
Proximity Computation on High Dimensional Data

Curse of Dimensionality

Lecture Notes for Big Data Analytics

Nimrah Mustafa

March 2019

Contents

1 High Dimensional Data in Applications 3
1.1 Text and Sequence Data - Vector Space Modeling . . . . . . . . . . . . . . . . . . 3
1.2 Multimedia data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Rating Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Network Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Distance Matrix Computation and Applications 5
2.1 Near Duplicate Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Input to many data analytics tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 News Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Nearest Neighbor Search and Applications 6
3.1 k-NN Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 k-NN Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Collaborative Filtering for Recommendation Systems . . . . . . . . . . . . . . . . 9
3.4 Search Engines’ Autocorrect utility . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 Lateral Phishing Emails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.6 Image Completion, Scene completion, image or art restoration . . . . . . . . . . . 10
3.7 Complexities of brute-force algorithms . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Approaches for k-NN 11
4.1 Approach 1: No Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Approach 2: Sorted Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Approach 3: Voronoi Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Approach 4: kd-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.5 Dimensionality Reduction and Locality Sensitive Hashing . . . . . . . . . . . . . . 13

1



5 Problems with High Dimensional Data 14

6 Computational Complexity 14

7 Data Sparsity 14

8 Huge Search Space for Nearest Neighbor Search 15

9 Diminishing Volume of m-ball 16

10 Instability of Nearest Neighbor 19

11 Distance Concentration 19
11.1 Analytical Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

12 Angle Concentration 22
12.1 Generating Random Direction in Rm . . . . . . . . . . . . . . . . . . . . . . . . . 22
12.2 Analytical Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2



1 High Dimensional Data in Applications

High dimensionality of vectors is very common in modern datasets for a variety of application.

1.1 Text and Sequence Data - Vector Space Modeling

A datasets of books, articles, or other text documents considered as a set of words, bag or words,
the tf-idf vectors or other vector-space models (feature vector representation of texts) have
dimensionality (number of coordinates) equal to the number of dictionary words/features. The
number of words even in very restricted settings are in thousands (unigrams). However, if we
consider bigrams, then there are in almost all cases millions of them. Sequential data such as
biological sequences (DNA or proteins), discretized audio signals [8, 4] and feature vectors ex-
tracted from EEG or EMG signals are often transformed into very high dimensional vectors. Such
datasets are used in many applications, such as text classification, author identification, topic
modeling, paraphrase identification, sentiment analysis, and many other tasks in NLP, signal
analysis and bioinformatics. Past Electricity consumption data of customers can be considered
as a sequence of readings (time-series data) and hence can be thought of as very high dimensional
vectors.
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source: towardsdatascience.com

Bengfort,, Bilbro & Ojeda: Applied Text Analysis with Python

Figure 1 Vector space modeling of text documents using Set-of-Words, Bag-of-Words, and TF-
IDF models for text analysis tasks
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1.2 Multimedia data

R. Grosse @ Uni. of Toronto

N ×M matrix

NM × 1 vector

...

...

...

Figure 2 An RGB image converted to 1-d vector

Another source of high dimensional
dataset is multimedia data. For instance
an image is usually considered as a vec-
tor with at least one coordinate per pixel
(that records pixel intensity). It’s dimen-
sionality is equal to image’s resolutions.
For RGB this would be 3 coordinates per
pixel. The datasets of images and videos
from multi-mega pixels digital cameras is
a truly highly dimensional data and has
various applications in image classification
and clustering etc. Usually raw images are
transformed into feature vectors extracted
from data and these vectors are used for
various image analysis tasks [2].

1.3 Rating Matrices

?

Figure 3 Rating Matrix

On e-commerce platforms such as
Amazon users likes, rating or pur-
chase history is a vector of dimen-
sions equal to the number of items
in Amazon’s product space, which
is in millions. Consider the rat-
ing matrix for recommendation sys-
tem. Here rows typically represent
users who provide rating for a few
out of millions of products. Thus,
each user is a data point of very
high dimension. Similar each prod-
uct such as movie may be rated by
any of the millions of user, mak-
ing each column also a very high di-
mensional vector. The Netflix prize training rating matrix had ∼ 1M ratings of the form
〈 user, movie, date of grade, grade 〉. The number of users (rows) were 480,189 and number
of movies (columns) were 17,770.
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1.4 Network Data

Figure 4 A social network with millions of users
(vertices) and their relationship (edges)

Network data is another potent source of high di-
mensional data. Consider the adjacency matrix
of any modern scientific, social or communica-
tion network. Considering each vertex as a data
point (a row in adjacency matrix) we get vectors
with millions of dimension.

Though network data is generally not pro-
cessed as adjacency matrix, the dimensionality
of the data nonetheless is very high. For exam-
ple a row in adjacency matrix of the Facebook
graph would have more than a billion coordi-
nates. Another interesting application area re-
quires only nodes or attributes of nodes to be
represented as vectors for the tasks of node clas-
sification, graph classification or node attribute
prediction [5, 9, 6, 1].

2 Distance Matrix Computation and Applications

We assume our dataset X consists of n vectors (x1, . . . ,xn), where each xi ∈ Rm, i.e. each
vector is a sequence of m real numbers. A distance measure d is defined over pairs of vectors,
i.e. d : X ×X → R. This could be the `p, the cosine distance, the Jaccard distance, Hamming
distance, or edit distance depending on the types of vectors and specific application. Given the
above dataset we want to compute D = n×n matrix such that D(i, j) = d(xi,xj). First we note
that D matrix can be any of the above other mentioned distance metric, d(·, ·) does not have to
be a distance metric. It could be a similarity measure too. This is generally referred to as the
proximity matrix. There are many applications where the proximity matrix is needed. Below we
mention some applications.

2.1 Near Duplicate Detection

Figure 5 Fake reviews

Near duplicates detection can be used for plagiarism
detection and de-duplication. Vectors could be docu-
ments, books, papers, homework texts etc. Our goal
could be to find “similar” (plagiarized) pairs of docu-
ments. One could return all pairs (i, j) of documents
such that D(i, j) < t, for some fixed threshold t ( say
10%). Another way to find documents of unusual simi-
larity is to find all pairs of documents whose distance is
say two standard-deviations below the mean distance.
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Again having this matrix will readily solve this prob-
lem.

The above is an abstraction of the problem in many applications. In many datasets where
data is merged from different sources often there are (near) duplicate data items. These are data
points who have very low distance between them. Such datasets need to be de-duplicated for
efficiency and quality of analytics, as otherwise analytics could be unnecessarily biased. Examples
include similar genes (with very few mutations), detecting mirror pages etc.

Detecting Fake reviews about a product on websites such as Amazon is an important problem.
In many situation a single entity (usually the product marketeer or seller) write multiple reviews
in order to rate up their product. In many cases these reviews are highly similar, the wordings
of the texts are similar and in addition to high similarity in the metadata. Thus spotting near
duplicate reviews will can identify review potentially written by the same user (hence likely fake).

2.2 Input to many data analytics tasks

The pairwise proximity matrix is input in the following problems. We discussed most of these
problems in this course.

• Agglomerative clustering

• Principal Component Analysis

• Spectral Clustering

• Multi-dimensional Scaling

• Kernel Method

2.3 News Aggregation

Figure 6 Aggregation requires near du-
plicates news articles

A near duplicate detection task is that of finding ar-
ticles written by same writer on news aggregation site
such as Google news. A story written by one jour-
nalist appears on many news websites. The articles
on other websites could be trimmed to adjust spacing,
added advertisements and there could be some differ-
ences in metadata, but the article nonthenless is the
same article.

3 Nearest Neighbor Search and

Applications

Given a set X of m-dim vectors in Rm, with |X| = n,
we are given a query point q in the same space as X,
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and we want to find the k closest points to q in X.
Closeness is measured by a pre-defined proximity measure d, where d : X × X → R. This
problem is general referred to as the kNN search problems. The query point q may or may not
be in X but it is in the same space as X, i.e. q ∈ Rm.

In many setting another variant of the k-NN problem is used that is stated as follows.

Problem 1 (Fixed radius near neighbors). Given a set of n points X = {x1, . . . ,xn} in
Rm and distance measure d : X × X → R. Pre process X into a data structure that is of size
poly(n,m) such that for any query point q ∈ Rm and r ∈ R, the set {xi : d(xi, q) ≤ r} can be
computed in time poly(n, logm). (The output set is called the m dimensional ball with radius r
centered at q).

This variant is the same as the k-NN problem, in the sense that they are reducible to each
other. We briefly sketch the reduction.

Suppose we have an algorithm A to solve the k-NN problem, we will use A to solve the fixed
radius version. For k = 1 to n call A to get kNN of q and stop when the first time an element is
returned that has distance more than r from q. We can also binary search to make fewer calls to
A. i.e. Start from k = 1 and every time double k. The first k for which we have some neighbors
that are more than r distance aways from q, we find the exact cutoff for k by doing another
search between this k and k/2.

The other side of reduction is also very similar, in that we repeatedly call a solution to the
fixed radius NN problem for increasing values of r until the algorithm returns exactly k NN in
the m-d ball of radius r centered at q.

We describe some important and interesting application of nearest neighbor search problem,
in order to motivate for the various approach we discuss for this problem.

3.1 k-NN Classification

The k-nearest neighbor classifier is the simplest classifier, which classify a test instance to the
‘class of nearest neighbors’ of the instance in the training set. The class of nearest neighbors set
may be the majority or the most frequent (mode) class.

source: https://www.jeremyjordan.me/k-nearest-neighbors/

Figure 7 Finding nearest neighbors for k-NN classification
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3.2 k-NN Regression

Given a dataset of n data points (xi, yi) for i = 1 to n, where xi ∈ Rm and yi ∈ R, i.e each
vector has a value of the target variable y. In kNN regression, for a test vector (x, ?), the value
of target variable y(x) is predicted to be the ‘average’ of k-nearest neighbors of x in the train
set.

The average can be weighted by the similarity of x with the nearest neighbors. Typically, in
case of weighted average, we include all points (discarding k), as the farther points get a very
low weight anyway.

In other words, for a test data point (x, ?), the value of target variable y(x) is set as

y(x) =

∑
x′∈X sim(x,x′)y(x′)∑

x′∈X sim(x,x′)

medium.com

Figure 8 An example of k-NN regression

8



3.3 Collaborative Filtering for Recommendation Systems

highly similar

(rating based)

low similarity

likes

likes

likes

will
probably

lik
e

Collaborative Filtering

Figure 9 User-user collaborative filtering for rec-
ommendation systems

Recall collaborative filter for recommendation
system. Where the rating of user i for an item
j, R(i, j) is predicted as follows.

Find the k most similar users as i (kNN of
ui) who have rated item j and output their
average rating for item j. Usually some a
weighted (by similarity with i) average is re-
ported.

This is the user-user collaborative filtering,
one can also use the so-called item-item collab-
orative filter, where R(i, j) is predicted as the
average of ui’s rating for the kNN of product
j that user i has rated. See slides for Recom-
mendation System and the method of Collab-
orative Filtering

3.4 Search Engines’ Autocor-
rect utility

Another application of kNN is the search en-
gine Auto correct and auto complete utility (it
can be and has been used in various other set-
ting too other then search engine)

To autocorrect a user typed query one can keep a list L of commonly used query terms/phrases.
When a user types a query phrase q, one can find the k most similar query phrases in L to q and
suggest to the user to click on them (or if k = 1 automatically replace q). This has to be done
in near real-time as linear searching through L may take way too much time

source: towardsdatascience.com

Figure 10 Auto correction, auto completion, highlighting and suggestions by search engine
(Google Chrome)
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3.5 Lateral Phishing Emails

In this type of attack phishing emails are sent from a legitimate but compromised email address
within an organization. Usual spam filter may fail to catch such emails as the sender domain
matches that of the receiver. One can spot such email by checking if the recipient list is very
dissimilar from usual recipients (in other emails).

source: Digital Shadows

Figure 11 Dissimilarity of recipient list can figure out the phishing emails

3.6 Image Completion, Scene completion, image or art restoration

Here a missing section of a piece of art (or image) is substituted for with a near duplicate section
in some other image, see Hays and Efros, Scene Completion Using Millions of Photographs [7].

Hays and Efros , Scene Completion Using Millions of Photographs, SIGGRAPH 2007

Input: Image with missing section

Feature extraction

Image database (in millions)

k nearest neighborsContext matchingOutput: Reconstructed Image

Heavy duty graphics
and image procesing

Figure 12 Completion of missing part of an image using section in near duplicate images
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3.7 Complexities of brute-force algorithms

Given a set X of m-dim vectors, with |X| = n. Almost all d(x,y) measures require traversal of
all coordinates of x and y. The following are straight forward observation about running time
of the brute force solutions to the distance matrix computation and kNN search problems, that
just use the problem definition.

1. Clearly the brute force algorithm to compute the proximity matrix D is O(n2 × m) for
almost all similarity and distance measures. There are O(n2) entries in D and each entry
takes O(m) arithmetic operations

2. The brute force algorithm for the nearest neighbor computations take O(n×m). We need
to compute the distance of q to all points in X, which takes O(nm) time.

Both runtimes grow linearly with dimensionality m. Below we discuss some classic solutions
for the kNN problem.

4 Approaches for k-NN

4.1 Approach 1: No Preprocessing

The simplest approach is to store X in a list without any preprocessing. On query. run a
findmin algorithm on distance to q. The runtime is O(n) distance computations. Overall both
the space and time complexity is O(nm).

4.2 Approach 2: Sorted Array

In case of m = 1, X can be stored in a sorted array, which is the best data structure for 1-
dimensional k-NN problem, as in this case, using binary search reduces the number of distance
computations to O(log n). Thus, this approach has O(n) space complexity and O(log n) time
complexity. However, this doesn’t generalize to higher dimensions.

4.3 Approach 3: Voronoi Diagram

If m = 2, the plane can be partitioned into regions based on which points are the nearest neighbor
of a given point. Region Ri of a point xi ∈ X is the set of all points that are nearest neighbors
of xi, i.e. Ri is the intersection of perpendicular bisectors of xi with all other points. For m = 2,
the Fortune’s algorithm constructs the Voronoi diagram for n pointa in O(n log n). However,
this becomes extremely hard to even describe in higher dimensions.

4.4 Approach 4: kd-Tree

The approach using kd-tree data structure partitions the space into non-uniform cells. The kd-
tree is a binary tree where each level compare 1 dimension (cutting dimension). This means that
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Voronoi diagrams of 20 points under (left) Euclidean and (right) Manhattan distance. source: Wikipedia

every leaf node is a k-dimensional point. Every non-leaf node can be thought of as implicitly
generating a splitting hyperplane that divides the space into two parts, known as half-spaces.
Points to the left of this hyperplane are represented by the left subtree of that node and points
to the right of the hyperplane are represented by the right subtree, as shown in Figure 13.

Figure 13 The kd-tree data structure partitions the space into non-uniform cells.

The hyperplane direction is chosen in the following way: every node in the tree is associated
with one of the k dimensions, with the hyperplane perpendicular to that dimension’s axis. So,
for example, if for a particular split the ‘di’ axis is chosen, all points in the subtree with a smaller
‘di’ value than the node will appear in the left subtree and all points with larger ‘di’ value will be
in the right subtree. In such a case, the hyperplane would be set by the ‘di’-value of the point,
and its normal would be the unit ‘di’-axis.

The idea is to recursively construct kd-tree for the two halves, until one point remains, and
this cycles through all dimensions. Figure 14 shows an example for searching for a nearest
neighbor in kd-tree.

This approach is very complicated for large m but works reasonably well for m ≤ 10 or so.

12



T. Nguyen @ Oregon State

Figure 14 Searching for a nearest neighbor in kd-tree

4.5 Dimensionality Reduction and Locality Sensitive Hashing

There are two general approximation approach to solve the nearest neighbor problems. In dimen-
sionality reduction we reduce dimensionality of the data to mitigate the impact of one factor in the
complexity. Dimensionality reduction can be data dependent (Principal Component Analysis)
or data oblivious (Johnson-Lindenstrauss transform). However, these dimensionality reduction
methods only work for real vectors and Euclidean proximity measure.

Locality Sensitive Hashing used to tackle the second factor (number of datapoints) in the
complexity of brute force nearest neighbor search. Locality Sensitive Hashing has been proposed
for various data types and distance measures.
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5 Problems with High Dimensional Data

High dimensional data refers to data with a large number of features, variables or dimensions
often represented by the columns in a dataset, where each row is an instance or observation.
Often, the number of features (columns) can exceed the number of instances (rows).

The term ‘curse of dimensionality’ coined by Richard Bellman refers to the difficulty of
dynamic optimization with many variables. Broadly, the following issues are faced when working
with high dimensional data:

1. Working with large dimensional data is computational challenging. Processing, Storing,
Communication of high dimensional data require substantially more computational re-
sources.

2. Large dimensional data is very hard to visualize and interpret

3. In addition, generally as number of features increases redundancy also increases - more
noise is added to data than signal. This result in degradation of performance of all analytic
methods. In these notes we focus on various manifestation of this issue.

The term is used to refer to different phenomena that arise in high dimensional data analytics.
In particular we discuss the impact of high dimensionality of data on the two canonical proximity
computation problems of distance matrix computation and nearest neighbor search. Recall we
discussed that they are the building blocks of almost all data analytics.

We discuss the curse of high dimensionality in light of the distance matrix computation
problem. The K-NN problem will be discussed in detail later.

We now discuss the issues that arise in the distance matrix computation with high dimensional
data one by one.

6 Computational Complexity

Given a set X of m-dim vectors in Rm, with |X| = n. A straight forward observation about
running time of the brute force solution to compute the distance matrix D is O(n2 ×m), since
for almost all distance measures computing d(i, j) requires traversal of all coordinates of i and
j. Note that this run-time grows linearly with dimensionality of data.

7 Data Sparsity

As the dimensionality of data increases, the relative input space covered by a fixed-size training
set diminishes. Many methods require a sizeable number of examples/samples in every region
of the space to support a hypothesis or train a generalizable model. Since the available data
becomes very sparse because the volume of the space has increased so much, such methods that
need statistical significance fail. For example, in machine learning a certain number of training
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data items is required to give meaning to a model (e.g. a classifier), which is not there in such
a sparse space. Similarly, in statistical analysis a certain sample size is required to support a
hypothesis, which is not available.

In class we discussed that suppose we have data for 1000 students performance (discretized
scores of 0, 25, 50, 75, 100)% in 2 courses c1 and c2. Then in total there are 5 × 5 = 25 different
grade combinations. If the 1000 students are randomly distributed among each grade combina-
tion, then on average there are 40 students with each possible grade combination, which is a good
enough sample to draw conclusions such as if, for a student, grade(c1) ≤ 50 and grade(c2) ≥ 75,
then that student is likely to be a Math major. Now suppose there are 4 courses, then the number
of possible grades combination is 54 = 625, and an average number of students per combination
is 1.6. For 10 courses, this number reduces to 0.0001024. This means that almost all possible
combinations are never observed.

8 Huge Search Space for Nearest Neighbor Search

A basic approach for nearest neighbor search is use a data structure that partition the input
space into cells (grids or mesh). Having preprocessed the data (i.e. storing the dataset X in this
grid structure). To find nearest neighbor(s) of a query point one locates the cell containing q.
And return all points in X in that the cell and perhaps those in the ‘neighboring’ cells.

The search space for nearest neighbors in this data structure grow exponentially with the
dimensionality of the data. i.e. The number of ‘neighboring’ cells to search for in 2-d is 32 = 9,
that in 3-d is 33, which in m-d the number of cells one need to examine is 3m

Figure 15 Partition the space into cells (grids or mesh) for large dimensions

Recall the approaches for nearest neighbor search. The grid (or lattice or mesh) could be
non-uniform see for instance kd-tree, one of the most widely used data structures for nearest
neighbor search, which works quite well when the dimension n ≤ 10.

We demonstrate this phenomenon that higher dimensional neighborhood is very large and
not local. i.e. the notion of nearest neighbor breaks down as follows.

Suppose n points in X are chosen uniformly at random from [0, 1]m (m-cube). For the query
point q grow a hypercube around q to contain f fraction of points (k = fn) in X. We show that
this cube (the search space for q) grows very large (covering almost the whole input space) in
large dimension. The Expected length of the edge of the search cube Em(f) = (f 1/m. i.e. in 10d
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to get 10% points around q need cube with edge length 0.8 (which is 80% of the whole cube, the
input space). Similarly, to get only 1% points one needs to extend the search cube by 0.63 units
along each dimension

q

1110

q

q

Figure 16 1-d (left), 2-d (middle) and 3-d (right) search spaces example

We give a concrete example to demonstrate this phenomenon of non-locality of higher dimen-
sional neighborhoods

Suppose 5000 points are randomly placed in [0, 1]m. Let q = 0

• In 1d we must go a distance of 5/5000 = 0.001 on average to capture 5 NN (i.e to to capture
5 of those random input points for a typical q, we need to grow a search cube to capture
only .1% of the input cube )

• In 2d, on average we must go a distance
√

5/5000 = 0.031 units along both dimensions to
get 5 nearest neighbors points (about 3% of the whole cube)

• In 3d, on average we must go 3
√

0.001 = 0.1 = 10% of the total (unit) length in each of the
3 dimensions

• In 4d, we must go 4
√

0.001 = 0.177 = 17.7% of unit length

• In 10d, we must go 50.1% of unit length along each dimension

• In md, we must go (5/5000)1/m along each dimension

To express this phenomenon the phrase “in high dimensional space nobody can hear you
scream” is used.

9 Diminishing Volume of m-ball

A manifestation of this phenomenon that points in higher dimensions are isolated is the dimin-
ishing relative volume of the m-ball in m-cube

There is another way one can look at this issue with high dimensional space that is a big
hurdle for the fixed radius nearest neighbors search problem. The problem is that in very large
dimensions, this ball (the output of the problem) is essentially empty. This is sometimes referred
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to as in high dimensions, every point is an outlier. This is also referred to as high dimensional
space is lonely.

The m-ball (m-d hypersphere) of radius r centered at origin is defined as

Bm,r :=
{
x ∈ Rm : d(x,0 ≤ r) =⇒ ‖x‖2 ≤ r

}
.

The m-dimensional volume of m-ball of radius r in m-dimensional Euclidean space is:

Volume of Bm,r : Vm(r) =
πm/2

Γ(m/2 + 1)
rm

Γ(·) essentially is factorial of fractional numbers

For our purposes

Vm(r) =
πm/2

m/2!
rm For simplicity assume m is even

The m-cube (m-d hypercube) is the set [−1, 1]m (note edge length is 2)

Volume of m-cube: 2m

In m-d ratio of volume of unit m-Ball to that of m-cube (edge length 2) is

π
m/2/m/2!

2m
approaches 0 very fast

1

Figure 17 In 2-d (left) ratio of volume of unit m-ball is higher than that of 3-d (right) to that of
unit m-cube, and approaches to 0 very fast in higher dimensions

Observe the ratio in the following table.
Ratio of volumes of unit m-Ball and [−1, 1]m

π
m/2/m/2!

2m

17



dim m volume of m-ball volume of m-cube ratio

2 π 22 ∼ 0.785

3 4/3π 23 ∼ 0.523

4 π2/2 24 ∼ 0.308

6 π3/6 26 ∼ 0.080

m π
m/2

m/2!
2m → 0

V
ol

u
m

e
of

m
-b

a
ll

m

Figure 18 Volume of m-ball (denoted by Bm) increases from m = 1 to m = 5, afterwards it
sharply declines and get close to 0 for m > 20.

Let say we select a point x at random in the [−1, 1]n (cube centered at the origin) cube, what
is the probability that x is the unit n ball (inscribed). This probability is exactly equal to the
ratio of the volume of the unit ball to the volume of the cube.

Hence the volume of the unit sphere compared to the cube is diminishing. This means that
in very high dimensions, if we are doing a nearest neighbor search, (say the fixed radius version),
it is empty, almost no point is within distance r. In other words for a fixed query point q, if we
choose n points at random in Rm almost no point will be within r distance to q, equivalently
almost all will be at distance more than r. So nearest neighbor (or distance for that matter) lose
all its effectiveness.

• In higher dimensions all the volume is in ‘corners’

• Points in high dimensional spaces are isolated (empty surrounding)

• The probability that a randomly generated point is within r radius of q approaches 0 as
dimensionality increases

• The probability of a close nearest neighbor in a data set is very small

There is a caveat that we must keep in mind for this and the following issues that the real
datasets are not random.
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However if a dataset exhibit this phenomenon that the issue has be overcome by getting a
larger training set (exponential in m). One way to look at this is as follows.

To cover [−1, 1]m with Bm,1’s, the number of balls n must be

n ≥ 2m

Vm(1)
=

2m

π
m/2/m/2!

=
m/2! 2m

πm/2
m�∞∼

√
mπ

(
m2m/2

2πe

)m/2

For m = 16 (a very small number) this n is substantially larger than 258

10 Instability of Nearest Neighbor

A qualitative problem in higher dimensional space resulting from the phenomenon of empty
neighborhood is that the notion of nearest neighbor breaks down. This means that there is
substantial difference or contrast between nearest and farthest neighbors of a point q.

A nearest neighbor query is ε-unstable (ε > 0), if the distance from q and most other
points are at most (1 + ε) times the distance from q to its 1NN.

q
center

nearest neighbor

farthest neighbor

Figure 19 No difference (contrast) between
nearest and farthest neighbors in higher di-
mensions

dm
in
(1
+
ε)d

m
in

Figure 20 Higher dimension causes ε-
unstable (ε > 0) nearest neighbor query

We show that as dimensionality increases the probability of all nearest neighbors queries
becoming unstable increase (by showing the distance concentration phenomenon)

11 Distance Concentration

Another facet of the curse of dimensionality is the phenomenon of distance concentration.
Assume points in Rm and `2 distance measure. As m increases, almost all pairs of points

have their `2 distances (i) similar to distance of other pairs and (ii) very high. Consequently,
the distance measure loses its meaning, and since proximity measures is the building block of
data analytics, as we discussed earlier, when it becomes meaningless the building collapses. For
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example, in the K-NN problem, if all distances are similar and high, the nearest neighbor is
as good as the farthest neighbor and it becomes difficult to build clusters since there is no
justification to group a pair of points and not another.

It can be said that the normalized distance is close to 1, so both factors that distances are high
and similar are encompassed. We demonstrate it by observing distribution of pairwise distances
for n points in Rm.

11.1 Analytical Bounds

Suppose we generate a set X of random vectors in m-dimensional unit cube with |X | = n, i.e. n
points in [0, 1]m. Let x = (x1, . . . , xm) and y = (y1, . . . , ym) be two such vectors. The Euclidean
distance `2 between x and y is given by

d(x, y) = ‖x− y‖2 =

√√√√ m∑
i=1

(xi − yi)2.

The maximum possible distance b/w a pair x,y ∈ X is d(x,y) ≤
√
m. For simplicity we consider

the squared distance (to get rid of square root) i.e.

d2(x, y) = ‖x− y‖2
2 =

m∑
i=1

(xi − yi)2.

Thus,
d2(x,y) := ‖x− y‖2 ≤ m

For a fixed coordinate i < m, We have that

Pr(|xi − yi| ≥ 1/4) > 1/2. (1)

1/40

1

yi

1/4

xi
1

yi = xi + 1/4

yi = xi − 1/4

Figure 21

To see this, note that Pr(|xi − yi| ≥ 1/4) =
Pr({xi−yi ≥ 1/4}∪{vi−ui ≥ 1/4}). Since the joint
distribution of xi and yi is uniform on [0, 1]2, this
event correspond to area of the lower right triangle
and upper left triangle (below the line yi = xi− 1/4

and above the line yi = xi + 1/4, the shaded re-
gions in Figure 21). These two triangles stacked
together, is a square of length 3/4, and its area (and
hence Pr(|ui − vi| ≥ 1/4)) is 9/16 which is greater
then 1/2.

Using this we will argue that when dimensions
are large then almost all distances are large.

The following is a very useful and elegant trick,
we will use it perhaps many timed. It is imperative
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that you master it, so think about it and keep thinking until it is clear (without worrying about
technicalities like exact calculations etc.).

For fixed x, y ∈ Rm chosen as above, let Vi be the indicator random variable for the event
that |xi − yi| ≥ 1/4. i.e. if coordinate difference is big.

Vi =

{
1 if |xi − yi| ≥ 1/4

0 otherwise

We know that E[Vi] = Pr(Vi = 1) > 1/2 by Equation (1). Let V =
∑m

i=1 Vi =
∣∣{i : |xi−yi| ≥

1/4
}∣∣, i.e. V is the counter to see how many coordinates have big difference. By linearity of

expectation, we know that E(V ) = m/2, which means that on average m/2 summands of the d2

sum will be at least 1/16.
In order to show concentration around this mean, which implies that with very high proba-

bility the distance is large for this pair, we will use Chernoff bound.

Theorem 1 (Chernoff Bound (tail inequality)). Let X1, X2, . . . , Xn be independent Bernoulli
random variables. Let S = X1 + X2 + . . . + Xn, and let E(S) = µ. The loose Chernoff bounds
are stated as follows:

• Pr(S ≥ (1 + δ)µ) ≤ e
−δ2µ

3 , for 0 < δ < 1

• Pr(S ≥ (1 + δ)µ) ≤ e
−δµ
3 , for δ > 1

• Pr(S ≤ (1− δ)µ) ≤ e
−δ2µ

2 , for 0 < δ < 1

Using the Chernoff Bound with δ = 1/2:

Pr(V < m/4) = Pr(V < (1− 1/2)m/2) < e−
m/16

So almost surely, at least m/4 coordinate differences are at least 1/4, and hence squared distance
is at least m/64. So, the probability that a given pair is far, i.e. its squared distance is more than
m/64 is at least (1− e−m/16).

Pr
[
V ≥ m

4

]
≥ 1− e−

m
16

In other words, for fixed x,y: Pr
[
‖x− y‖2 ≥ m

64

]
≥ 1− e−m16

Now we want to find what is the probability that all
(
n
2

)
pairs are far. This probability is

equal to 1 minus the probability that some pair is close (squared distance m/64). This latter
probability is less than the sum of probabilities of individual pair closeness (union bound).

Pr

(
all

(
n

2

)
pairs are far

)
≥ 1−

∑
pairs

e−m/16 = 1−
(
n

2

)
e−m/16

Solving the above inequality such that the probability is at least 1/2, then as long as m =
Ω(log n), then with high probability for all x,y ∈ X , we have d2(x,y) ≥ m

64
. This means all

pairs are far, i.e. d(x,y) ≥
√
m/8.
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Here is the result of simulation of this distance concentration phenomenon. In your homework
you were supposed to observe this for varying parameters.

Julie Delon @ Uni. Paris Descartes

12 Angle Concentration

In large dimensions (at least for random points) the distance measure (at least `2 distance)
is more or less meaningless. Then, can we use cosine distance? We will show that the same
concentration phenomenon is observed for pairwise angles.

A pair of vectors x,y is orthogonal if x · y = 0, θx,y = 90◦. The maximum number of such
pairwise orthogonal vectors in R2 is 2 and in R3 is 3. In Rm, the maximum number of pairwise
almost orthogonal vectors (x · y ≤ ε, θx,y = 90◦ ± ε) is eΩ(m).

12.1 Generating Random Direction in Rm

Choosing a random direction (equivalently, a random unit vector) is not a straight forward task.
We think of this as choosing random unit vectors (normalized) in Rm. W will also need this later
for dimensionality reduction and also for Random Hyperplanes based LSH for Cosine distance
and Random Projections based LSH for Euclidean distance.

An immediate way of picking a random vector in Rm is to choose a random point in v ∈
[−1, 1]m and normalize it as v̂ = v/‖v‖. For example, in 2D (R2), generate a point in the unit
square and then normalize it. However, this doesn’t produce all directions uniformly at random,
i.e. let v = (v1, v2) where v1 and v2 are randomly chosen from [0, 1]. This picks a random
vector in the unit square (or cube as we saw earlier), we can normalize v as v̂ = v

||v||2 = v√
v21+v22

.

1

The red points have significantly high probability
of begin chosen compared to the green points

0

Figure 22 The distribution is skewed
towards the diagonal directions

As you can see in Figure 22, the distribution of ran-
domly generated direction is skewed towards the diago-
nal directions.

A quick fix to this method is the algorithm of George
Marsaglia and Arif Zaman, i.e. to generate a random
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vector in the unit cube, but if the vector is outside the
unit ball, then discard it, (i.e. if v2

1 +v2
2 +. . . v2

m > 1, then
discard it), so we only consider points within the unit
ball. Then, when normalized, each point on the surface
of the unit ball will be equally likely. However, this can
be computationally expensive. Recall the problem of the
diminishing volume of the m-ball, which implies that all
points points lie outside the unit m-ball and thus will
have to be discarded.

In 2D, an easier way is to get a random direction is to generate a random number between
[0, 2π] (randomly choose an angle) and use standard trigonometric calculations to create a unit
vector. The former method is computationally more expensive while the latter only works for
2D.

Figure 23 Generating random points
on the surface of the unit m-ball

The correct way to generate random directions (or
random unit vectors equivalent to generating random
points on the surface of the unit m-ball) is to use the
spherical symmetry of the standard normal distribution.
We generate m dimensional vector v = (v1, . . . , vm) by
picking each of vi independently from the standard nor-
mal distribution N (0, 1) and then normalize v by ‖v‖2

as earlier. Such a random vector in Rm is known to be
uniformly distributed over the surface of unit ball Bm,
as can be seen in Figure 23.

An approximate method to generate a random direction in Rm is to select the vector v =
(v1, . . . , vm) by choosing vi ∈ {−1, 1} independently and equally likely. v is then normalized by
‖v‖2 =

√
m. This generate directions towards corners of the m-cubes [−1, 1]m as shown in Figure

24.

(1, 1)
(1, 1, 1)

Figure 24 Generate directions towards corners of the m-cubes

The approximation is quite good in large dimensions and we will use it extensively in dimen-
sionality reduction. In fact, we will discuss both of these techniques during the dimensionality
reduction module. In order to see that almost all vectors are almost orthogonal in high dimen-
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sions, we will use analytical bounds to show that in expectation, every pair of random high
dimensional vectors is orthogonal [3].

12.2 Analytical Bounds

Similar to distance concentration analytical bounds, Suppose we generate a set X of random
vectors in m-dimensional unit cube with |X | = n, i.e. n points in [0, 1]m. Suppose these are
random points on the surface of Bm, i.e. they are just directions chosen uniformly at randomly
from {−1, 1}m and normalized as discussed above.

Recall that unit vectors x and y are almost orthogonal mean that θx,y the angle between them

is about 90◦, or cos θx,y = 〈x, y〉 = x · y =
m∑
i=1

∼ 0 (as the denominator is 1).

For a fixed x and a random unit vector (chosen as in previous section) y in Rm, let Vi = xiyi

and let V =
m∑
i=1

Vi = cos θx,y

Lemma 2. E[Vi] = 0 and
−xi
m

≤ Vi ≤
xi
m

.

This implies that on average, x is orthogonal to any y. To bound the probability of the
deviation of V from its mean, we use the Hoefding’s inequality.

Theorem 3 (Hoeffding’s inequality). Let Xi be random variables bounded by the interval [ai, bi]
and let S =

∑n
i=1Xi. Then

Pr(|S − E[S] ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
For S = V :

Pr(V ≥ ε) ≤ 2 exp

(
− 2ε2∑m

i=1(2xi/m)2

)
= 2e−

ε2m/2

Thus, with very small probability, a pair of vectors deviates from orthogonality, i.e. the cosine
of the angle between them is more than ε.

We can use union bound to compute the probability that no pair deviates from orthogonality
which is equal to 1 minus the probability that some pair x,y is not orthogonal, i.e. cos(θx,y) ≥ ε.

Pr(∀ x, y ∈ X : cos(θx,y) < ε) ≥ 1−
∑
pairs

2e−
ε2m/2 = 1−

(
n

2

)
2e−

ε2m/2.

For m = 6
ε2

(lnn), we get that

Pr(∀ x, y ∈ X : cos(θx,y) < ε) ≥ 1− n2e−
ε2m
2 = 1− 1

n
.

Thus, almost surely all vectors are mutually orthogonal (for 0 < ε < 1).

24



References

[1] S. Ali, MH. Shakeel, I. Khan, S. Faizullah, and MA. Khan. Predicting attributes of nodes
using network structure. 12(2), 2021.

[2] L. Bo, X. Ren, and D. Fox. Kernel descriptors for visual recognition. In Advances in Neural
Information Processing Systems (NeurIPS), pages 244–252, 2010.

[3] Achlioptas D. Database-friendly random projections: Johnson-lindenstrauss with binary
coins. Journal of Computer and System Sciences, 66(4):671–687, 2003.

[4] M. Farhan, J. Tariq, A. Zaman, M. Shabbir, and I. Khan. Efficient approximation algorithms
for strings kernel based sequence classification. In Advances in Neural Information Processing
Systems (NeurIPS), pages 6935–6945, 2017.

[5] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In Intern. Conf.
on Knowledge Discovery and Data Mining (SIGKDD), pages 855–864, 2016.

[6] Z.R Hassan, M. Shabbir, I. Khan, and W. Abbas. Estimating descriptors for large graphs.
In Advances in Knowledge Discovery and Data Mining (PAKDD), pages 779–791, 2020.

[7] Hays J. and Efros A. Scene completion using millions of photographs. In ACM SIGGRAPH.

[8] P. Kuksa, I. Khan, and V. Pavlovic. Generalized similarity kernels for efficient sequence
classification. In SIAM Intern. Conf. on Data Mining (SDM), pages 873–882, 2012.

[9] L. Yang, Y. Wang, J. Gu, C. Wang, X. Cao, and Y. Guo. Jane: Jointly adversarial network
embedding. In International Joint Conference on Artificial Intelligence (IJCAI), pages 1381–
1387, 2020.

25


	High Dimensional Data in Applications
	Text and Sequence Data - Vector Space Modeling
	Multimedia data
	Rating Matrices
	Network Data

	Distance Matrix Computation and Applications
	Near Duplicate Detection
	Input to many data analytics tasks
	News Aggregation

	Nearest Neighbor Search and Applications
	k-NN Classification
	k-NN Regression
	Collaborative Filtering for Recommendation Systems
	Search Engines' Autocorrect utility
	Lateral Phishing Emails
	Image Completion, Scene completion, image or art restoration
	Complexities of brute-force algorithms

	Approaches for k-NN
	Approach 1: No Preprocessing
	Approach 2: Sorted Array
	Approach 3: Voronoi Diagram
	Approach 4: kd-Tree
	Dimensionality Reduction and Locality Sensitive Hashing

	Problems with High Dimensional Data
	Computational Complexity
	Data Sparsity
	Huge Search Space for Nearest Neighbor Search
	Diminishing Volume of m-ball
	Instability of Nearest Neighbor
	Distance Concentration
	Analytical Bounds

	Angle Concentration
	Generating Random Direction in Rm
	Analytical Bounds


