Algorithms

Randomized Algorithms

- Deterministic and (Las Vegas \& Monte Carlo) Randomized Algorithms
- Probability Review
- Probabilistic Analysis of deterministic QUICK-SORT Algorithm

■ RANDOMIZED-SELECT and RANDOMIZED-QUICK-SORT

- Max-Cut
- Min-Cut
- max-3-sat and Derandomization
- Closest pair
- Hashing, Bloom filters, Streams, Sampling, Reservoir sampling, Sketch

Imdad ullah Khan

Closest Pair of Points Problem

Given n points in a plane, find a pair of points with minimum Euclidean distance between them

For $p_{i}=\left(x_{i}, y_{i}\right)$ and $p_{j}=\left(x_{j}, y_{j}\right)$

$$
d\left(p_{i}, p_{j}\right)=\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}
$$

can be computed in $O(1)$

Applications: Computer graphics, computer vision, geographic information systems, molecular modeling, air traffic control

Brute force Algorithm:

FINDMIN among all $\binom{n}{2}$ pairwise distances $\triangleright O\left(n^{2}\right)$ comparisons

Closest Pair of Points Problem

Input: $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$: a set of n distinct points in \mathbb{R}^{2}
Output: A pair of distinct points in P that minimizes the $d(p, q)$

1-dimensional space:
1 Sort points

$$
\triangleright O(n \log n)
$$

2 Find closest adjacent points
$\triangleright O(n)$

2-dimensional space:
■ Divide and Conquer Algorithm
$\triangleright O(n \log n)$

Randomized Algorithm for Closest Pair

Input: $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$: a set of n distinct points in \mathbb{R}^{2}
Output: A pair of distinct points in P that minimizes the $d(p, q)$

Assumptions

■ All points are in the unit square $0 \leq x_{i}, y_{i} \leq 1$
$\triangleright \mathrm{WLOG}$

■ Distance between each pair of points is distinct

A Randomized Incremental Algorithm

■ Let $P=\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$ be a fixed random order
$\square S_{i}=\left\{p_{1}, p_{2}, \cdots, p_{i}\right\}$: the first i points in P

- δ_{i} : the distance of the closest pair in S_{i}

■ Idea is to begin with S_{2} lay out a grid G with cell size $\delta_{2} \times \delta_{2}$
■ For $i=3$ to n insert point p_{i} in G incrementally
■ In each step, update G cell size if $\delta_{i}<\delta_{i-1}$

A Randomized Incremental Algorithm: Implementation

■ Given δ_{i-1}, how can we compute δ_{i} ?

- $\delta_{i}=\min d\left(p_{i}, p_{j}\right) \forall j$ in the neighborhood of p_{i} if $d\left(p_{i}, p_{j}\right)<\delta_{i-1}$
\triangleright Why? Distance between p_{i} and points outside adjacent cells of p_{i} is at least δ_{i-1} by construction

■ What operations do we need for the grid structure?

- BUILD-GRID (S, δ) : build grid G with cell size $\delta \&$ insert all points in S
- InSERT-POINT $\left(p_{i}\right)$: insert p_{i}
- LOCATE-CELL $\left(p_{i}\right)$: return cell containing p_{i}
- GET-Points(c): return points in cell c

■ Use hashing to implement grid so operations take $O(1)$ time

- Key universe is IDs of all cells in the grid
- Actual key space is the IDs of cells containing points
- Point co-ordinates are the data for each key
- Cell containing p_{i} is located at in grid $\left(\left\lfloor x_{i} / \delta_{i-1}\right\rfloor,\left\lfloor y_{i} / \delta_{i-1}\right\rfloor\right)$

A Randomized Incremental Algorithm: Runtime

Algorithm Randomized Closest Pair: returns distance

```
function Closest-Pair \((P)\)
    \(\left\{p_{1}, p_{2}, \cdots, p_{n}\right\} \leftarrow\) RANDOM-PERMUTATION \((P)\)
    \(S_{2} \leftarrow\left\{p_{1}, p_{2}\right\}\)
    \(G \leftarrow \operatorname{BUILD-GRID}\left(S, \delta_{2}\right)\)
    for \(i=3 \rightarrow n\) do
        \(S_{i} \leftarrow S_{i-1} \cup p_{i}\)
        \(\triangleright O(1)\)
        Compute \(\delta_{i}\)
        if \(\delta_{i}<\delta_{i-1}\) then G.build-Grid \(\left(S, \delta_{i}\right)\)
                            \(\triangleright O(1)\)
    \(\triangleright O(i)\)
        else
            G.insert-Point \(\left(p_{i}\right)\)
                            \(\triangleright O(1)\)
    return \(\delta_{n}\)
```


A Randomized Incremental Algorithm: Runtime

- Given $S_{i}, \delta_{i}<\delta_{i-1}$ when $p_{i} \in C$ for any permutation of S_{i}

$$
\operatorname{Pr}\left[\delta_{i}<\delta_{i-1} \mid S_{i}\right]=\frac{2(i-1)!}{i!}=\frac{2}{i}
$$

- The $\binom{n}{i}$ choices of S_{i} are equally likely $\Longrightarrow \sum_{j \in\binom{n}{i}} \operatorname{Pr}\left[S_{i_{j}}\right]=1$

$$
\operatorname{Pr}\left[\delta_{i}<\delta_{i-1}\right]=\sum_{j \in\binom{n}{i}} \operatorname{Pr}\left[\delta_{i}<\delta_{i-1} \mid S_{i j}\right] \cdot \operatorname{Pr}\left[S_{i j}\right]=\frac{2}{i} \sum_{j \in\binom{n}{i}} \operatorname{Pr}\left[S_{i j}\right]=\frac{2}{i}
$$

- Let X_{i} be the runtime of iteration i
- $E\left[X_{i}\right]=O(1)+O(i) \cdot \operatorname{Pr}\left[\delta_{i}<\delta_{i-1}\right]=O(1)+O(i) \cdot 2 / i=O(1)$

$$
E[X]=\sum_{i=1}^{n} E\left[X_{i}\right]=O(n)
$$

