Algorithms

Randomized Algorithms

m Deterministic and (Las Vegas & Monte Carlo) Randomized Algorithms
m Probability Review

m Probabilistic Analysis of deterministic QUICK-SORT Algorithm

B RANDOMIZED-SELECT and RANDOMIZED-QUICK-SORT

m Max-Cut

m Min-Cut

B MAX-3-SAT and Derandomization

m Closest pair

m Hashing, Bloom filters, Streams, Sampling, Reservoir sampling, Sketch

IMDAD ULLAH KHAN

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms 1/30

The dictionary ADT

m A dictionary maintains a set of n elements from a universe U
m Unique elements; element is known by its ‘key’ k
m Elements could be compound (key, value) pairs

m Example: student ID as key and score as value
‘16020102" : 17 ‘11010051’ : 84

‘11050001’ : 22 12060009’ : 92

Required operations: INSERT, LOOKUP, DELETE

Dictionary can be implemented using the data structure

m array > sorted or unsorted
m linked list > sorted or unsorted
m binary search trees > balanced or unbalanced
m hash tables

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms 2/30

Dictionary Implementations

Unsorted Array:

®m LOOKUP: Linear search - traverse array sequentially > O(n)
m INSERT: Insertion at the end of array (first empty slot) > O(1)
m DELETE: Given a position, shift left remaining elements > O(n)

Sorted Array:

B LOOKUP: Binary search > O(log n)
m INSERT: Lookup to find position and shift to make space > O(n)
m DELETE: Given a position, shift left remaining elements > O(n)

Binary Search Tree:

m LOOKUP: Compare with root recursively in appropriate subtree > O(h)

m INSERT: Lookup for appropriate leaf position to insert node > O(h)

m DELETE: Given key, lookup to find node to remove and recursively link
parent with one of the children > O(h)

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms 3/30

Direct-Address Table

m How can all operations be done in O(1)?

m Let each position in table correspond to a key in the universe U

Image: CLRS

m Large universe = large unused space
m If no satellite data, keys can be stored in a bit-vector
m For n elements, space taken by bit-vector < array

m How can O(1) be achieved without wasting space?

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms

Hash Table

mlet meZt and h: U — [m]

m Make an array (or table) T[1,...,m]

m LOOKUP: return T [h(k)] > O(1)
m INSERT: Store at T[h(k)] > O(1)
® DELETE: Remove from T[h(k)] > O(1)

hiky)

Gohal. E k] tky) = hiks)
keys) ;

h(ks)

Image: CLRS m-1

m What if h(kc) = h(k,)? Collisions occur
m How can k, and k, both be stored?

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms

Chained Hash Table

m Let T[] be an array or list for 1 <i<m
® LOOKUP: Lookup in list T[h(k)]

® INSERT: Insert in list T[h(k)]

m DELETE: Delete from list T[h(k)]

Image: CLRS

m Runtime of all operations: O(length of list in T[k])
m How can we ensure the length of lists in T is not too large?

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms

Randomized Hashing

m Can the hash function h involve randomness?
> No! An element must always hash to the same list in T

Radomly choose a hash function to use

For z € U, h(z) is chosen uniformly at random from {0,--- , m — 1}
1 if h(x;) = h(z)
0 otherwise

For any x; € U, let random variable C; = {

m Let X be the number of elements in the same list as z
m X =32, G Then,
1 n
E[X]=E il = E[C Prlh(x;) = h = — < —
[X] [;#C];#[C];#flx (2)] ;mm

m Expected runtime of operations is O(1 + E[X]) = O(1 + 7/m)

m Space-time tradeoff: larger m = lower expected runtime

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms 7/30

Universal Hash Functions

A family of hash functions H is 2-universal iff for any x,y €,., U, if
h € H is chosen uniformly at random, then Pr[h(x) = h(y)] < 1/m J

Desired properties from hashing

m Small range (m) and fewer collisions
m Easy to evaluate hash value for any key with small space complexity

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms 8/30

Universal Hash Functions

Linear Congruential Generators for U = Z

m Pick a prime number p > m
m For any two integers aand b (1<a<p-1),(0<b<p-1)
m A hash function h,p, : U — [m] is defined as

hap(x) =[(ax +b) mod p] mod m

H:={h,p : 1<a<p-—1,0<b<p—1}is2-universal J

Picking a random h € H amounts to picking random a and b

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms 9/30

Data Streams

m A data stream is a massive sequence of data

m Too large to store (on disk, memory, cache, etc.)
m Social media (twitter feed, foursquare checkins)
m Web click stream analysis

m Search Query Stream Analysis

Sensor data (weather, radars, cameras, loT devices, energy data)

Network traffic (trajectories, source/destination pairs)
m Financial Data

m Satellite data feed
m How to deal with such data?

m What are the issues?

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms 10 /30

Characteristics of Data Stream

m Huge volumes of continuous data, possibly infinite

m Fast changing and requires fast, real-time response

m Data stream captures nicely our data processing needs of today
m Random access is expensive

m Single scan algorithm (can only have one look)

m Store only the summary of the data seen so far

m Most stream data are pretty low-level or multidimensional in nature,
needs multi-level and multi-dimensional processing

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms 11/30

Data Stream

m Data items can be complex types

m Documents (tweets, news articles)
m Images

m geo-located time-series

]

m To study basic algorithmic ideas we abstract away application-specific
details

m Consider the data stream as a sequence of numbers

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms 12 /30

Stream Model of Computation

Motwani, PODS (2002)

Memory: poly(1/e, logN)
Query/Update Time: poly(1/e,logN)

N: # items so far, or window size

Data Stream

£: error parameter

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms

Stream Model of Computation

Stream § := a1,a2,33,...,dm > m may be unknown
Each a; € [n]

Goal: Compute a function of the stream S (e.g. mean, median, number of
distinct elements, frequency moments..)

Subject to

Single pass, read each element of S only once sequentially

Per item processing time O(1)

m Use memory polynomial in O(Y/e, /s, log n)

Return (e, §)-randomized approximate solution

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms 14 /30

Data Stream: Synopsis

Fundamental Methodology: Keep a synopsis of the stream and answer
query based on it. Update synopsis after examining each item in O(1)

Synopsis: Succinct summary of the stream (so far) (poly-log bits)

Families of Synopsis

L . a1 az asz aq am a; € [TL]
m Sliding Window EEmmsm . mo-
Query @
m Random Sample Stroam Query
P%)cessing P%)cessing Application
n HIStOgram ngine ngine — —p —p

m Wavelets

m Sketch

Synopsis O(logn)

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms 15 /30

How to Tackle Massive Data Streams

A general and powerful technique: Sampling
m ldea:

Keep a random sample of the data stream
Perform the computation on the sample
Extrapolate

Example: Compute the median of a data stream (How to extrapolate
in this case?)

Sampling Techniques: How to keep a random sample of a data
stream?

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms 16 /30

Random Sample

Keep a “representative” subset of the stream

Approximately compute query answer from sample (with appropriate
scaling etc.)

Stream elements in an arbitrary order Random Sample
EE S EEE S S S (== -
- OB BN BN B B | mm wm ‘
o E . = ‘
s s O e O e O s s I |\ @ = /

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms 17 /30

Random Sample from an Array

Sample a random element from array A of length n

m Generate a random number r € [0, n]

m Return A[[r]]

e

[22]

w [1 []

o]

> A[i] with prob 1/n

> r < RAND() X n

Sample random element (by weight) from array A > A[i] with prob. wi/w

m Generate a random number r € [0, 3774 w;]

m Return A[i]if Wi

> r <= RAND() x W,

IMDAD ULLAH KHAN (LUMS)

<r< W,
w1 w2 w3 wy w1y w12
aiy a2 asz | aq aii a2
| PI— | | | | | | | | |
T L T T T T T T T T T
Wy Wz W3 Wy W5 Wg Wz Wg Wo Wig Wip Wiz
|/|/ . _— l w
r L ijl J

Randomized Algorithms

18/30

Data Stream: Random Sample

Sample a random element from the stream S > a; with prob. 1/m

m If mis known, use algorithm for sampling from array. For unknown m

Algorithm : Reservoir Sampling (S)

R+ a > R (reservoir) maintains the sample

for i >2do
Pick a; with probability 1/i
Replace with current element in R

Prob. that a; is in the sample R, (m: stream length or query time)

= Pr that a; was selected at time ¢ X Pr that a; survived in R until time m

| 1)

j=i+1
1) 141 142 m~2 m~1
= X /Z/ X - X - X ...X X L
ikl 142 143 m~1 m
IMDAD ULLAH KHAN (LUMS) Randomized Algorithms

1

19/30

Data Stream: Random Sample

Sample k random elements from the stream S > a; with prob. k/m

Algorithm : Reservoir Sampling (S, k)

R« aj,an,...,ak > R (reservoir) maintains the sample
for i>k+1do

Pick a; with probability /i

If a; is picked, replace with it a randomly chosen element in R

Prob. that a; is in the sample R, (m: stream length or query time)

= Pr that a; was selected at time ¢ X Pr that a; survived in R untill time m

k - ko1

f (D)

1]l:-‘[u(ik
Ex/l/ xwlxli;'/Qx...xm/2xm/1
v F1 142 13 m~1 m

3| =

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms 20/30

Data Stream: Linear Sketch

Sample is a general purpose synopsis

Process sample only — no advantage from observing the whole stream

Sketches are specific to a particular purpose (query)

Sketches benefit from the whole stream (though can't save all)

A linear sketch interprets the stream as defining the frequency vector

Often we are interested in functions of the frequency vector from a stream

IMDAD ULLAH KHAN (LUMS)

1

2

3

n

F: [

f2

fs

fn

fi = Hai €S : a; = j}|

(frequency of j in S)

2,5,6,7,8,2,1,2,7,5,5,4,2,8,8,9,5,6,4,4,2,5,5

S a1, G2, a3, A4, . - ., Ay
a; € [n]
S:

1 2 5 7 8 9
F: s 6 2031

Randomized Algorithms

21/30

Stream: Frequency Moments

S =< ay,a,383,...,am > a; € [n]

f; : frequency of j in S F={fA,f,...,f}
n

Fo:= > f° > number of distinct elements
i=1
n

F o= f; > length of stream, m
i=1
n

Fri= > f,-2 > second frequency moment
i=1

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms 22/30

Count-Min Sketch

m Count-Min sketch (Cormode & Muthukrishnan 2005) for frequency estimates
m Cannot store frequency of every elements

m Store total frequency of random groups (elements in hash buckets)

Algorithm : Count-Min Sketch (k, ¢,)

COUNT <— ZEROS(k) > sketch consists of k integers
Pick a random h: [n] — [k] from a 2-universal family H
On input a;

COUNT[h(a;)] < counTt[h(a;)] + 1 D> increment count at index h(a;)
On query j > query: F[j] =7

return COUNT[h(J)]

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms 23/30

Count-Min Sketch

Algorithm : Count-Min Sketch (k, ¢, d)

COUNT < ZEROS(k)

> sketch consists of k integers

Pick a random h : [n] — [k] from a 2-universal family H

On input a;

couNT[h(a;)] + counT[h(a;)] +1

On query j

return COUNT[A(j)]

> increment count at index h(a;)

> query: F[j] =7

S: 2,56,7,821,2,7,55,4,2,8,8,9,56,4,4,2,5,5

1 2 3
<4— Sketch
COUNT : 1+2 | 3+6 i;il ete
<«+— Mapping by
h:{1,2,...,8,9} — {1,2,3}
1 3|4 |5 7 9
True
. - .
F: 1/5[(013]6[2|2]3]|1 Frequencies
IMDAD ULLAH KHAN (LUMS) Randomized Algorithms 24 /30

Count-Min Sketch

m k= %?

m Large k means better estimate (smaller groups) but more space

1 2 3 4 5
f3 fi fa
count| % i i
fn fa
h(-)
T2 s n
F: filfe|fa|fa fn

£ = HaeS:a=3)

(frequency of j in S)

m f;: estimate for f; — output of algorithm

IMDAD ULLAH KHAN (LUMS)

Randomized Algorithms

25 /30

Count-Min Sketch
| | k = 2/6

m Large k means better estimate but more space

m f;: estimate for f; — output of algorithm

Bounds on f; : (idea)

frequency

~m
v

F
3 n
h(-)
COUNT ‘.. ..° .. O ‘..‘<—Sketch
Good case Bad case

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms 26 /30

Count-Min Sketch
| | k = 2/6

m Large k means better estimate but more space

m f;: estimate for f; — output of algorithm

Bounds on f; : (idea)

|7

Vv
O hH

ther elements that hash to h(j) contribute to f;

Pr[E- < fit+e|Fll1] > %

"X = f—f > Excess in f; (error)
X = Zie[n]\j fi + Lh(i)=h(j) > Lcondition 1S indicator of condition
1 €
:E(Z fi’lh(i)zh(j)> = Z fi'; < Z HF||1'§
i€n\j i€n\j i€n\j

m By Markov inequality we get the bound

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms 27 /30

Count-Min Sketch

Idea: Amplify the probability of the basic count-min sketch
Keep t over-estimates, t = log(1/s), k = 2/e and return their minimum

Unlikely that all t functions hash j with very frequent elements

Algorithm : Count-Min Sketch (k, ¢,)

COUNT <— ZEROS(t X k) > sketch consists of t rows of k integers
Pick t random functions hy, ..., h: : [n] — [k] from a 2-universal family
On input a;

forr=1to t do

cOuNT|r|[h,(ai)] < counT[r][h.(a;)] + 1
> increment COUNT[r] at index h,(a;)

On query j > query: F[j] =7
t MIN COUNT|r][h,(j
return iy countlrl[h, (/)]

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms 28/30

Count-Min Sketch

S: 2,5,6,7,821,2,7,5,54,2,8,8,9,5,6,4,4,2,5,5

o ——
ovtezl 346 | 0%

COUNT : Sketch
0+24+2|1+5+6[3+3+1

ha(-) \ | |
Lifefe|afs]e]r]s]o] ue
F:o s o]s]6]2]2]8]1] ™ Fequencs
On input a
hi(a) h(a)
TI\2 [3 k
COUNT/[1 +1
COUNT[2][- \ Y
counT[3][- \ 1 \
COUN'I"[t][-] \ \‘+1
On query a MIN, count[][hi(a)]

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms

Count-Min Sketch

> f
m For every r, other elements that hash to h,(j) contribute to f;
fi < fi+ €||F||1 with probability at least 1 — §

m Xj : contribution of other elements to Count[r][h.(j)]

PrXi >¢€||Fl1] < 5 for k=2/c

m Theevent fi > fid¢el|F|y isV1<r<t X, >¢|F|

PV r X > elFl] < (3)f

t=log(}) — Pr[VrX,zelFlh] < (1) =

m Count-Min sketch is an (¢||F||1, §)-additive approximation algorithm
m Space required is k - t integers = O(1/clog(1/s) log n) (plus constant)

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms 30/30

