Algorithms

Randomized Algorithms

- Deterministic and (Las Vegas \& Monte Carlo) Randomized Algorithms
- Probability Review
- Probabilistic Analysis of deterministic QUICK-SORT Algorithm
- RANDOMIZED-SELECT and RANDOMIZED-QUICK-SORT
- Max-Cut
- Min-Cut
- MAX-3-SAT and Derandomization
- Closest pair
- Hashing, Bloom filters, Streams, Sampling, Reservoir sampling, Sketch

ImDad UlLah Khan

The dictionary ADT

- A dictionary maintains a set of n elements from a universe U
- Unique elements; element is known by its 'key' k
- Elements could be compound (key, value) pairs

■ Example: student ID as key and score as value

$$
\left.\begin{array}{ll}
& \\
& 16020102
\end{array}\right): 1701010051^{\prime}: 84
$$

■ Required operations: INSERT, LOOKUP, DELETE
■ Dictionary can be implemented using the data structure

■ array

- linked list
- binary search trees
- hash tables
\triangleright sorted or unsorted
\triangleright sorted or unsorted \triangleright balanced or unbalanced

Dictionary Implementations

Unsorted Array:
■ LOOKUP: Linear search - traverse array sequentially
$\triangleright O(n)$

- INSERT: Insertion at the end of array (first empty slot)
$\triangleright O(1)$
- DELETE: Given a position, shift left remaining elements
$\triangleright O(n)$
Sorted Array:
- LOOKUP: Binary search
$\triangleright O(\log n)$
- INSERT: Lookup to find position and shift to make space
$\triangleright O(n)$
- DELETE: Given a position, shift left remaining elements
$\triangleright O(n)$

Binary Search Tree:

■ LOOKUP: Compare with root recursively in appropriate subtree $\triangleright O(h)$

- INSERT: Lookup for appropriate leaf position to insert node $\triangleright O(h)$
- DELETE: Given key, lookup to find node to remove and recursively link parent with one of the children
$\triangleright O(h)$

Direct-Address Table

- How can all operations be done in $\mathcal{O}(1)$?

■ Let each position in table correspond to a key in the universe U

■ Large universe \Longrightarrow large unused space
■ If no satellite data, keys can be stored in a bit-vector
■ For n elements, space taken by bit-vector \ll array
■ How can $\mathcal{O}(1)$ be achieved without wasting space?

Hash Table

- Let $m \in \mathbb{Z}^{+}$and $h: U \rightarrow[m]$
- Make an array (or table) $T[1, \ldots, m]$
- LOOKUP: return $T[h(k)]$
- INSERT: Store at $T[h(k)]$
$\triangleright O(1)$
- DELETE: Remove from $T[h(k)]$

- What if $h\left(k_{x}\right)=h\left(k_{y}\right)$? Collisions occur

■ How can k_{x} and k_{y} both be stored?

Chained Hash Table

- Let $T[i]$ be an array or list for $1 \leq i \leq m$

■ LOOKUP: Lookup in list $T[h(k)]$

- InSERT: Insert in list $T[h(k)]$
- DELETE: Delete from list $T[h(k)]$

- Runtime of all operations: O (length of list in $T[k]$)

■ How can we ensure the length of lists in T is not too large?

Randomized Hashing

- Can the hash function h involve randomness?
\triangleright No! An element must always hash to the same list in T
- Radomly choose a hash function to use

■ For $z \in U, h(z)$ is chosen uniformly at random from $\{0, \cdots, m-1\}$
■ For any $x_{i} \in U$, let random variable $C_{i}= \begin{cases}1 & \text { if } h\left(x_{i}\right)=h(z) \\ 0 & \text { otherwise }\end{cases}$

- Let X be the number of elements in the same list as z
- $X=\sum_{x_{i} \neq z} C_{i}$ Then,
$E[X]=E\left[\sum_{x_{i} \neq z} C_{i}\right]=\sum_{x_{i} \neq z} E\left[C_{i}\right]=\sum_{x_{i} \neq z} \operatorname{Pr}\left[h\left(x_{i}\right)=h(z)\right]=\sum_{x_{i} \neq z} \frac{1}{m} \leq \frac{n}{m}$
■ Expected runtime of operations is $\mathcal{O}(1+E[X])=\mathcal{O}(1+n / m)$
■ Space-time tradeoff: larger $m \Longrightarrow$ lower expected runtime

Universal Hash Functions

A family of hash functions \mathcal{H} is 2-universal iff for any $x, y \in \in_{x \neq y} U$, if $h \in \mathcal{H}$ is chosen uniformly at random, then $\operatorname{Pr}[h(x)=h(y)] \leq 1 / m$

Desired properties from hashing

- Small range (m) and fewer collisions

■ Easy to evaluate hash value for any key with small space complexity

Universal Hash Functions

Linear Congruential Generators for $U=\mathbb{Z}$
■ Pick a prime number $p>m$

- For any two integers a and $b(1 \leq a \leq p-1),(0 \leq b \leq p-1)$
- A hash function $h_{a, b}: U \mapsto[m]$ is defined as

$$
h_{a, b}(x)=\left[\begin{array}{ll}
(a x+b) & \bmod p] \quad \bmod m
\end{array}\right.
$$

$\mathcal{H}:=\left\{h_{a, b}: 1 \leq a \leq p-1,0 \leq b \leq p-1\right\}$ is 2-universal
Picking a random $h \in \mathcal{H}$ amounts to picking random a and b

- A data stream is a massive sequence of data
- Too large to store (on disk, memory, cache, etc.)
- Social media (twitter feed, foursquare checkins)
- Web click stream analysis
- Search Query Stream Analysis

■ Sensor data (weather, radars, cameras, loT devices, energy data)

- Network traffic (trajectories, source/destination pairs)
- Financial Data
- Satellite data feed
- How to deal with such data?

■ What are the issues?

Characteristics of Data Stream

■ Huge volumes of continuous data, possibly infinite

- Fast changing and requires fast, real-time response

■ Data stream captures nicely our data processing needs of today

- Random access is expensive
- Single scan algorithm (can only have one look)
- Store only the summary of the data seen so far

■ Most stream data are pretty low-level or multidimensional in nature, needs multi-level and multi-dimensional processing

Data Stream

- Data items can be complex types

■ Documents (tweets, news articles)
■ Images
■ geo-located time-series

■ To study basic algorithmic ideas we abstract away application-specific details

- Consider the data stream as a sequence of numbers

Stream Model of Computation

Motwani, PODS (2002)

Stream Model of Computation

Stream $\mathcal{S}:=a_{1}, a_{2}, a_{3}, \ldots, a_{m}$
$\triangleright m$ may be unknown
Each $a_{i} \in[n]$
Goal: Compute a function of the stream \mathcal{S} (e.g. mean, median, number of distinct elements, frequency moments..)

Subject to

- Single pass, read each element of \mathcal{S} only once sequentially
- Per item processing time $O(1)$

■ Use memory polynomial in $O(1 / \epsilon, 1 / \delta, \log n)$

- Return (ϵ, δ)-randomized approximate solution

Data Stream: Synopsis

Fundamental Methodology: Keep a synopsis of the stream and answer query based on it. Update synopsis after examining each item in $O(1)$

Synopsis: Succinct summary of the stream (so far) (poly-log bits)

Families of Synopsis

- Sliding Window
- Random Sample
- Histogram
- Wavelets

■ Sketch

How to Tackle Massive Data Streams

- A general and powerful technique: Sampling

■ Idea:
1 Keep a random sample of the data stream
2 Perform the computation on the sample
3 Extrapolate

- Example: Compute the median of a data stream (How to extrapolate in this case?)
■ Sampling Techniques: How to keep a random sample of a data stream?

Random Sample

Keep a "representative" subset of the stream
Approximately compute query answer from sample (with appropriate scaling etc.)

Stream elements in an arbitrary order
Random Sample

Random Sample from an Array

Sample a random element from array A of length n
$\triangleright A[i]$ with prob $1 / n$
■ Generate a random number $r \in[0, n]$

- Return $A[\lceil r\rceil]$

Sample random element (by weight) from array $A \triangleright A[i]$ with prob. w_{i} / w

- Generate a random number $r \in\left[0, \sum_{j=1}^{n} w_{i}\right] \quad \triangleright r \leftarrow \operatorname{RAND}() \times W_{n}$

■ Return A [i] if $W_{i-1} \leq r<W_{i}$

$\left.$| w_{1} | w_{2} | w_{3} | w_{4} | | | | | | | w_{11} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$w_{12} \right\rvert\,$

Data Stream: Random Sample

Sample a random element from the stream S
$\triangleright a_{i}$ with prob. $1 / m$
■ If m is known, use algorithm for sampling from array. For unknown m
Algorithm : Reservoir Sampling (S)
$R \leftarrow a_{1} \quad \triangleright R$ (reservoir) maintains the sample
for $i \geq 2$ do
Pick a_{i} with probability $1 / i$
Replace with current element in R

Prob. that a_{i} is in the sample R_{m} (m : stream length or query time)
$=\underbrace{\operatorname{Pr} \text { that } a_{i} \text { was selected at time } i}_{\frac{1}{i}} \times \underbrace{\operatorname{Pr} \text { that } a_{i} \text { survived in } R \text { until time } m}_{\prod_{j=i+1}^{m}\left(1-\frac{1}{j}\right)}$
$=\frac{1}{\dot{i}} \times \frac{\dot{\gamma}}{i \neq 1} \times \frac{i \not 1}{i \not 12} \times \frac{i 才 2}{i 才 3} \times \ldots \times \frac{m \not-2}{m \not-1} \times \frac{m \not-1}{m}=\frac{1}{m}$

Data Stream: Random Sample

Sample k random elements from the stream S
$\triangleright a_{i}$ with prob. k / m

Algorithm : Reservoir Sampling (S,k)

$R \leftarrow a_{1}, a_{2}, \ldots, a_{k} \quad \triangleright R$ (reservoir) maintains the sample
for $i \geq k+1$ do
Pick a_{i} with probability k / i
If a_{i} is picked, replace with it a randomly chosen element in R

Prob. that a_{i} is in the sample R_{m} (m : stream length or query time)
$=\underbrace{\operatorname{Pr} \text { that } a_{i} \text { was selected at time } i}_{\frac{k}{i}} \times \underbrace{\operatorname{Pr} \text { that } a_{i} \text { survived in } R \text { untill time } m}_{\prod_{j=i+1}^{m}\left(1-\left(\frac{k}{j} \times \frac{1}{k}\right)\right)}$
$=\frac{k}{\dot{\gamma}} \times \frac{\dot{k}}{i \neq 1} \times \frac{i \neq 1}{i \neq 2} \times \frac{i \neq 2}{i \neq 3} \times \ldots \times \frac{m-2}{m-1} \times \frac{m-1}{m}=\frac{k}{m}$

Data Stream: Linear Sketch

- Sample is a general purpose synopsis

■ Process sample only - no advantage from observing the whole stream

- Sketches are specific to a particular purpose (query)
- Sketches benefit from the whole stream (though can't save all) A linear sketch interprets the stream as defining the frequency vector Often we are interested in functions of the frequency vector from a stream

$$
\begin{aligned}
& \mathcal{S}: a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{m} \\
& a_{i} \in[n] \\
& f_{j}=\left|\left\{a_{i} \in \mathcal{S}: a_{i}=j\right\}\right| \text { (frequency of } j \text { in } \mathcal{S} \text {) }
\end{aligned}
$$

$\mathcal{S}: \quad 2,5,6,7,8,2,1,2,7,5,5,4,2,8,8,9,5,6,4,4,2,5,5$

$\mathbf{F}:$		2	3	4	5	6	7	8	9
1	5	0	3	6	2	2	3	1	

Stream: Frequency Moments

$$
\mathcal{S}=<a_{1}, a_{2}, a_{3}, \ldots, a_{m}>\quad a_{i} \in[n]
$$

f_{i} : frequency of i in \mathcal{S}
$F_{0}:=\sum_{i=1}^{n} f_{i}^{0}$
$F_{1}:=\sum_{i=1}^{n} f_{i}$
$F_{2}:=\sum_{i=1}^{n} f_{i}^{2}$

$$
\mathbf{F}=\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}
$$

\triangleright number of distinct elements
\triangleright length of stream, m
\triangleright second frequency moment

Count-Min Sketch

- Count-Min sketch (Cormode \& Muthukrishnan 2005) for frequency estimates
- Cannot store frequency of every elements
- Store total frequency of random groups (elements in hash buckets)

Algorithm : Count-Min Sketch (k, ϵ, δ)

COUNT $\leftarrow \operatorname{ZEROS}(k) \quad \triangleright$ sketch consists of k integers
Pick a random $h:[n] \mapsto[k]$ from a 2-universal family \mathcal{H}
On input a_{i}

$$
\operatorname{COUNT}\left[h\left(a_{i}\right)\right] \leftarrow \operatorname{COUNT}\left[h\left(a_{i}\right)\right]+1 \quad \triangleright \text { increment count at index } h\left(a_{i}\right)
$$

On query j
return Count $[h(j)]$

Count-Min Sketch

Algorithm : Count-Min Sketch (k, ϵ, δ)

COUNT $\leftarrow \operatorname{ZEROS}(k)$

\triangleright sketch consists of k integers
Pick a random $h:[n] \mapsto[k]$ from a 2-universal family \mathcal{H}
On input a_{i}
$\operatorname{COUNT}\left[h\left(a_{i}\right)\right] \leftarrow \operatorname{COUNT}\left[h\left(a_{i}\right)\right]+1 \quad \triangleright$ increment count at index $h\left(a_{i}\right)$
On query j
\triangleright query: $\mathbf{F}[j]=$?
return COUNT[$h(j)$]
$\mathcal{S}: \quad 2,5,6,7,8,2,1,2,7,5,5,4,2,8,8,9,5,6,4,4,2,5,5$

COUNT :

F :

Count-Min Sketch

- $k=\frac{2}{\epsilon}$

■ Large k means better estimate (smaller groups) but more space

- \tilde{f}_{j} : estimate for f_{j} - output of algorithm

Count-Min Sketch

- $k=2 / \epsilon$
- Large k means better estimate but more space
- \tilde{f}_{j} : estimate for f_{j} - output of algorithm

Bounds on \tilde{f}_{j} : (idea)

Count-Min Sketch

- $k=2 / \epsilon$
- Large k means better estimate but more space
- \tilde{f}_{j} : estimate for f_{j} - output of algorithm

Bounds on \tilde{f}_{j} : (idea)

$1 \tilde{f} \geq f_{j}$

- Other elements that hash to $h(j)$ contribute to \tilde{f}_{j}

2 $\operatorname{Pr}\left[\tilde{f}_{j} \leq f_{j}+\epsilon\|F\|_{1}\right] \geq \frac{1}{2}$

- $X_{j}=\tilde{f}_{j}-f_{j}$
\triangleright Excess in \tilde{f}_{j} (error)
- $X_{j}=\sum_{i \in[n] \backslash j} f_{i} \cdot 1_{h(i)=h(j)} \quad \triangleright 1_{\text {condition }}$ is indicator of condition
$\mathbb{E}\left(X_{j}\right)=\mathbb{E}\left(\sum_{i \in[n] \backslash j} f_{i} \cdot 1_{h(i)=h(j)}\right)=\sum_{i \in[n] \backslash j} f_{i} \cdot \frac{1}{k} \leq \sum_{i \in[n] \backslash j}\|F\|_{1} \cdot \frac{\epsilon}{2}$
- By Markov inequality we get the bound

Count-Min Sketch

Idea: Amplify the probability of the basic count-min sketch
Keep t over-estimates, $t=\log (1 / \delta), k=2 / \epsilon$ and return their minimum Unlikely that all t functions hash j with very frequent elements

Algorithm : Count-Min Sketch (k, ϵ, δ)
COUNT $\leftarrow \operatorname{ZEROS}(t \times k) \quad \triangleright$ sketch consists of t rows of k integers
Pick t random functions $h_{1}, \ldots, h_{t}:[n] \mapsto[k]$ from a 2-universal family
On input a_{i}
for $r=1$ to t do

$$
\operatorname{COUNT}[r]\left[h_{r}\left(a_{i}\right)\right] \leftarrow \operatorname{COUNT}[r]\left[h_{r}\left(a_{i}\right)\right]+1
$$

\triangleright increment count $[r]$ at index $h_{r}\left(a_{i}\right)$
On query j
\triangleright query: $\mathrm{F}[j]=$?
return $\underset{1 \leq r \leq t}{\operatorname{MIN}} \operatorname{COUNT}[r]\left[h_{r}(j)\right]$

Count-Min Sketch

$$
\mathcal{S}: \quad 2,5,6,7,8,2,1,2,7,5,5,4,2,8,8,9,5,6,4,4,2,5,5
$$

F: \quad| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 5 | 0 | 3 | 6 | 2 | 2 | 3 | 1 | « \quad (

Count-Min Sketch

1 $\tilde{f}_{j} \geq f_{j}$

- For every r, other elements that hash to $h_{r}(j)$ contribute to \tilde{f}_{j}
$2 \tilde{f}_{j} \leq f_{j}+\epsilon\|F\|_{1}$ with probability at least $1-\delta$
- $X_{j r}$: contribution of other elements to Count $[r]\left[h_{r}(j)\right]$
- $\operatorname{Pr}\left[X_{j r} \geq \epsilon\|F\|_{1}\right] \leq \frac{1}{2} \quad$ for $k=2 / \epsilon$
- The event $\tilde{f}_{j} \geq f_{j}+\epsilon\|F\|_{1} \quad$ is $\forall 1 \leq r \leq t \quad X_{j r} \geq \epsilon\|F\|_{1}$
- $\operatorname{Pr}\left[\forall r X_{j r} \geq \epsilon\|F\|_{1}\right] \leq\left(\frac{1}{2}\right)^{t}$
- $t=\log \left(\frac{1}{\delta}\right) \Longrightarrow \operatorname{Pr}\left[\forall r X_{j r} \geq \epsilon\|F\|_{1}\right] \leq\left(\frac{1}{2}\right)^{\log 1 / \delta}=\delta$

■ Count-Min sketch is an $\left(\epsilon\|F\|_{1}, \delta\right)$-additive approximation algorithm
■ Space required is $k \cdot t$ integers $=O(1 / \epsilon \log (1 / \delta) \log n)$ (plus constant)

