa.

Example of OR-AND Composition: Consider the OR-AND compositions for various
values of p,r and b in Table [2| the plot for which is shown in Figure [12]

Note that a (s1, s9,.2,.8) family is converted by

12
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r=6, b=4

1-{1-s")°

01 0.25 0.4 0.55 07 0.85 1

Figure 11 Plot of 1 — (1 — p")® is an S-shaped curve for every b and r, AND-OR composition

b.r)=@44) | br)=46)] (b,r)=(6,4)
p|(—(=p") | (0-0=p") | 1=-(1=p)")
0.1 0.01399 0.0482 0.00165
0.2 0.1215 0.29641 0.04235
0.3 0.33345 0.60613 0.19255
0.4 0.57395 0.82604 0.43482
0.5 0.77248 0.93895 0.67893
0.6 0.90147 0.98372 0.8559
0.7 0.96799 0.99709 0.95237
0.8 0.99362 0.99974 0.99044
0.9 0.9996 1 0.9994

Table 2 Effect of construction and values of b and r of steepness of the S-curve, OR-AND
composition

o (b,r) = (4,4) OR-AND construction into (s1,52,0.1215,0.99362)
e (b,r) = (4,6) OR-AND construction into (81, 82,0.29641,0.99974)
e (b,r) = (6,4) OR-AND construction into (s1, 52,0.04235,0.99044)

Similar to the AND-OR construction, the S-curve for the OR-AND construction also has a
fixed-point, i.e. there is a p satisfying p = (1—(1—p)®)". Above this value of p, the probability
of candidacy ((1 — (1 — p)®)") increases and vice-versa.

4 LSH for other distances

We have given a LSH family for the Hamming distance. Next, we will construct basic LSH
families for Jaccard, Cosine and Euclidean similarities.

13
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r=6, b=4

(1-({1-s)")"

Figure 12 Plot of 1 — (1 — p")? is an S-shaped curve for every b and 7, OR-AND composition

We need is to construct a basic family H of hash functions such that a randomly chosen
function h from H has the property of locality sensitivity i.e. it is (di,ds, p1, p2)-locality
sensitive. In this case the d; and dy will be measuring distance with respect to other (than
Hamming) distances. In other words, for a random h € H, we want the property if sim(x,y) is
high, then with high probability h(z) = h(y) and if sim(z, y) is low, then with high probability
h(z) # h(y). With the amplification technique, we can adjust the parameters. Clearly, such
hash functions will depend on the particular similarity but we know that not all similarities
have such suitable hash functions.

4.1 Non-LSHable and Not Yet Known to be LSHable Measures

There are certain measures for which it is known that no LSH scheme is possible.
1. Sgrensen-Dice: This is a similarity measure between sets. For two sets X and Y it is
defined as

: 21X NY]|
simsa(%,Y) = v

Verify that for X = {a},Y = {b}, and Z = {a, b}, we have sim(X,Y) = 0, simq(X, Z) =
2/3, and simyy(Y, Z) = 2/3

2. Overlap Similarity: This also is a similarity between sets defined as

X NY]|

Mo (X, Y) = ———
simo(X.Y) = SR,V

Verify that for X = {a},Y = {b}, and Z = {a, b}, we have sim,,(X,Y) = 0, sim,(X,Z) =
1, and sim,, (Y, Z) = 1.

In both cases, distance is defined to be 1 — sim.(-,-).
For other distance measures, designing an LSH scheme is an open question and it is not
yet known whether an LSH scheme can be made.
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1. Anderberg: This is a similarity measure between sets. For two sets X and Y it is
defined as

, X NY|
an X,Y =
siman(XY) = ey T e e 1

Compute this similarity for pairs of X = {a},Y = {b}, and Z = {a, b}

2. Rogers-Tanimoto This is a similarity measure between sets. For two sets X and Y it
is defined as

XNY|+|XUY
simn(X,Y) = — XY+ IXUY]
IXNY|+XUY +2(XaY|
Compute this similarity for pairs of X = {a},Y = {b}, and Z = {a, b}

4.2 Jaccard Distance

Recall that the Jaccard distance is defined on sets. For two sets S7 and S5, their Jaccard
similarity is defined as

S1NS
J(517S2):M'

The Jaccard distance is 1 — J(S1, S).

A B
J(A B) — |A N B’ — @\:ama of intersection
’ |A U B| / area of union

It is not very difficult to prove that Jaccard distance is a distance metric.

4.2.1 Minhashing

LSH family for Jaccard distance are called Minhashes or Minimum-wise hashing [1].

Let U be the universal set, of which all sets are a subset. For example, if sets are documents,
then U could be the English lexicon. Let H be the set of all permutations of elements in U.
We will show that H is a family of LSH function. For a permutation 7 of elements in U the
hash function h, has the following properties.

e . is of the form h, : 2V — U (takes as input a subset of U and returns an element of
U)

e h, maps a set S C U such that h;(S) is the first element of S in the order of 7

Note that |H| = |U]|!

Example: Let U = {wy, wy, wy, w3, ws} and the permutation m = (wy, wy, wo, w3, ws). Let
the four sets 51, .95, 93,54 be described by the characteristic vectors as in the following table
and reordered according to 7.
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Elem.ID Sl Sg Sg 84 Elem.ID Sl SZ 83 S4
Wo 1 0 0 1 wy 0 0 1 O
w1 0O 0 1 0 wy 0O 0 1 0
Wy 0O 1 0 1 Wo 1 0 0 1
w3 1 0 1 1 ws 10 1 1
Wy 0O 0 1 O Wa 0o 1 0 1

Table 3 Given sets (left) and sets reordered according to 7 (right)

Then, hﬂ(Sl) = Wy, hW(SQ) = Wao, hpZ(Sg,) = W1, hﬂ(84) = Ws.

After reordering, h,(S) is the index of row (the element ID) with first 1 in the permuted
order m. The schemem is called min-wise hashing or minhashing because of this first index
(minimum index).

Let H be a family of functions corresponding to all permutations of elements in U. Recall
we assumed data is m-dimensional, i.e. |U| = m, so there are m! functions in . Then,

Theorem 6. H is a (dy,dy, (1 —dy), (1 — dy))-family of LSH functions

Proof. Let h, be chosen at random from 7, this correspond to choosing a random permutation
mof U. Let S and T be two arbitrary subsets of U Suppose d(S,T") < d;. Note that the event
that h,(S) = h,(T) is the event that the first element in the order of 7 is the same in both
S and T. In other words, if we picture S and T as two columns with rows (elements of U
ordered by 7), then this is the event that we get a [1 1] row before any [1; 0] and [0 1] row
(as we ignore any [0 0]). Since 7 is a random permutation, the probability of this happening

is
No. of [1 1] rows

No. of [1 1],[1; 0],[0 1] rows ’
which is the just the Jaccard similarity between S and T or 1 — d;(S,T'). Thus

Prih.(S) =h.(T)] > 1—dy
Thus, Prlh.(S) = h.(T)] > 1—d;. The other bound for dy is analogous. O

Remark 1. It is not very easy to pick a random permutation and even after picking a per-
mutation, processing the sets and finding their minhash values is computationally expensive as
it needs sorting by ™ and finding the first 1. This becomes even more problematic when U 1is
very large, as then every column generally would have a lot of 0’s (sparse matriz). Therefore,
we can use an approximate minhashing scheme.

4.2.2 Approximate Minhashing

An approximate way is to use universal hash functions (the one we discussed to implement the
Dictionary ADT) as an alternative to random permutation. Recall that permutation is of the
form 7 : [m] — [m] (it is a bijective function with no collisions). If we take a universal hash
function h : [m]| — [m] or even better [m] — [2m], there will be collisions, but very few. This
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is a reasonably good approximation to a permutation as the order of two elements w;, w; € U
is determined based on whether or not h(w;) < h(w;). By the randomness of h we get that
either order is equally likely. The (approximate) minhash value is then computed as follows:

minhash(S) = arg migl h(w)
we

The good thing about simulating a permutation with a hash function is that now, we only
need to compute the minimum of elements that are actually in S and ignore the 0 rows in the
column of S.

4.3 Cosine Distance

Cosine distance is good for discrete versions of Euclidean Space. For example, the ratings of
two movies by three users. Here, we ignore the magnitude of the vector and only consider its
direction, i.e. a vector is the same as a unit vector in that direction.

Cosine distance is the angle between two vectors in
the range [0° — 180°] and is calculated by first com-
puting the cosine of the angle between the two vectors
and then computing the arc-cosine to get the angle.

cosf = Y _ Dicy Ui — ( u )T<U1 )
[ullffoll - ([ullf]] [l [ v]]

Cosine distance is a distance metric, as we consider
a vertex and its scalar multiples the same (i.e. we only — Figure 13 Cosine distance example
consider unit vectors).

Vectors could be in any number of dimensions but
they always define a plane and the angle between them is measured in this plane. This angle
between vectors ranges from 1° to 180°.

Usually vectors take positive values as each coordinate takes positive values. In that case,
the similarity will range between 0° and 90°, i.e. d..s € [0° — 90°]. For example, when the
coordinates are word frequencies (bag of word model) or TF-IDF features.

4.3.1 simHashing: LSH for Cosine Distance

A LSH family #H for cosine distance for points in R™ can be made as follows [2].

Choose a hyperplane h in R™. A hyperplane is just a line in 2d, a plane in 3d, and is d—1
dimensional subspace of RY. Every hyperplane divides the space in two half-spaces (that we
refer to as upper or positive and lower or negative half-spaces). The function f;, with respect
to a hyperplane h assigns every vector in the upper half-space to bucket + and every vector
in the lower half-space to bucket — as shown in the Figure .

For a hyperplane h, we say that two vectors u and v share a hash bucket (becomes a
candidate pairs) if the corresponding hash function f, maps them to the same bucket i.e.
fn(u) = fr(v) otherwise they do not become candidate pair.
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Upper halfspace

Lower halfspace

Figure 14 Division of upper and lower half spaces, u and v is a candidate pair if f,(u) = fj,(v)

otherwise they do not become candidate pair

The same concept applies to higher dimen-
sions. Iin Figure [15] a hyperplane (a 2d plane)
splits the 3d space into two half spaces. We
show only a sphere, as without loss of general-
ity we may consider only unit vectors and work
with the unit ball in R? only, as our concern is
the angle between vectors. Here too, any vec-
tor in the upper half-space is mapped to + and
vectors in the lower half-space are mapped to
— by the function corresponding to the given
hyperplane h.

Let x and y be two vectors with angle 6,

Figure 15 A higher dimension example: A
hyperplane (a 2d plane) splits the 3d space
into two half spaces

between them, as in Figure The probability that a random hyperplane h goes between

the two vectors is exactly ev/180°.

fh1(X):+ fh1(y):

fhz(X):+ fhz(Y):_

Figure 16 Vector x and y is a candidate pair under fp,, (left) but not under f, (right)

Let f, and fp,, in H correspond to hyperplanes h; and hy. Since fp, (x) = f5,(y), x and
y is a candidate pair under fj, but not under f,,.
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Let H.os be the family of functions corresponding to m — 1-dimensional hyperplanes (pass-
ing through origin of R™). Note that H.,s has infinitely many functions. Then,

Theorem 7. H.os is a (dy, do, (180=d1) /180, (180—d2) /180)-family of LSH functions

Proof. Let f, be a randomly chosen function from ... This corrresponds to choosing a
random hyperplane h. Suppose that if

e Suppose deos(x,y) < dy, then there is at least (1=d1)/180 chance that h does not separate
x and y, i.e. fr(x) = fu(y)

e On the other hand, suppose deos(,y) > do, then there is at most (1-d2)/180 chance that
h does not separate x and y, i.e. fr(z) = fu(y)

Combining the above two statements we get the statement of the theorem O

This family we can amplify as we wish. In particular, note that the base family has
infinitely many functions unlike LSH for Hamming and Jaccard similarity which have a limited
of n and n! functions, respectively, in the base family.

4.3.2 Computation of LSH for Cosine Function

Computationally, we accomplish the hashing by not picking a random hyperplanes, as it
is not easy to find the half-space where vector x lies, but instead picking a random unit
vector v and consider the hyperplane to which the vector v is normal.This unit vector v
“uniquely” represent the hyperplane, but makes computation very easy. Technically, there
are infinitely many vectors that are normal to a hyperplane, i.e. all scalings of v. But we
consider unit vectors only, and there are only two of them, v and —1v, that are normal to the
same hyperplane.

Recall that the hyperplane to which v is normal is exactly the family of vectors (the m — 1
dimensional subspace) whose dot-product with v is 0. And it is not very hard to picture (at
least in 2d) that the vectors that are in the upper half-space are those whose dot-product with
v is positive (> 0) and those in the lower half-space have dot-product with v negative (< 0).

Thus, fy(z) is compute as follows. Let v be a normal to the hyperplane h, then

+ ifa>0

—  otherwise

frn(x) = sign(v-z), where sign(a) = {

Remark 2. Choosing a random unit vector v in R?, is just choosing a random direction in RY,
which is a challenging task in random number generation. Recall how we choose approximately
random directions for dimensionality reduction.

19



4.4 FEuclidean Distance

Euclidean distance is the most well-known and common distance measure. It’s general appli-
cability, the nice geometric interpretation (shortest straight line distance between two points),
and the fact that we can do all kind of geometric and algebraic operations on these vectors
make it very useful. As we have earlier discussed, one has to be really careful about the scale
of each coordinate; all coordinates should be on a common scale and in the same units (or
unitless).

4.4.1 LSH for Euclidean distance

The overall idea of LSH for Euclidean distance is that if two points (in m-dimensional Eu-
clidean space) are “close” together and if we project them onto some other vector, then they
should remain “close” to each other [3].
Suppose points in X are vectors in R™.
Let ¢ be a line in R™ passing through the
origin, i.e. v is a unit vector in the direction
of ¢ and the line is the span of this v. Let
a > 0 be a fixed constant that is the length
of segments into which the line ¢ is divided.
Each of these segments is a bucket for the
hash function corresponding to ¢ (Figure[L7)).
The function h, = hy (corresponding to the
line ¢ or the unit vector v) maps a vector x
to the bucket ID (segment of /) where the

projection of x on £ lies, i.e. Figure 17 A unit vector v in the direction of
line ¢ (passing through the origin), a > 0 is
ho(z) = V)Q V>J the fixed constant dividing the line into equal

a segments

Essentially, h, projects x onto v and then
discretize the projection into a multiple of a.

Now the LSH for family Hg.,. = H is composed of the infinitely many functions corre-
sponding to unit vectors in R™.= Next, we analyze the locality sensitivity of these functions.
Intuitively, as we discussed above, if two vector x and y are close to each other, then it is likely
that they will fall into the same bucket and vice-versa. Indeed, the inverse of this statement
is a little tricky, i.e. far vectors are less likely to fall into the same bucket.

Let d be the distance between two points x and y. Depending on how large or small d
compared to a, we can calculate the chances of whether or not x and y will fall into the same
bucket, i.e. Pr[hy(x) = hy(y)] < d(x,y). It also depends on the angle between the line ¢ and
line segment joining the two points x and y. Let’s discuss few scenarios before we establish
probabilistic guarantees.

If d(x,y) is small compared to a, then it is likely that x and y will fall in the same bucket,
though it is not necessary. x and y may fall close to the boundary of two adjacent buckets,
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Figure 18 Vector x and y will fall in the same bucket as the d(x,y) is small compared to a
(left), though it is not necessary, like the vector x and y may fall close to the boundary of
two adjacent buckets (right)

as in Figure Even if say x is really at the boundary, there is still a good chance that they
will go to the same bucket (the event that y is on the “left side” of x as in Figure .

Figure 19 Vector x and y unlikely to fall in one bucket, if d(x,y) is large compared to a (left),
if line segment joining x and y is almost perpendicular to ¢, then it is likely that they fall in
same bucket (right)

If d(z,y) is large compared to a, = and y unlikely to fall in one bucket, though it is not
necessary as in Figure[I9] If d is large but line segment joining  and y is almost perpendicular
to £, then it is still likely that they fall in same bucket. In other words, if d is large, the angle
has to be close to 90° for them to go to the same bucket.

The precise dependence of z and y going to the same bucket, i.e. h,(z) = hy,(y) and the
angle between the Ty segment and ¢ is as follows. If x and y go to the same bucket, then
dcosf < a as in Figure 20l Note that this is only a necessary condition, not sufficient, i.e.
even dcosf < a, the two points x and y may still go to different buckets.
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Figure 20 If dcosf < a then x and y will go to the same bucket

Theorem 8. Hpy is a (5,2a,/2,1/3)-family of LSH functions

Proof. Choose h at random from H g,., which corresponds to choosing a random line ¢ in R™.
Note that the angle 6 between ¢ and the line through = and y is random.

e Let d(x,y) < §. Since the distance is very small, there is at least half chance that the
projection of x on [ is smaller than that of y. This implies that even if one of the points
is really at the border of the bucket there is at least half a chance that the other one is
close to middle of the same bucket. Thus, Pr{hi(x) = he(y)] > /2

e Let d(z,y) = d > 2a. Let d’ be the distance between the projections of z and y on .
From Figure [20] it is clear that d’ = dcosf. If z and y go to the same bucket, then we
must have d' < a = dcosf <a = 2acosf <a = cosf <3 = 6 € [60°,90°].
Since 6 is random, the probability that 6 € [60°,90°] (rather than 6 € [0°,60°]) is 1/s.

Combining the above two bounds, we get the statement of the theorem, but note that these
bounds are very loose. O]

Finally, note the difference between this LSH-family H.,. and those for other distance
measures. The other ones are very strong, where we got that for any d; and ds, the probabilities
were (1—d;) and (1—dy). Here for elly distances, for any distance d; < ds, all we get is p; > ps.
With amplification techniques applied to more number of functions, these probabilities can
be brought to desired values, for which we have infinitely many functions available.

5 Computational Issues

The memory requirements for LSH can be reduced using an implementation trick. Given
that the resulting hash tables have at-most n non-zero entries, one can reduce the amount of
memory used per each hash table to O(n) using standard (universal) hash functions.
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6 Data Dependent LSH

All LSH schemes we discussed are sensitive to
specific distance measure, but they are all data
oblivious (they do not look at the data). A
data dependent LSH scheme is Clustering LSH,
which cluster datasets into k clusters, as in
Figure (using some method and proximity
measure) and each clusters serves as a hash
bucket. Bucket ID of each point is it’s cluster
id.

Figure 21 Clustering LSH
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