Randomized Algorithms

- Deterministic and (Las Vegas & Monte Carlo) Randomized Algorithms
- Probability Review
- Probabilistic Analysis of deterministic QUICK-SORT Algorithm
- RANDOMIZED-SELECT and RANDOMIZED-QUICK-SORT
- Max-Cut
- Min-Cut
- MAX-3-SAT and Derandomization
- Closest pair
- Hashing, Bloom filters, Streams, Sampling, Reservoir sampling, Sketch

Imdad ullah Khan

Given n points in a plane, find a pair of points with minimum Euclidean distance between them

For
$$p_i = (x_i, y_i)$$
 and $p_j = (x_j, y_j)$

$$d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

can be computed in O(1)

Applications: Computer graphics, computer vision, geographic information systems, molecular modeling, air traffic control

Brute force Algorithm:

FINDMIN among all $\binom{n}{2}$ pairwise distances

 $\triangleright O(n^2)$ comparisons

Closest Pair of Points Problem

Input: $P = \{p_1, p_2, \dots, p_n\}$: a set of n distinct points in \mathbb{R}^2

Output: A pair of distinct points in P that minimizes the d(p,q)

1-dimensional space:

- 1 Sort points $\triangleright O(n \log n)$
- 2 Find closest adjacent points $\triangleright O(n)$

2-dimensional space:

■ Divide and Conquer Algorithm

 $\triangleright O(n \log n)$

Randomized Algorithm for Closest Pair

Input: $P = \{p_1, p_2, \dots, p_n\}$: a set of n distinct points in \mathbb{R}^2

Output: A pair of distinct points in P that minimizes the d(p,q)

Assumptions

■ All points are in the unit square $0 \le x_i, y_i \le 1$

 \triangleright WLOG

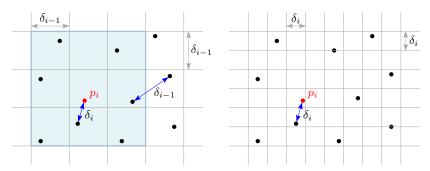
■ Distance between each pair of points is distinct

A Randomized Incremental Algorithm

- Let $P = \{p_1, p_2, \dots, p_n\}$ be a fixed random order
- lacksquare $S_i = \{p_1, p_2, \cdots, p_i\}$: the first i points in P
- δ_i : the distance of the closest pair in S_i

 \triangleright need δ_n

- Idea is to begin with S_2 lay out a grid G with cell size $\delta_2 imes \delta_2$
- For i = 3 to n insert point p_i in G incrementally
- In each step, update G cell size if $\delta_i < \delta_{i-1}$



A Randomized Incremental Algorithm: Implementation

- Given δ_{i-1} , how can we compute δ_i ?
 - $\delta_i = \min d(p_i, p_j) \ \forall \ j$ in the neighborhood of p_i if $d(p_i, p_j) < \delta_{i-1}$ \Rightarrow Why? Distance between p_i and points outside adjacent cells of p_i is at least δ_{i-1} by construction
- What operations do we need for the grid structure?
 - BUILD-GRID (S, δ) : build grid G with cell size δ & insert all points in S
 - INSERT-POINT(p_i): insert p_i
 - LOCATE-CELL (p_i) : return cell containing p_i
 - GET-POINTS(c): return points in cell c
- Use hashing to implement grid so operations take O(1) time
 - Key universe is IDs of all cells in the grid
 - Actual key space is the IDs of cells containing points
 - Point co-ordinates are the data for each key
 - Cell containing p_i is located at in grid $([x_i/\delta_{i-1}], [y_i/\delta_{i-1}])$

A Randomized Incremental Algorithm: Runtime

Algorithm Randomized Closest Pair: returns distance

A Randomized Incremental Algorithm: Runtime

■ Given S_i , $\delta_i < \delta_{i-1}$ when $p_i \in C$ for any permutation of S_i

$$Pr[\delta_i < \delta_{i-1}|S_i] = \frac{2(i-1)!}{i!} = \frac{2}{i}$$

■ The $\binom{n}{i}$ choices of S_i are equally likely $\implies \sum_{j \in \binom{n}{i}} Pr[S_{i_j}] = 1$

$$Pr[\delta_i < \delta_{i-1}] = \sum_{j \in \binom{n}{i}} Pr[\delta_i < \delta_{i-1}|S_{i_j}] \cdot Pr[S_{i_j}] = \frac{2}{i} \sum_{j \in \binom{n}{i}} Pr[S_{i_j}] = \frac{2}{i}$$

- Let X_i be the runtime of iteration i
- $E[X_i] = O(1) + O(i) \cdot Pr[\delta_i < \delta_{i-1}] = O(1) + O(i) \cdot 2/i = O(1)$

$$E[X] = \sum_{i=1}^{n} E[X_i] = O(n)$$