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1 Data Preparation

Real-world data such as images, audio, video and graphs are high-dimensional in nature
and susceptible to missing, inconsistent and noisy data, due to heterogeneous sources. Data
preparation is composition of tasks to transform raw data before processing and analysis.
It is an important step prior to processing and often involves reformatting data, making
corrections to data and the combining of data sets to enrich data. Data preparation allows
for efficient data analysis (in terms of computational complexity) and it enriches the data
and enhance the quality of analytics drawn from the data. It also makes data easier to
visualize.

We discussed many elementary steps for data preparation in earlier sessions, like data
clean, data de-noising, scaling and normalization, data transformation, de-duplication of
data. Most of those steps focused on individual data attributes or pairs of them. Here we
discuss more advanced data preparation steps, that address the dataset as a whole.

2 Data Reduction

To perform data analytic tasks on a huge amount of data is impractical, infeasible, and take
long time. Data reduction is a technique that can be applied to reduces the quantity/volume
of that huge data while preserving the quality of the dataset. Hence mining on such reduced
dataset is feasible, efficient yet produced almost the same result as on original data. Data
reduction techniques include data compression, dimensionality reduction, and numerosity
reduction (we discussed this earlier under de-duplication and Sampling). We will briefly
discuss these techniques in this chapter.

3 Data Compression

Data compression is the process of encoding information with fewer bits than the origi-
nal representation and often deals with large volumes of data. Given a point set X =
{x1, x2, . . . , xn}, the objective is to find a compression scheme f : X 7→ X ′ (encoder) and
a decompressor g : X ′ 7→ X (decoder) such that

∑n
i=1 ‖xi− g(f(xi))‖p, called the called `p

reconstruction error, is minimized.
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Figure 1 Data compression and decompression
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3.1 Lossless Compression vs. Lossy Compression

Note that g is not necessarily f−1. If g = f−1, compression is called lossless otherwise
it is lossy. In lossless compression, the original data is recovered completely as it is after
decompression, i.e. X = X ′ but in lossy compression, the recovered data maybe somewhat
‘distorted’, i.e. X ' X ′ as shown in Figure 2.

source: percona.com

Lossless Compression Lossy Compression

= original data ' original data

Huffman

Shannon Fano

JPEG

MPEG

Figure 2 Lossless vs. lossy data compression

3.2 Graph Summarization

We discuss an example application of data compression in the domain of large graph anal-
ysis Graphs on millions of nodes and billion of edges are increasingly common. Example

Figure 3 World Wide Web (left) Biological Network (middle) and Social Network (right)

includes, communication networks, social networks and World Wide Web (WWW). The
huge magnitudes of graphs (order of a graph is the number of nodes in it and size of a
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graph is the number of edges in it) pose serious computational challenges for graph Anal-
ysis and Processing, graph visualization, storage and retrieval and transfer over a network
(communication bandwidth).

A very successful approach to overcome these challenges is graph compression or graph
graph summarization. Where we perform all processing and network analytics instead on a
compact version of the graph. The summary of a graph removes certain details yet preserve
the essential structure of the graph. More formally, a summary is a partition of vertices
of the graph represented by a supergraph. Each super node represents a subset of vertices
of the original graph and Each super edge between a pair of supernodes represents edges
between the subsets corresponding to the vertices in the supernodes.

e12 = 2 e23 = 2

|Orignal V ertices|

|Crossing Edges|

|Internal Edges|

1 2 3

5 64
n2 = |{4, 5}|

e2 = 1
n3 = |{6}|
e3 = 0

n1 = |{1, 2, 3}|
e1 = 2

Figure 4 The summary is a graph with weights both on superedges and supernodes.

Given the smaller order and size of the summary graph it is easier to process and vi-
sualization. One can perform graph analytics such as get approximate answers to graph
structure queries ((u, v) ∼ E) from the summary only. As pointed above, the summary
sometimes is the desired output (with applications in aggregate statistics and privacy
preservation). The detailed discussion about graph compression (graph summarization)
is given in chapter 13.

Goodness of a Summary is measured by the Reconstruction Error: the `p norm of
error matrix

∥∥A− Ā∥∥
p

= REp(G|S) =

(
n∑
i=1

n∑
j=1

|A(i, j)− Ā(i, j)|p
)1/p

where A, the expected adjacency matrix is defined as: Ā(u, v) is the probability of an
edge between u and v

Ā(u, v) =


0 if u = v
ei(
ni

2

) if u, v ∈ Vi

eij
ninj

if u ∈ Vi, v ∈ Vj

This matrix difference can be naively computed in O(n2)
For algorithms to compute the best summary efficiently see [2, 3, 4, 1].
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Figure 5 Adjacency matrix for original (left) vs. compressed (right) graph

4 Low Distortion Embedding

f(·)

f(·) (1± α) dG(u,v)

u

v

G

(R3, `2)(V,dG)

Figure 6 Graph vertices embedded to (R3, `2)

Most of the analytics are designed
for vector spaces with a specific
distance metric (called metric-
spaces). In many cases the raw
data is not in vector format or the
distance measure is not a metric.
In some cases even if the original
data is in metric spaces, we often
need to transform the data to a dif-
ferent metric space, where the al-
gorithms are better, more efficient,
or the data is easy to visualize. For
this purpose we transform the data into a target metric space, while preserving the pairwise
distances.

Given two metric spaces (X, d) and (Y, d′) and a real α > 0, the low distortion embed-
ding problem is to find an embedding function f : X 7→ Y such that

∀ xi, xj ∈ X
1

α
d(xi, xj) ≤ d′(f(xi), f(xj)) ≤ d(xi, xj)

Points in X are embedded into Y , almost preserving pairwise distances, because the
space Y may be easy to work with or the distance metric d′ may be computationally nicer.
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Examples include Graph vertices with shortest paths distances embedded to (Rk, `2), as
shown in Figure 6 or sequences with edit distance embedded into Euclidean space.

5 t-distributed Stochastic Neighbor Embedding (t-SNE)

6 Multidimensional Scaling (MDS)

Multidimensional scaling is another non-linear dimensionality reduction technique. The
detailed discussion about this technique is given in chapter 13. Given X = {x1, . . . , xn}
and pairwise distance matrix D = {dij}, the multi-dimensional scaling problem is to
find a k-dimensional representation {x′1, x′2, . . . , x′n} for points in X such that ∀ xi, xj ∈
X d(x′i, x

′
j) ∼ D(i, j). Metric and non-metric are the two types of MDS algorithms.

Given X = {x1, . . . , xn} and pairwise distance matrix D = {dij}, the multi-dimensional
scaling problem is to find a k-dimensional representation {x′1, x′2, . . . , x′n} for points in X
such that ∀ xi, xj ∈ X d(x′i, x

′
j) ∼ D(i, j). Figure 7 shows an example for k = 2.

source: statisticshowto.com

Figure 7 Cities in Florida and their distances (left) and the graph produced after scaling
(right) for k = 2

Many methods depending on whether or not the given and required distance measure
is metric or Euclidean. A distance measure is metric if it satisfies the triangle inequality,
i.e. d(x, z) ≤ d(x, y) + d(y, z). Squared Euclidean distances are not metric.

7 Isometric mapping (Isomap)

Isomap is an extension of kernel PCA or MDS. This technique tries to preserve the geodesic
distance (to its nearest neighbors) and is based on spectral theory. Isomap creates neigh-
borhood netwrok and uses graph distance to approximate the graph distance (geodesic)
between all pairs of points. Finally, it finds the low dimensional embedding (of dataset)
through eignevalue decomposition of geodesic distance.

Therefore, there is need for more sophisticated feature extraction methods. Before we
discuss such a dimensionality reduction technique, i.e. let’s recall the key linear algebra
concept of projection.
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8 Dimensionality Reduction

Having cursed dimensionality enough, now we finally start to do something about it. While
we discussed many issues with large dimensions, we focus on computational aspect of the
curse such as processing time, storage capacity and communication bandwidth. Since it is
hard to work with high dimensional vectors (perhaps in tens or hundreds of thousands), for
computational efficiency and quality of analytics, we would like to reduce the number of di-
mensions to a manageable number (in hundreds perhaps) without “distorting” the data too
much.

f(xi) =
[
8 7 1 0 3

]

f(xj) =
[
9 7 5 2 4

]

(1±
ε)d

ij

xi =
[
3 2 0 7 1 8 8 7 5 3 . . . . . . 5 3 1 4

]

xj =
[
2 4 1 7 0 8 9 7 6 2 . . . . . . 2 9 8 7

]
d ij

Figure 8 Two points in a high dimensional space re-
duced to a 5 dimensional space

Dimensionality reduction is the
technique used for data reduction,
in which we reduce the number
of attributes or variables from the
data. The specific definition and
measure of distortion depends on
the given data set and the target
application. While there could be
other objectives for dimensionality
reduction, our goal is to reduce di-
mensionality of the dataset, while
preserving pairwise distance.

In this course we will study
many techniques for dimensionality reduction, namely, the Johnson-Lindenstrauss trans-
form and (it’s variations), the AMS transform (that is originally meant for something differ-
ent), Locality Sensitive Hashing, Singular Value Decompostion, and Principal Component
Analysis.

Problem 1. Given a point set X = {x1, . . . , xn} ⊂ Rm, Find a dimensionality reduction
function f : Rm 7→ Rk, k � m such that d(f(xi), f(xj)) ' d(xi, xj), i.e.

∀ xi, xj ∈ X (1− ε)d(xi, xj) ≤ d(f(xi), f(xj)) ≤ (1 + ε)d(x, y)

Note that dimensionality reduction is a special case of low distortion embedding since
the distance measure d is the same in both domain and co-domain, i.e. the given and
required distance measure is the same. Dimensionality reduction is, however, different from
data compression since it does not require that x ' f(x), but only that d

(
f(xi), f(xj)

)
'

d(xi, xj) as shown in Figure 9.
While the specific method of dimensionality reduction depends on the objective, all

dimensionality reduction methods can be divided into two broad categories (as shown in
Figure 11)

Broadly there are two types of dimensionality reduction i) linear dimensionality reduc-
tion and ii) non-linear dimensionality reduction. In some texts it is categorized as feature
selection and feature extraction.
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Figure 9 Dimensionality reduction

1. Feature Selection: Select a few variables that are the most relevant and discard the
rest.

2. Feature Extraction - Create new features from data, which are usually are linear or
non-linear combination of old ones. The objective is least reconstruction error or
maximum inter-class separation.

8.1 Feature Selection

An immediate idea (that does not work) for dimensionality reduction is to select a fixed
subset of coordinates. Simply consider the first k coordinates for each vector and ignore the
rest. In the worst case all the information could be in the remaining coordinates (suppose
all vectors are almost 0 in the all of the first k coordinates). Similarly considering the last
k coordinates or any fixed subset of coordinates for that matter would not work since all
meaningful information about at least some of the classes of points could remain in the
non-selected features.

One may suggest that, in order to not let the adversary know what coordinates you
would choose, choose a random subset of k coordinates and ignore the remaining. This may
not work either as, again, all meaningful information about at least some of the classes of
points could remain in the non-sampled features. For example, suppose that vectors have
non zero entries only in the first k coordinates. Then, a randomly chosen subset will select
the mostly zero coordinates and distort most pairs of points.

Both the above methods are data oblivious. A data dependent approach would be to
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Feature Selection Feature Extraction

Figure 10 Feature selection and feature extraction example

eliminate/select feature based on a goodness measure or (ir)relevance score of the data.
For example:

• Feature variance - eliminate coordinate with close to 0 variance

• Eliminate one in a pair with close to ±1 correlation

• Eliminate features “independent” of class variable (ρ or χ2)

• For each feature find training accuracy of classifier based on that feature only -
eliminate those with low accuracy

• Score based on normalized mutual information, information gain, conditional entropy

• We discussed a domain specific criterion of eliminating feature - stop word removal
for text analysis

8.2 Feature Extraction

The objective of feature extraction is to create new (fewer) features using some (linear
or non-linear) combinations of the old ones such that reconstruction error is minimized
or inter-class separation is maximized. A form of feature extraction is feature aggregation
which aggregates groups of coordinates. For example, means of k groups of m/k coordinates.
One can construct examples where this would not work as well. It depends on how groups
are made and a deterministic strategy can be countered by adversary. Randomized groups
may also have problems. Therefore, there is need for more sophisticated feature extraction
methods.

8.3 Linear Dimensionality Reduction

Problem 2 (Dimensionality Reduction Problem). Given a point set X = {x1, . . . ,xn} ⊂
Rm, Find a linear dimensionality reduction function f : Rm 7→ Rk, k � m such that
d(f(xi), f(xj)) ' d(xi,xj). More precisely,

∀ xi,xj ∈ X (1− ε)d(xi,xj) ≤ d(f(xi), f(xj)) ≤ (1 + ε)d(xi,xj)

If f is a linear function, it is called linear diensionality reduction and f can be repre-
sented by a linear transformation A, i.e. f(X ) = AX , X : the n×m data matrix with each
xi ∈ X as a row.
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8.3.1 Principal Component Analysis (PCA)

In this section, we will briefly describe the PCA as dimensionality reduction technique.
Later we discuss the details algebra, algorithm and geometry of the PCA. This technique
is data dependent technique, which identifies the relationship in data, transform the data
based on these relations and then quantify the importance of these relationships. Relation-
ship are identified through covariance matrix. Eigenvectors and eigenvalues are identified
through eigen-decomposition or linear transformation of the covariance matrix. The data
is then transformed to principal components using eigenvectors and finally we only keep
the importance principal components, quantified by the relationships using eigenvalues.

8.3.2 Factor Analysis (FA)

Factor analysis is also linear dimensionality reduction technique and one of the unsupervised
machine learning algorithm. This technique creates factors which represents the common
variance in the data, i.e., variance in the data due to correlation among the observed
variables.

8.3.3 Truncated Singular Value Decomposition (SVD)

Truncated-SVD is another liner dimensionality reduction technique. The detailed discus-
sion about SVD will be given later. Unlike PCA it usually works better in case of sparse
data (data with many zero values). Truncated-SVD factorized the matrix (data matrix)
where the number of columns is equal to the truncation.
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Figure 11 Optimal Low rank factorization of the data matrix using the top k singular
vectors
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Figure 13 The m-d data lies in a subspace

8.4 Random Projection and Johnson-Lindenstrauss Lemma

In this session, we discuss a linear dimensionality reduction method by Johnson and Lin-
denstrauss based on random projection. This is a data oblivious dimensionality reduction
method. We give a brief review of projection from our linear algebra lecture.

Let v be a unit vector, let l be a line in the direction of v and let p be the point on l that
is closest to a vector (point). The line connecting u to p is perpendicular to v, otherwise
p will not be the closest point (by the Pythagoras theorem). The point (vector) p is called
the projection of u on v. Finding projection of u on the standard basis vectors is easy as
shown in Figure 12.

For general vectors we derive it from dot product. Note that p is just scaled vector v,
i.e. p = av. We need to find the scalar a. Since u − p = u − av is perpendicular on v,
v · (u− av) = 0. Hence, v ·u − v · av = v ·u− av ·v = 0 which means av ·v = v ·u
and therefore a =

v · u
v · v

=
v · u
‖v‖

Suppose the m-D data lies on the line ` and let v be the unit vector in direction of ` as
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Figure 14 Finding the low dimensional space to which the data is close by, then the error
would be perpendicular distance not a vertical distance

shown in Figure ??. For xi ∈ X , let f(xi) := v · xi.
In this case, since v · xi = xi (as xi lies on `), we get

∀i, j ‖f(xi)− f(xj)‖ = ‖v · xi − v · xj‖ = ‖xi − xj‖

Now suppose the m-d data lies on a plane with orthonormal basis v1,v2, . . . ,vk as
in Figure 13. Let V be the matrix with v1,v2, . . . ,vk as columns. For xi ∈ X, let
f(xi) := xi V. Then,

∀i, j ‖f(xi)− f(xj)‖ = ‖xiV − xjV‖ = ‖xi − xj‖

In both these cases,there is 0 error dimensionality reduction, i.e. without any distortion.
However, the problem is that we do not know V.

It is possible to find the low dimensional space to which the data is close by, with
an approach similar to (multiple) linear regression. However, the error here would be
perpendicular distance not vertical distance as shown in Figure 14. Secondly, whereas the
goal in linear regression is to minimize SSE, in dimensionality reduction it would be to
minimize pairwise distances .

This approach can be taken with modified goals and is called Principal Component
Analysis (PCA) which is a form of feature extraction and is data dependent dimensionality
reduction.

8.4.1 The Johnson-Lindenstrauss Lemma

The correct answer is a classic result in functional analysis - the Johnson-Lindenstrauss
Lemma. Its statement is as follows:

Theorem 1. Given X = {x1, . . . ,xn} ⊂ Rm. For ε ∈ (0, 1/2), there exists a linear map

f : Rm → Rk , k = c log n/ε2 such that for any xi,xj ∈ X

(1− ε)‖xi − xj‖2 ≤ ‖f(xi)− f(xj)‖2 ≤ (1 + ε)‖xi − xj‖2
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Note that this lemma works only for `2 distance. This lemma has found many applica-
tions in algorithms. For example, both of our generic proximity computation problems have
reduced time complexity. The distance matrix can now be computed in O(n2 logn

ε2
) instead

of O(n2 logn
ε2

) and the nearest neighbor computation can be done in O(n logn
ε2

) instead of
O(nm).

With more and more interest by theoretical computer science community, there is a lot
of work towards proving this lemma.

8.5 Non-Linear Dimensionality Reduction

In real-world, non-linear data is found frequently. And if we are dealing with such data,
we need some non-linear techniques to handle it. Generally, linear methods do not perform
well on non-linear data. So in this section, we will discuss some important non-linear
dimensionality reduction techniques.

8.5.1 Linear Discriminant Analysis (LDA)

LDA is data dependent, supervised dimensionality reduction technique. It is very similar
to PCA but unlike PCA, LDA finds some additional information, i.e., interested in the axes
that maximizes the separation between multiple classes by computing the directions called
linear discriminant.

8.5.2 Kernel PCA

Kernel PCA can also be considered as the non-linear form of PCA. It usually works well
for non-linear datasets where PCA cannot be applied efficiently. When using kernel PCA,
we initially passed the data through a kernel function that projects the data (temporarily
into new high-dimensional feature space) such that the classes becomes linearly separable.
The data is then transformed to lower dimensional space by using the normal PCA. In this
way, Kernel PCA transform non-linear data into a lower-dimensional space of data which
can be used with linear classifiers. Kernel PCA with appropriately chosen kernel in certain
cases significantly outperforms PCA and other data transformation methods.

In the Kernel PCA, we need to specify 3 important hyperparameters — the number of
components we want to keep, the type of kernel and the kernel coefficient (also known as
the gamma).
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Figure 15 Transforming the data with Kernel PCA helps separate linearly inseparable data

source: slideshare.com

Figure 16 Applying PCA (left) and kernel PCA (right) to same data
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