
Curse of Dimensionality
Lecture Notes for Big Data Analytics

Faizad Ullah

February 2019

Contents

1 Problems with High Dimensional Data 1

2 Computational Complexity 2

3 Data Sparsity 2

4 Huge Search Space for Nearest Neighbor Search 3

5 Diminishing Volume of m-ball 4

6 Instability of Nearest Neighbor 7

7 Distance Concentration 7
7.1 Analytical Bounds . 8

8 Angle Concentration 9
8.1 Generating Random Direction in Rm . 10
8.2 Analytical Bounds . 11

1 Problems with High Dimensional Data

High dimensional data refers to data with a large number of features, variables or dimensions
often represented by the columns in a dataset, where each row is an instance or observation.
Often, the number of features (columns) can exceed the number of instances (rows).

The term ‘curse of dimensionality’ coined by Richard Bellman refers to the difficulty of
dynamic optimization with many variables. Broadly, the following issues are faced when working
with high dimensional data:

1

1. Working with large dimensional data is computational challenging. Processing, Storing,
Communication of high dimensional data require substantially more computational re-
sources.

2. Large dimensional data is very hard to visualize and interpret

3. In addition, generally as number of features increases redundancy also increases - more
noise is added to data than signal. This result in degradation of performance of all analytic
methods. In these notes we focus on various manifestation of this issue.

The term is used to refer to different phenomena that arise in high dimensional data analytics.
In particular we discuss the impact of high dimensionality of data on the two canonical proximity
computation problems of distance matrix computation and nearest neighbor search. Recall we
discussed that they are the building blocks of almost all data analytics.

We discuss the curse of high dimensionality in light of the distance matrix computation
problem. The K-NN problem will be discussed in detail later.

We now discuss the issues that arise in the distance matrix computation with high dimensional
data one by one.

2 Computational Complexity

Given a set X of m-dim vectors in Rm, with |X| = n. A straight forward observation about
running time of the brute force solution to compute the distance matrix D is O(n2 ×m), since
for almost all distance measures computing d(i, j) requires traversal of all coordinates of i and
j. Note that this run-time grows linearly with dimensionality of data.

3 Data Sparsity

As the dimensionality of data increases, the relative input space covered by a fixed-size training
set diminishes. Many methods require a sizeable number of examples/samples in every region
of the space to support a hypothesis or train a generalizable model. Since the available data
becomes very sparse because the volume of the space has increased so much, such methods that
need statistical significance fail. For example, in machine learning a certain number of training
data items is required to give meaning to a model (e.g. a classifier), which is not there in such
a sparse space. Similarly, in statistical analysis a certain sample size is required to support a
hypothesis, which is not available.

In class we discussed that suppose we have data for 1000 students performance (discretized
scores of 0, 25, 50, 75, 100)% in 2 courses c1 and c2. Then in total there are 5 × 5 = 25 different
grade combinations. If the 1000 students are randomly distributed among each grade combina-
tion, then on average there are 40 students with each possible grade combination, which is a good
enough sample to draw conclusions such as if, for a student, grade(c1) ≤ 50 and grade(c2) ≥ 75,
then that student is likely to be a Math major. Now suppose there are 4 courses, then the number

2

of possible grades combination is 54 = 625, and an average number of students per combination
is 1.6. For 10 courses, this number reduces to 0.0001024. This means that almost all possible
combinations are never observed.

4 Huge Search Space for Nearest Neighbor Search

A basic approach for nearest neighbor search is use a data structure that partition the input
space into cells (grids or mesh). Having preprocessed the data (i.e. storing the dataset X in this
grid structure). To find nearest neighbor(s) of a query point one locates the cell containing q.
And return all points in X in that the cell and perhaps those in the ‘neighboring’ cells.

The search space for nearest neighbors in this data structure grow exponentially with the
dimensionality of the data. i.e. The number of ‘neighboring’ cells to search for in 2-d is 32 = 9,
that in 3-d is 33, which in m-d the number of cells one need to examine is 3m

Figure 1 Partition the space into cells (grids or mesh) for large dimensions

Recall the approaches for nearest neighbor search. The grid (or lattice or mesh) could be
non-uniform see for instance kd-tree, one of the most widely used data structures for nearest
neighbor search, which works quite well when the dimension n ≤ 10.

We demonstrate this phenomenon that higher dimensional neighborhood is very large and
not local. i.e. the notion of nearest neighbor breaks down as follows.

Suppose n points in X are chosen uniformly at random from [0, 1]m (m-cube). For the query
point q grow a hypercube around q to contain f fraction of points (k = fn) in X. We show that
this cube (the search space for q) grows very large (covering almost the whole input space) in
large dimension. The Expected length of the edge of the search cube Em(f) = (f 1/m. i.e. in 10d
to get 10% points around q need cube with edge length 0.8 (which is 80% of the whole cube, the
input space). Similarly, to get only 1% points one needs to extend the search cube by 0.63 units
along each dimension

We give a concrete example to demonstrate this phenomenon of non-locality of higher dimen-
sional neighborhoods

Suppose 5000 points are randomly placed in [0, 1]m. Let q = 0

� In 1d we must go a distance of 5/5000 = 0.001 on average to capture 5 NN (i.e to to capture
5 of those random input points for a typical q, we need to grow a search cube to capture
only .1% of the input cube)

3

q

1110

q

q

Figure 2 1-d (left), 2-d (middle) and 3-d (right) search spaces example

� In 2d, on average we must go a distance
√

5/5000 = 0.031 units along both dimensions to
get 5 nearest neighbors points (about 3% of the whole cube)

� In 3d, on average we must go 3
√

0.001 = 0.1 = 10% of the total (unit) length in each of the
3 dimensions

� In 4d, we must go 4
√

0.001 = 0.177 = 17.7% of unit length

� In 10d, we must go 50.1% of unit length along each dimension

� In md, we must go (5/5000)1/m along each dimension

To express this phenomenon the phrase “in high dimensional space nobody can hear you
scream” is used.

5 Diminishing Volume of m-ball

A manifestation of this phenomenon that points in higher dimensions are isolated is the dimin-
ishing relative volume of the m-ball in m-cube

There is another way one can look at this issue with high dimensional space that is a big
hurdle for the fixed radius nearest neighbors search problem. The problem is that in very large
dimensions, this ball (the output of the problem) is essentially empty. This is sometimes referred
to as in high dimensions, every point is an outlier. This is also referred to as high dimensional
space is lonely.

The m-ball (m-d hypersphere) of radius r centered at origin is defined as

Bm,r :=
{
x ∈ Rm : d(x,0 ≤ r) =⇒ ‖x‖2 ≤ r

}
.

The m-dimensional volume of m-ball of radius r in m-dimensional Euclidean space is:

Volume of Bm,r : Vm(r) =
πm/2

Γ(m/2 + 1)
rm

Γ(·) essentially is factorial of fractional numbers

4

For our purposes

Vm(r) =
πm/2

m/2!
rm For simplicity assume m is even

The m-cube (m-d hypercube) is the set [−1, 1]m (note edge length is 2)

Volume of m-cube: 2m

In m-d ratio of volume of unit m-Ball to that of m-cube (edge length 2) is

π
m/2/m/2!

2m
approaches 0 very fast

1

Figure 3 In 2-d (left) ratio of volume of unit m-ball is higher than that of 3-d (right) to that of
unit m-cube, and approaches to 0 very fast in higher dimensions

Observe the ratio in the following table.

dim m volume of m-ball volume of m-cube ratio

2 π 22 ∼ 0.785

3 4/3π 23 ∼ 0.523

4 π2/2 24 ∼ 0.308

6 π3/6 26 ∼ 0.080

m π
m/2

m/2!
2m → 0

Ratio of volumes of unit m-Ball and [−1, 1]m

π
m/2/m/2!

2m

Let say we select a point x at random in the [−1, 1]n (cube centered at the origin) cube, what
is the probability that x is the unit n ball (inscribed). This probability is exactly equal to the
ratio of the volume of the unit ball to the volume of the cube.

5

V
ol

u
m

e
of

m
-b

a
ll

m

Figure 4 Volume of m-ball (denoted by Bm) increases from m = 1 to m = 5, afterwards it sharply
declines and get close to 0 for m > 20.

Hence the volume of the unit sphere compared to the cube is diminishing. This means that
in very high dimensions, if we are doing a nearest neighbor search, (say the fixed radius version),
it is empty, almost no point is within distance r. In other words for a fixed query point q, if we
choose n points at random in Rm almost no point will be within r distance to q, equivalently
almost all will be at distance more than r. So nearest neighbor (or distance for that matter) lose
all its effectiveness.

� In higher dimensions all the volume is in ‘corners’

� Points in high dimensional spaces are isolated (empty surrounding)

� The probability that a randomly generated point is within r radius of q approaches 0 as
dimensionality increases

� The probability of a close nearest neighbor in a data set is very small

There is a caveat that we must keep in mind for this and the following issues that the real
datasets are not random.

However if a dataset exhibit this phenomenon that the issue has be overcome by getting a
larger training set (exponential in m). One way to look at this is as follows.

To cover [−1, 1]m with Bm,1’s, the number of balls n must be

n ≥ 2m

Vm(1)
=

2m

π
m/2/m/2!

=
m/2! 2m

πm/2
m�∞∼

√
mπ

(
m2m/2

2πe

)m/2

For m = 16 (a very small number) this n is substantially larger than 258

6

6 Instability of Nearest Neighbor

A qualitative problem in higher dimensional space resulting from the phenomenon of empty
neighborhood is that the notion of nearest neighbor breaks down. This means that there is
substantial difference or contrast between nearest and farthest neighbors of a point q.

A nearest neighbor query is ε-unstable (ε > 0), if the distance from q and most other
points are at most (1 + ε) times the distance from q to its 1NN.

q
center

nearest neighbor

farthest neighbor

Figure 5 No difference (contrast) between
nearest and farthest neighbors in higher di-
mensions

dm
in

(1
+
ε)d

m
in

Figure 6 Higher dimension causes ε-unstable
(ε > 0) nearest neighbor query

We show that as dimensionality increases the probability of all nearest neighbors queries
becoming unstable increase (by showing the distance concentration phenomenon)

7 Distance Concentration

Another facet of the curse of dimensionality is the phenomenon of distance concentration.
Assume points in Rm and `2 distance measure. As m increases, almost all pairs of points

have their `2 distances (i) similar to distance of other pairs and (ii) very high. Consequently,
the distance measure loses its meaning, and since proximity measures is the building block of
data analytics, as we discussed earlier, when it becomes meaningless the building collapses. For
example, in the K-NN problem, if all distances are similar and high, the nearest neighbor is
as good as the farthest neighbor and it becomes difficult to build clusters since there is no
justification to group a pair of points and not another.

It can be said that the normalized distance is close to 1, so both factors that distances are high
and similar are encompassed. We demonstrate it by observing distribution of pairwise distances
for n points in Rm.

7

7.1 Analytical Bounds

Suppose we generate a set X of random vectors in m-dimensional unit cube with |X | = n, i.e. n
points in [0, 1]m. Let x = (x1, . . . , xm) and y = (y1, . . . , ym) be two such vectors. The Euclidean
distance `2 between x and y is given by

d(x, y) = ‖x− y‖2 =

√√√√ m∑
i=1

(xi − yi)2.

The maximum possible distance b/w a pair x,y ∈ X is d(x,y) ≤
√
m. For simplicity we consider

the squared distance (to get rid of square root) i.e.

d2(x, y) = ‖x− y‖2
2 =

m∑
i=1

(xi − yi)2.

Thus,
d2(x,y) := ‖x− y‖2 ≤ m

For a fixed coordinate i < m, We have that

Pr(|xi − yi| ≥ 1/4) > 1/2. (1)

1/40

1

yi

1/4

xi
1

yi = xi + 1/4

yi = xi − 1/4

Figure 7

To see this, note that Pr(|xi − yi| ≥ 1/4) =
Pr({xi−yi ≥ 1/4}∪{vi−ui ≥ 1/4}). Since the joint
distribution of xi and yi is uniform on [0, 1]2, this
event correspond to area of the lower right triangle
and upper left triangle (below the line yi = xi− 1/4

and above the line yi = xi + 1/4, the shaded regions
in Figure 7). These two triangles stacked together,
is a square of length 3/4, and its area (and hence
Pr(|ui − vi| ≥ 1/4)) is 9/16 which is greater then 1/2.

Using this we will argue that when dimensions
are large then almost all distances are large.

The following is a very useful and elegant trick,
we will use it perhaps many timed. It is impera-
tive that you master it, so think about it and keep
thinking until it is clear (without worrying about technicalities like exact calculations etc.).

For fixed x, y ∈ Rm chosen as above, let Vi be the indicator random variable for the event
that |xi − yi| ≥ 1/4. i.e. if coordinate difference is big.

Vi =

{
1 if |xi − yi| ≥ 1/4

0 otherwise

We know that E[Vi] = Pr(Vi = 1) > 1/2 by Equation (1). Let V =
∑m

i=1 Vi =
∣∣{i : |xi−yi| ≥

1/4
}∣∣, i.e. V is the counter to see how many coordinates have big difference. By linearity of

8

expectation, we know that E(V) = m/2, which means that on average m/2 summands of the d2

sum will be at least 1/16.
In order to show concentration around this mean, which implies that with very high proba-

bility the distance is large for this pair, we will use Chernoff bound.

Theorem 1 (Chernoff Bound (tail inequality)). Let X1, X2, . . . , Xn be independent Bernoulli
random variables. Let S = X1 + X2 + . . . + Xn, and let E(S) = µ. The loose Chernoff bounds
are stated as follows:

� Pr(S ≥ (1 + δ)µ) ≤ e
−δ2µ

3 , for 0 < δ < 1

� Pr(S ≥ (1 + δ)µ) ≤ e
−δµ
3 , for δ > 1

� Pr(S ≤ (1− δ)µ) ≤ e
−δ2µ

2 , for 0 < δ < 1

Using the Chernoff Bound with δ = 1/2:

Pr(V < m/4) = Pr(V < (1− 1/2)m/2) < e−
m/16

So almost surely, at least m/4 coordinate differences are at least 1/4, and hence squared distance
is at least m/64. So, the probability that a given pair is far, i.e. its squared distance is more than
m/64 is at least (1− e−m/16).

Pr
[
V ≥ m

4

]
≥ 1− e−

m
16

In other words, for fixed x,y: Pr
[
‖x− y‖2 ≥ m

64

]
≥ 1− e−m16

Now we want to find what is the probability that all
(
n
2

)
pairs are far. This probability is

equal to 1 minus the probability that some pair is close (squared distance m/64). This latter
probability is less than the sum of probabilities of individual pair closeness (union bound).

Pr

(
all

(
n

2

)
pairs are far

)
≥ 1−

∑
pairs

e−m/16 = 1−
(
n

2

)
e−m/16

Solving the above inequality such that the probability is at least 1/2, then as long as m =
Ω(log n), then with high probability for all x,y ∈ X , we have d2(x,y) ≥ m

64
. This means all

pairs are far, i.e. d(x,y) ≥
√
m/8.

Here is the result of simulation of this distance concentration phenomenon. In your homework
you were supposed to observe this for varying parameters.

8 Angle Concentration

In large dimensions (at least for random points) the distance measure (at least `2 distance)
is more or less meaningless. Then, can we use cosine distance? We will show that the same
concentration phenomenon is observed for pairwise angles.

9

Julie Delon @ Uni. Paris Descartes

A pair of vectors x,y is orthogonal if x · y = 0, θx,y = 90◦. The maximum number of such
pairwise orthogonal vectors in R2 is 2 and in R3 is 3. In Rm, the maximum number of pairwise
almost orthogonal vectors (x · y ≤ ε, θx,y = 90◦ ± ε) is eΩ(m).

8.1 Generating Random Direction in Rm

Choosing a random direction (equivalently, a random unit vector) is not a straight forward task.
We think of this as choosing random unit vectors (normalized) in Rm. W will also need this later
for dimensionality reduction and also for Random Hyperplanes based LSH for Cosine distance
and Random Projections based LSH for Euclidean distance.

An immediate way of picking a random vector in Rm is to choose a random point in v ∈
[−1, 1]m and normalize it as v̂ = v/‖v‖. For example, in 2D (R2), generate a point in the unit
square and then normalize it. However, this doesn’t produce all directions uniformly at random,
i.e. let v = (v1, v2) where v1 and v2 are randomly chosen from [0, 1]. This picks a random
vector in the unit square (or cube as we saw earlier), we can normalize v as v̂ = v

||v||2 = v√
v21+v22

.

1

The red points have significantly high probability
of begin chosen compared to the green points

0

Figure 8 The distribution is skewed to-
wards the diagonal directions

As you can see in Figure 8, the distribution of ran-
domly generated direction is skewed towards the diago-
nal directions.

A quick fix to this method is the algorithm of George
Marsaglia and Arif Zaman, i.e. to generate a random
vector in the unit cube, but if the vector is outside the
unit ball, then discard it, (i.e. if v2

1 +v2
2 +. . . v2

m > 1, then
discard it), so we only consider points within the unit
ball. Then, when normalized, each point on the surface
of the unit ball will be equally likely. However, this can
be computationally expensive. Recall the problem of the
diminishing volume of the m-ball, which implies that all
points points lie outside the unit m-ball and thus will

10

have to be discarded.
In 2D, an easier way is to get a random direction is to generate a random number between

[0, 2π] (randomly choose an angle) and use standard trigonometric calculations to create a unit
vector. The former method is computationally more expensive while the latter only works for
2D.

Figure 9 Generating random points on
the surface of the unit m-ball

The correct way to generate random directions (or
random unit vectors equivalent to generating random
points on the surface of the unit m-ball) is to use the
spherical symmetry of the standard normal distribution.
We generate m dimensional vector v = (v1, . . . , vm) by
picking each of vi independently from the standard nor-
mal distribution N (0, 1) and then normalize v by ‖v‖2

as earlier. Such a random vector in Rm is known to be
uniformly distributed over the surface of unit ball Bm,
as can be seen in Figure 9.

An approximate method to generate a random direction in Rm is to select the vector v =
(v1, . . . , vm) by choosing vi ∈ {−1, 1} independently and equally likely. v is then normalized by
‖v‖2 =

√
m. This generate directions towards corners of the m-cubes [−1, 1]m as shown in Figure

10.

(1, 1)
(1, 1, 1)

Figure 10 Generate directions towards corners of the m-cubes

The approximation is quite good in large dimensions and we will use it extensively in dimen-
sionality reduction. In fact, we will discuss both of these techniques during the dimensionality
reduction module. In order to see that almost all vectors are almost orthogonal in high dimen-
sions, we will use analytical bounds to show that in expectation, every pair of random high
dimensional vectors is orthogonal [1].

8.2 Analytical Bounds

Similar to distance concentration analytical bounds, Suppose we generate a set X of random
vectors in m-dimensional unit cube with |X | = n, i.e. n points in [0, 1]m. Suppose these are
random points on the surface of Bm, i.e. they are just directions chosen uniformly at randomly
from {−1, 1}m and normalized as discussed above.

11

Recall that unit vectors x and y are almost orthogonal mean that θx,y the angle between them

is about 90◦, or cos θx,y = 〈x, y〉 = x · y =
m∑
i=1

∼ 0 (as the denominator is 1).

For a fixed x and a random unit vector (chosen as in previous section) y in Rm, let Vi = xiyi

and let V =
m∑
i=1

Vi = cos θx,y

Lemma 2. E[Vi] = 0 and
−xi
m

≤ Vi ≤
xi
m

.

This implies that on average, x is orthogonal to any y. To bound the probability of the
deviation of V from its mean, we use the Hoefding’s inequality.

Theorem 3 (Hoeffding’s inequality). Let Xi be random variables bounded by the interval [ai, bi]
and let S =

∑n
i=1Xi. Then

Pr(|S − E[S] ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
For S = V :

Pr(V ≥ ε) ≤ 2 exp

(
− 2ε2∑m

i=1(2xi/m)2

)
= 2e−

ε2m/2

Thus, with very small probability, a pair of vectors deviates from orthogonality, i.e. the cosine
of the angle between them is more than ε.

We can use union bound to compute the probability that no pair deviates from orthogonality
which is equal to 1 minus the probability that some pair x,y is not orthogonal, i.e. cos(θx,y) ≥ ε.

Pr(∀ x, y ∈ X : cos(θx,y) < ε) ≥ 1−
∑
pairs

2e−
ε2m/2 = 1−

(
n

2

)
2e−

ε2m/2.

For m = 6
ε2

(lnn), we get that

Pr(∀ x, y ∈ X : cos(θx,y) < ε) ≥ 1− n2e−
ε2m
2 = 1− 1

n
.

Thus, almost surely all vectors are mutually orthogonal (for 0 < ε < 1).

References

[1] Achlioptas D. Database-friendly random projections: Johnson-lindenstrauss with binary
coins. Journal of Computer and System Sciences, 66(4):671–687, 2003.

12

	Problems with High Dimensional Data
	Computational Complexity
	Data Sparsity
	Huge Search Space for Nearest Neighbor Search
	Diminishing Volume of m-ball
	Instability of Nearest Neighbor
	Distance Concentration
	Analytical Bounds

	Angle Concentration
	Generating Random Direction in Rm
	Analytical Bounds

