
Algorithms

Randomized Algorithms

Deterministic and (Las Vegas & Monte Carlo) Randomized Algorithms
Probability Review
Probabilistic Analysis of deterministic quick-sort Algorithm
randomized-select and randomized-quick-sort
Max-Cut
Min-Cut
max-3-sat and Derandomization
Closest pair
Hashing, Bloom filters, Streams, Sampling, Reservoir sampling, Sketch

Imdad ullah Khan

Imdad ullah Khan (LUMS) Randomized Algorithms 1 / 30

The dictionary ADT

A dictionary maintains a set of n elements from a universe U
Unique elements; element is known by its ‘key’ k
Elements could be compound (key , value) pairs
Example: student ID as key and score as value

‘16020102′ : 17 ‘11010051′ : 84

‘11050001′ : 22 ‘12060009′ : 92

Required operations: insert, lookup, delete
Dictionary can be implemented using the data structure

array ▷ sorted or unsorted
linked list ▷ sorted or unsorted
binary search trees ▷ balanced or unbalanced
hash tables

Imdad ullah Khan (LUMS) Randomized Algorithms 2 / 30

Dictionary Implementations

Unsorted Array:
lookup: Linear search - traverse array sequentially ▷ O(n)
insert: Insertion at the end of array (first empty slot) ▷ O(1)
delete: Given a position, shift left remaining elements ▷ O(n)

Sorted Array:
lookup: Binary search ▷ O(log n)
insert: Lookup to find position and shift to make space ▷ O(n)
delete: Given a position, shift left remaining elements ▷ O(n)

Binary Search Tree:
lookup: Compare with root recursively in appropriate subtree ▷ O(h)
insert: Lookup for appropriate leaf position to insert node ▷ O(h)
delete: Given key, lookup to find node to remove and recursively link

parent with one of the children ▷ O(h)

Imdad ullah Khan (LUMS) Randomized Algorithms 3 / 30

Direct-Address Table

How can all operations be done in O(1)?
Let each position in table correspond to a key in the universe U

Image: CLRS

Large universe =⇒ large unused space
If no satellite data, keys can be stored in a bit-vector
For n elements, space taken by bit-vector ≪ array
How can O(1) be achieved without wasting space?

Imdad ullah Khan (LUMS) Randomized Algorithms 4 / 30

Hash Table

Let m ∈ Z+ and h : U → [m]
Make an array (or table) T [1, . . . , m]
lookup: return T [h(k)] ▷ O(1)
insert: Store at T [h(k)] ▷ O(1)
delete: Remove from T [h(k)] ▷ O(1)

Image: CLRS

What if h(kx) = h(ky)? Collisions occur
How can kx and ky both be stored?

Imdad ullah Khan (LUMS) Randomized Algorithms 5 / 30

Chained Hash Table

Let T [i] be an array or list for 1 ≤ i ≤ m
lookup: Lookup in list T [h(k)]
insert: Insert in list T [h(k)]
delete: Delete from list T [h(k)]

Image: CLRS

Runtime of all operations: O(length of list in T [k])
How can we ensure the length of lists in T is not too large?

Imdad ullah Khan (LUMS) Randomized Algorithms 6 / 30

Randomized Hashing

Can the hash function h involve randomness?
▷ No! An element must always hash to the same list in T

Radomly choose a hash function to use
For z ∈ U, h(z) is chosen uniformly at random from {0, · · · , m − 1}

For any xi ∈ U, let random variable Ci =
{

1 if h(xi) = h(z)
0 otherwise

Let X be the number of elements in the same list as z
X =

∑
xi ̸=z Ci Then,

E [X] = E [
∑
xi ̸=z

Ci] =
∑
xi ̸=z

E [Ci] =
∑
xi ̸=z

Pr [h(xi) = h(z)] =
∑
xi ̸=z

1
m ≤

n
m

Expected runtime of operations is O(1 + E [X]) = O(1 + n/m)
Space-time tradeoff: larger m =⇒ lower expected runtime

Imdad ullah Khan (LUMS) Randomized Algorithms 7 / 30

Universal Hash Functions

A family of hash functions H is 2-universal iff for any x , y ∈x ̸=y U, if
h ∈ H is chosen uniformly at random, then Pr [h(x) = h(y)] ≤ 1/m

Desired properties from hashing

Small range (m) and fewer collisions
Easy to evaluate hash value for any key with small space complexity

Imdad ullah Khan (LUMS) Randomized Algorithms 8 / 30

Universal Hash Functions

Linear Congruential Generators for U = Z

Pick a prime number p > m
For any two integers a and b (1 ≤ a ≤ p − 1), (0 ≤ b ≤ p − 1)
A hash function ha,b : U 7→ [m] is defined as

ha,b(x) = [(ax + b) mod p] mod m

H := {ha,b : 1 ≤ a ≤ p − 1 , 0 ≤ b ≤ p − 1} is 2-universal

Picking a random h ∈ H amounts to picking random a and b

Imdad ullah Khan (LUMS) Randomized Algorithms 9 / 30

Data Streams

A data stream is a massive sequence of data

Too large to store (on disk, memory, cache, etc.)

Social media (twitter feed, foursquare checkins)

Web click stream analysis

Search Query Stream Analysis

Sensor data (weather, radars, cameras, IoT devices, energy data)

Network traffic (trajectories, source/destination pairs)

Financial Data

Satellite data feed

How to deal with such data?

What are the issues?

Imdad ullah Khan (LUMS) Randomized Algorithms 10 / 30

Characteristics of Data Stream

Huge volumes of continuous data, possibly infinite

Fast changing and requires fast, real-time response

Data stream captures nicely our data processing needs of today

Random access is expensive

Single scan algorithm (can only have one look)

Store only the summary of the data seen so far

Most stream data are pretty low-level or multidimensional in nature,
needs multi-level and multi-dimensional processing

Imdad ullah Khan (LUMS) Randomized Algorithms 11 / 30

Data Stream

Data items can be complex types
Documents (tweets, news articles)
Images
geo-located time-series
· · ·

To study basic algorithmic ideas we abstract away application-specific
details
Consider the data stream as a sequence of numbers

Imdad ullah Khan (LUMS) Randomized Algorithms 12 / 30

Stream Model of Computation

Motwani, PODS (2002)

Imdad ullah Khan (LUMS) Randomized Algorithms 13 / 30

Stream Model of Computation

Stream S := a1, a2, a3, . . . , am ▷ m may be unknown

Each ai ∈ [n]

Goal: Compute a function of the stream S (e.g. mean, median, number of
distinct elements, frequency moments..)

Subject to

Single pass, read each element of S only once sequentially
Per item processing time O(1)
Use memory polynomial in O(1/ϵ, 1/δ, log n)
Return (ϵ, δ)-randomized approximate solution

Imdad ullah Khan (LUMS) Randomized Algorithms 14 / 30

Data Stream: Synopsis

Fundamental Methodology: Keep a synopsis of the stream and answer
query based on it. Update synopsis after examining each item in O(1)

Synopsis: Succinct summary of the stream (so far) (poly-log bits)

Families of Synopsis

Sliding Window

Random Sample

Histogram

Wavelets

Sketch

Query Q

Application

. . .
a1 a2 a3 a4 am

Stream
Processing
Engine

ai ∈ [n]

Synopsis

Query
Processing
Engine

O(log n)

Imdad ullah Khan (LUMS) Randomized Algorithms 15 / 30

How to Tackle Massive Data Streams

A general and powerful technique: Sampling
Idea:

1 Keep a random sample of the data stream
2 Perform the computation on the sample
3 Extrapolate

Example: Compute the median of a data stream (How to extrapolate
in this case?)
Sampling Techniques: How to keep a random sample of a data
stream?

Imdad ullah Khan (LUMS) Randomized Algorithms 16 / 30

Random Sample

Keep a “representative” subset of the stream

Approximately compute query answer from sample (with appropriate
scaling etc.)

Random SampleStream elements in an arbitrary order

Imdad ullah Khan (LUMS) Randomized Algorithms 17 / 30

Random Sample from an Array

Sample a random element from array A of length n ▷ A[i] with prob 1/n

Generate a random number r ∈ [0, n] ▷ r ← rand()× n
Return A [⌈r⌉]

a1 a2 a4 a12a11

0 1 2 3 4 5 6 7 8 9 10 11 12

a3

r

Sample random element (by weight) from array A ▷ A[i] with prob. wi/W

Generate a random number r ∈ [0,
∑n

j=1 wi] ▷ r ← rand()×Wn
Return A [i] if Wi−1 ≤ r < Wi

a1 a2 a4 a12a11a3

w1

0 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12

r

w2 w3 w4 w11 w12

Wi =
∑i

j=1wj

Imdad ullah Khan (LUMS) Randomized Algorithms 18 / 30

Data Stream: Random Sample

Sample a random element from the stream S ▷ ai with prob. 1/m

If m is known, use algorithm for sampling from array. For unknown m

Algorithm : Reservoir Sampling (S)
R ← a1 ▷ R (reservoir) maintains the sample
for i ≥ 2 do

Pick ai with probability 1/i
Replace with current element in R

Prob. that ai is in the sample Rm (m: stream length or query time)
= Pr that ai was selected at time i︸ ︷︷ ︸

1

i

×Pr that ai survived in R until time m︸ ︷︷ ︸
m∏

j=i+1

(
1− 1

j

)

=
1

i
× i

i+ 1
× i+ 1

i+ 2
× i+ 2

i+ 3
× . . . × m− 2

m− 1
× m− 1

m
=

1

m

Imdad ullah Khan (LUMS) Randomized Algorithms 19 / 30

Data Stream: Random Sample

Sample k random elements from the stream S ▷ ai with prob. k/m

Algorithm : Reservoir Sampling (S, k)
R ← a1, a2, . . . , ak ▷ R (reservoir) maintains the sample
for i ≥ k + 1 do

Pick ai with probability k/i
If ai is picked, replace with it a randomly chosen element in R

Prob. that ai is in the sample Rm (m: stream length or query time)

= Pr that ai was selected at time i︸ ︷︷ ︸
k

i

×Pr that ai survived in R untill time m︸ ︷︷ ︸
m∏

j=i+1

(
1−

(
k

j
× 1

k

))

=
k

i
× i

i+ 1
× i+ 1

i+ 2
× i+ 2

i+ 3
× . . . × m− 2

m− 1
× m− 1

m
=

k

m

Imdad ullah Khan (LUMS) Randomized Algorithms 20 / 30

Data Stream: Linear Sketch

Sample is a general purpose synopsis
Process sample only – no advantage from observing the whole stream
Sketches are specific to a particular purpose (query)
Sketches benefit from the whole stream (though can’t save all)

A linear sketch interprets the stream as defining the frequency vector
Often we are interested in functions of the frequency vector from a stream

S : a1, a2, a3, a4, . . . , am

ai ∈ [n]

f1 f2 f3 fn. . .F :

fj = |{ai ∈ S : ai = j}| (frequency of j in S)

S : 2, 5, 6, 7, 8, 2, 1, 2, 7, 5, 5, 4, 2, 8, 8, 9, 5, 6, 4, 4, 2, 5, 5

. . .
1 2 3 n

F : 1 5 0

1 2 3 94 5 76 8

3 6 2 2 3 1

Imdad ullah Khan (LUMS) Randomized Algorithms 21 / 30

Stream: Frequency Moments

S = < a1, a2, a3, . . . , am > ai ∈ [n]

fi : frequency of i in S F = {f1, f2, . . . , fn}

F0 :=
n∑

i=1
f 0
i ▷ number of distinct elements

F1 :=
n∑

i=1
fi ▷ length of stream, m

F2 :=
n∑

i=1
f 2
i ▷ second frequency moment

Imdad ullah Khan (LUMS) Randomized Algorithms 22 / 30

Count-Min Sketch

Count-Min sketch (Cormode & Muthukrishnan 2005) for frequency estimates

Cannot store frequency of every elements

Store total frequency of random groups (elements in hash buckets)

Algorithm : Count-Min Sketch (k, ϵ, δ)
count← zeros(k) ▷ sketch consists of k integers

Pick a random h : [n] 7→ [k] from a 2-universal family H
On input ai

count[h(ai)]← count[h(ai)] + 1 ▷ increment count at index h(ai)

On query j ▷ query: F[j] =?

return count[h(j)]

Imdad ullah Khan (LUMS) Randomized Algorithms 23 / 30

Count-Min Sketch

Algorithm : Count-Min Sketch (k, ϵ, δ)
count← zeros(k) ▷ sketch consists of k integers
Pick a random h : [n] 7→ [k] from a 2-universal family H
On input ai

count[h(ai)]← count[h(ai)] + 1 ▷ increment count at index h(ai)

On query j ▷ query: F[j] =?
return count[h(j)]

S : 2, 5, 6, 7, 8, 2, 1, 2, 7, 5, 5, 4, 2, 8, 8, 9, 5, 6, 4, 4, 2, 5, 5

F :

count :

1 5 0

1 2 3 94 5 76 8

3 6 2 2 3 1

1 2 3

1 + 2 3 + 6
5 + 2
+3 + 1

Sketch

True
Frequencies

Mapping by

h : {1, 2, . . . , 8, 9} 7→ {1, 2, 3}

Imdad ullah Khan (LUMS) Randomized Algorithms 24 / 30

Count-Min Sketch

f1 f2 f3 fn. . .F :

fj = |{ai ∈ S : ai = j}| (frequency of j in S)

. . .
1 2 3 n

1 2 3 4 5

h(·)

f4

4

f1
+
fn

f3

f4

f2
++count

k = 2
ϵ

Large k means better estimate (smaller groups) but more space

f̃j : estimate for fj – output of algorithm

Imdad ullah Khan (LUMS) Randomized Algorithms 25 / 30

Count-Min Sketch
k = 2/ϵ

Large k means better estimate but more space
f̃j : estimate for fj – output of algorithm

Bounds on f̃j : (idea)
f1 f2 f3 fn. . .F :

fj = |{ai ∈ S : ai = j}| (frequency of j in S)

. . .
1 2 3 n

1 2 3 4 5

h(·)

f4

4

f1
+
fn

f3

f4

f2
++count

F
1 2 3 n

fr
eq
u
en

cy

.

. . .

h(·)

Bad caseGood case

Sketchcount :

Imdad ullah Khan (LUMS) Randomized Algorithms 26 / 30

Count-Min Sketch
k = 2/ϵ

Large k means better estimate but more space
f̃j : estimate for fj – output of algorithm

Bounds on f̃j : (idea)
f1 f2 f3 fn. . .F :

fj = |{ai ∈ S : ai = j}| (frequency of j in S)

. . .
1 2 3 n

1 2 3 4 5

h(·)

f4

4

f1
+
fn

f3

f4

f2
++count

1 f̃ ≥ fj
Other elements that hash to h(j) contribute to f̃j

2 Pr
[
f̃j ≤ fj + ϵ∥F∥1

]
≥ 1

2

Xj = f̃j − fj ▷ Excess in f̃j (error)
Xj =

∑
i∈[n]\j fi · 1h(i)=h(j) ▷ 1condition is indicator of condition

E (Xj) = E
(∑

i∈[n]\j

fi · 1h(i)=h(j)

)
=

∑
i∈[n]\j

fi ·
1
k ≤

∑
i∈[n]\j

∥F∥1 ·
ϵ

2

By Markov inequality we get the bound
Imdad ullah Khan (LUMS) Randomized Algorithms 27 / 30

Count-Min Sketch

Idea: Amplify the probability of the basic count-min sketch
Keep t over-estimates, t = log(1/δ), k = 2/ϵ and return their minimum
Unlikely that all t functions hash j with very frequent elements

Algorithm : Count-Min Sketch (k, ϵ, δ)
count← zeros(t × k) ▷ sketch consists of t rows of k integers

Pick t random functions h1, . . . , ht : [n] 7→ [k] from a 2-universal family
On input ai

for r = 1 to t do
count[r][hr (ai)]← count[r][hr (ai)] + 1

▷ increment count[r] at index hr (ai)

On query j ▷ query: F[j] =?
return min

1≤r≤t
count[r][hr (j)]

Imdad ullah Khan (LUMS) Randomized Algorithms 28 / 30

Count-Min Sketch

1

2

3

9

4

5

7

6

8

1

2

3

1

2

3

h1(·)h2(·) S : 2, 5, 6, 7, 8, 2, 1, 2, 7, 5, 5, 4, 2, 8, 8, 9, 5, 6, 4, 4, 2, 5, 5

count :

1 2 3

0 + 1 + 2 3 + 6
5 + 2
+3 + 1

Sketch

h1(·)

h2(·)
1 + 5 + 6 3 + 3 + 10 + 2 + 2

F : 1 5 0

1 2 3 94 5 76 8

3 6 2 2 3 1
True
Frequencies

1 2 3 k
count[1][·] +1
count[2][·] +1
count[3][·] +1

...
count[t][·] +1

ht(a)h1(a)

On input a

On query a mini count[i][hi(a)]

Imdad ullah Khan (LUMS) Randomized Algorithms 29 / 30

Count-Min Sketch

1 f̃j ≥ fj
For every r , other elements that hash to hr (j) contribute to f̃j

2 f̃j ≤ fj + ϵ∥F∥1 with probability at least 1− δ

Xjr : contribution of other elements to Count[r][hr (j)]

Pr
[
Xjr ≥ ϵ∥F∥1

]
≤ 1

2 for k = 2/ϵ

The event f̃j ≥ fj + ϵ∥F∥1 is ∀ 1 ≤ r ≤ t Xjr ≥ ϵ∥F∥1

Pr
[
∀ r Xjr ≥ ϵ∥F∥1

]
≤

(1
2
)t

t = log(1
δ) =⇒ Pr

[
∀ r Xjr ≥ ϵ∥F∥1

]
≤

(1
2
)log 1/δ = δ

Count-Min sketch is an (ϵ∥F∥1, δ)-additive approximation algorithm
Space required is k · t integers = O(1/ϵ log(1/δ) log n) (plus constant)

Imdad ullah Khan (LUMS) Randomized Algorithms 30 / 30

