Algorithms

Randomized Algorithms

- Deterministic and (Las Vegas \& Monte Carlo) Randomized Algorithms
- Probability Review
- Probabilistic Analysis of deterministic QUICK-SORT Algorithm
- RANDOMIZED-SELECT and RANDOMIZED-QUICK-SORT
- Max-Cut
- Min-Cut
- MAX-3-SAT and Derandomization
- Closest pair
- Hashing, Bloom filters, Streams, Sampling, Reservoir sampling, Sketch

> Imdad ullah Khan

The MAX-3-SAT Problem

- Given n Boolean variables x_{1}, \ldots, x_{n}
- Each can take a value of $0 / 1$ (true/false)
- A literal is a variable appearing in some formula as x_{i} or \bar{x}_{i}
- A clause of size 3 is an OR of three literals
- A 3-CNF formula is AND of one or more clauses of size ≤ 3
- A formula is satisfiable if there is an assignment of $0 / 1$ values to the variables such that the formula evaluates to 1 (or true)

3-SAT (f) problem: Is there a satisfying assignment for 3-CNF formula f ?

MAX-3-SAT (f) problem: Find an assignment for 3-CNF formula f that satisfies the maximum number of clauses
MAX-3-SAT

MAX-3-SAT (f) problem: Find an assignment for 3-CNF formula f that satisfies the maximum number of clauses

- The problem is NP-Hard

■ Brute Force: Try all 2^{n} possible assignments in $\mathcal{O}\left(m 2^{n}\right)$
$\triangleright m$ is the number of clauses

MAX-3-SAT

MAX-3-SAT (f) problem: Find an assignment for 3-CNF formula f that satisfies the maximum number of clauses

Randomized Algorithm
Simple Idea: Toss a coin, and independently set each variable to true with probability $1 / 2$

What is the expected number of clauses satisfied by a random assignment?

MAX-3-SAT

A random assignment to variables satisfies in expectation $7 \mathrm{~m} / 8$ clauses of a 3 -CNF formula f with m clauses

Let Z_{j} be the random variable $\quad Z_{j}= \begin{cases}1 & \text { if clause } C_{j} \text { is satisfied } \\ 0 & \text { otherwise }\end{cases}$
$E\left[Z_{j}\right]=\operatorname{Pr}\left[C_{j}\right.$ is satisfied $]=1-\operatorname{Pr}\left[C_{j}\right.$ is not satisfied $]$
C_{j} is not satisfied when all literals in C_{j} are set to FALSE (independently)
Thus, $\operatorname{Pr}\left[C_{j}\right.$ is not satisfied $]=(1 / 2)^{3}=1 / 8 \quad \triangleright E\left[Z_{j}\right]=7 / 8$
Let Z be the number of clauses satisfied by the random assignment

$$
E[Z]=\sum_{j=1}^{m} E\left[Z_{j}\right]=\sum_{j=1}^{m} \frac{7}{8}=\frac{7 m}{8} \quad \triangleright \text { linearity of expectation }
$$

MAX-3-SAT Las Vegas 7/8-Approximation

For any instance of MAX-3-SAT with m clauses, there exists a truth assignment which satisfies at least $7 \mathrm{~m} / 8$ clauses

There is a non-zero probability that a random variable takes the value of its expectation
\triangleright Pigeon-hole principle of expectation

$$
\operatorname{Pr}[Z \geq E[Z]]>0
$$

Probabilistic Method:

Prove the existence of a non-obvious property by showing that a random construction produces it with positive probability

MAX-3-SAT Las Vegas (7/8)-Approximation

Is there a $7 / 8$ Las Vegas approximation algorithm for MAX-3-SAT?

- guaranteed to find an assignment satisfying at least $7 \mathrm{~m} / 8$ clauses
- expected runtime is polynomial

Standard trick: Repeatedly generate a random assignment A to variables until A satisfies at least $7 \mathrm{~m} / 8$ clauses

Suppose $\operatorname{Pr}[A$ satisfies $\geq 7 m / 8$ clauses $] \geq p$
Then, expected number of trials to find this assignment is $1 / p$
\triangleright Expectation of geometric random variable

If p is polynomial, then expected running time is polynomial

MAX-3-SAT Las Vegas (7/8)-Approximation

Probability p that a random assignment satisfies $\geq 7 \mathrm{~m} / 8$ clauses is $\geq 1 / 8 \mathrm{~m}$
p_{j} : probability that the random assignment satisfies exactly j clauses

$$
\triangleright j=1,2, \cdots, m
$$

Lower bound on p using $E[Z]=7 m / 8$

$$
\begin{gathered}
E[Z]=\sum_{j=0}^{m} j p_{j}=\sum_{j<\frac{7 m}{8}} j p_{j}+\sum_{j \geq \frac{7 m}{8}} j p_{j} \leq \frac{7 m-1}{8} \sum_{j<\frac{7 m}{8}} p_{j}+m \sum_{j \geq \frac{7 m}{8}} p_{j} \\
\Longrightarrow E[Z] \leq \frac{7 m-1}{8} \cdot 1+m \cdot p \Longrightarrow \frac{7 m}{8} \leq \frac{7 m-1}{8}+m p \Longrightarrow p \geq \frac{1}{8 m}
\end{gathered}
$$

MAX-3-SAT cannot be approximated in polynomial time to within a ratio greater than $7 / 8$, unless $\mathrm{P}=\mathrm{NP} \quad \triangleright$ [Hástad 1997]

MAX-3-SAT: Derandomization

Random choices by an algorithm sometimes happen to be 'good'
\triangleright i.e. the out the randomized algorithm is close to the optimal
Can these 'good' choices be made deterministically?
Derandomization: Transforming a randomized algorithm into a deterministic algorithm

Can the 7/8-approx Las Vegas Algorithm for maX-3-sat be derandomized?

How do we know which set of choices for variable assignments is 'good'?
i.e. satisfies greater number of clauses

Idea: Consider the choice for each variable (True/False) one by one

MAX-3-SAT : Derandomization

Let Z be the number of clauses satisfied
Given assignments for the "first i " variables $x_{1}=a_{1} \cdots, x_{i}=a_{i}$, the expected value of Z with random assignment of the unassigned variables x_{i+1}, \cdots, x_{n} can be computed in polynomial time

Given assignment to a variable, for each clause C_{j} if the corresponding literal evaluates to

- FALSE, then remove it from C_{j}

■ TRUE, then ignore the clause as it is satisfied
Conditional expectation of Z is the unconditional expectation of Z in the reduced set of clauses plus the number of already satisfied clauses

This yields a polynomial time deterministic algorithm for MAX-3-SAT

MAX-3-SAT : Derandomization

Let Z be the number of clauses satisfied
1 Fix an order of variables $x_{1}, x_{2}, \cdots, x_{n}$
2 For $i=1$ to n, If

$$
E\left[Z \mid x_{1}=a_{1}, \cdot \cdot, x_{i-1}=a_{i-1}, x_{i}=\text { TRUE }\right]>E\left[Z \mid x_{1}=a_{1}, \cdot \cdot, x_{i-1}=a_{i-1}, x_{i}=\text { FALSE }\right]
$$

- then set x_{i} to TRUE
- else set x_{i} to FALSE

■ Since $E\left[Z \mid x_{1}=a_{1}, \cdots, x_{i}=a_{i}\right] \geq E[Z] \quad$ for $\quad 1 \leq i \leq n$

- And $E[Z]=7 \mathrm{~m} / 8$
- Thus, $E\left[Z \mid x_{1}=a_{1}, \cdots, x_{i}=a_{i}\right] \geq 7 m / 8$

Derandomized algorithm satisfies at least $7 \mathrm{~m} / 8$ clauses.

