Algorithms

Randomized Algorithms

m Deterministic and (Las Vegas & Monte Carlo) Randomized Algorithms
m Probability Review

m Probabilistic Analysis of deterministic QUICK-SORT Algorithm

B RANDOMIZED-SELECT and RANDOMIZED-QUICK-SORT

m Max-Cut

m Min-Cut

B MAX-3-SAT and Derandomization

m Closest pair

m Hashing, Bloom filters, Streams, Sampling, Reservoir sampling, Sketch
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Cuts in Graphs

Cuts in graphs are useful structures

Application in network flows, statistical physics, circuit design,
complexity and approximation theory

A cut in G is a subset S C V )

Denoted as [S, 5]

S =0 and S =V are trivial cuts, we assume that ) # S # V
A graph on n vertices has 2" cuts

An edge (u, v) is crossing the cut [S,S], ifueSandveS
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The MIN-CUT(G) problem

A cutin G is a subset S C V )

m Denoted as [S,S]
m An edge (u, v) is crossing the cut [S,S], ifueSandveS

Size (or cost) of a cut in the number of crossing edges J

A cut of size 3 A min cut of size 2
. .

m In weighted graph size of cut is the sum of weights of crossing edges

The MIN-CUT(G) problem: Find a cut in G of minimum size? J
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The MIN-CUT(G) problem

A cutin G is asubset S C V )

m Denoted as [S,S]
m An edge (u, v) is crossing the cut [S,S], ifueSandveS

Size (or cost) of a cut in the number of crossing edges J

m Min cut does not have to be unique

m size of min-cut is at most the minimum degree of any vertex
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Global Min-Cut

The MIN-CUT(G) problem: Find a cut in G of minimum size? J

Also called Global Min-Cut

Min-cut has applications in network reliability and robustness analysis

=< <==P

The network on the left is easier to disconnect

Normalized min-cut spectral clustering applied to image segmentation
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Global Min-Cut: Image Segmentation

Separate foreground from background (e.g Aircraft/missile from horizon)
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Global Min-Cut: Image Segmentation

Separate foreground from background (e.g Aircraft/missile from horizon)

If pixel (x,y) is background/foreground, then so are nearby pixels
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Global Min-Cut: Image Segmentation

Separate foreground from background (e.g Aircraft/missile from the sky)
If pixel (x,y) is background/foreground, then so are nearby pixels

Make a graph with nodes for each pixel adjacent to neighboring pixels
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Global Min-Cut: Image Segmentation

Separate foreground from background (e.g Aircraft/missile from the sky)
If pixel (x,y) is background/foreground, then so are nearby pixels

Make a graph with nodes for each pixel adjacent to neighboring pixels

-
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Global Min-Cut: Image Segmentation

Separate foreground from background (e.g Aircraft/missile from the sky)
If pixel (x,y) is background/foreground, then so are nearby pixels

Make a graph with nodes for each pixel adjacent to neighboring pixels
weight of edge (7,/) is pjj a penalty of classifying i and j differently

pjj is a “similarity measure” determined by image processing
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Global Min-Cut: Image Segmentation

Separate foreground from background (e.g Aircraft/missile from the sky)
If pixel (x,y) is background/foreground, then so are nearby pixels

Make a graph with nodes for each pixel adjacent to neighboring pixels
weight of edge (7,/) is pjj a penalty of classifying i and j differently

pjj is a “similarity measure” determined by image processing
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Global Min-Cut: Image Segmentation

Separate foreground from background (e.g Aircraft/missile from the sky)
If pixel (x,y) is background/foreground, then so are nearby pixels

Make a graph with nodes for each pixel adjacent to neighboring pixels
weight of edge (7,/) is pjj a penalty of classifying i and j differently

pjj is a “similarity measure” determined by image processing
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Find a min-cut in this weighted graph
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Global Min-Cut using min s — t cut

Maximum s — t flow in G is equal to minimum s — t cut J

m Value of the mincut is minimum over all possible s — t cuts in G
m Brute Force Solution: compute min s — t cut for all pairs of V

m O(n?) calls to min s — t cut (max s — t flow) solver

B O(n? - m-|fmaxl) > FORD-FULKERSON algorithm
m O(n®-n-m?) > EDMOND-KARP algorithm
m O(n? - n?-m) > DINIC's or push-relabel algorithm

m Smarter approach: A fixed node s must appear in one of S or S.
Fix s and find min s — t cut for all t € V

m Only O(n) calls to min s — t cut (max s — t flow) solver
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Algorithms for Min-Cut

Many deterministic algorithms have been proposed

m Stoer-Wagner O(nm + n? log m) time algorithm
m We study a simple randomized algorithm by Karger

m And an elegant extension of it due to Karger and Stein

These algorithms are based on the Edge Contraction Operation
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Types of Graphs: PseudoGraphs and Multigraphs

m PseudoGraphs m Multigraphs
G=(V,E) G=(V,E)
V is set of vertices V is set of vertices
E is set of edges E is multi-set of edges
(self loops allowed) may have self loops too

C—
L d
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Edge Contraction

Contraction of an edge (u,v) in G constructs a graph G \ uv

m u and v become one vertex uv
m edge (u, v) becomes a self-loop (we remove it)

m All edges incident on u or v become incident on uv

The resulting graph may become a multigraph (we keep all edges)

CONTRACT
(e,d) de
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Edge Contraction

Contraction of an edge (u,v) in G constructs a graph G \ uv

m u and v become one vertex uv
m edge (u, v) becomes a self-loop (we remove it)

m All edges incident on u or v become incident on uv

The resulting graph may become a multigraph (we keep all edges)
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Edge Contraction

Contraction of an edge (u,v) in G constructs a graph G \ uv

m u and v become one vertex uv
m edge (u, v) becomes a self-loop (we remove it)

m All edges incident on u or v become incident on uv

The resulting graph may become a multigraph (we keep all edges)

CONTRACT
(a,bg)
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Edge Contraction

Contraction of an edge (u,v) in G constructs a graph G \ uv

m v and v become one vertex uv
m edge (u, v) becomes a self-loop (we remove it)
m All edges incident on u or v become incident on uv

The resulting graph may become a multigraph (we keep all edges)

a 4 I A g I
o CONTRACT
(e, d) de
d
b b

> Multigraphs can be saved with multiplicity as edge weight
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Edge Contraction: Runtime

Edge contraction can be performed in O(n) time

m Merge adjacency lists of u and v

m Adjacency lists of other vertices can be updated in O(n) time (if we
keep corresponding pointers at entries of adjacency lists)

OO0 v
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Edge Contraction

m Contraction of an edge (u, v) in G makes multigraph G\ uv

m u, v merged into uv, edges incident on u or v become incident on uv

CONTRACT

(e.d)

What happens to min cut after contraction?
> If the min-cut in G is of size 10, can G \ uv have min cut of size 97

m The min cut in G\ uv is at least as large as min cut in G
m Because any cut in G\ uv is "actually” a cut in G too

m The converse is not necessarily true

Edge contraction increases min cut if the edge is in all possible min cuts
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Karger's Algorithm

Algorithm : Karger's algorithm for mincut (G)

while there are more than two vertices left in G do
Pick a random edge e = (u, v)
G+ G\ uv

return G > the cut induced by the remaining two (super)nodes

S ialaded

A run of Karger algorithm that produces a sub-optimal cut (with 3 edges)
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Karger's Algorithm

Algorithm : Karger's algorithm for mincut (G)

while there are more than two vertices left in G do
Pick a random edge e = (u, v)

G+ G\ uv
return G > the cut induced by the remaining two (super)nodes
Y\
-~ A
' ~ ®

A run of Karger algorithm that produces an optimal cut (with 2 edges)
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Karger's Algorithm: Runtime

Algorithm : Karger's algorithm for mincut (G)

while there are more than two vertices left in G do
Pick a random edge e = (u, v)
G+ G\ uv

return G > the cut induced by the remaining two (super)nodes

m With the right data structure a contraction can be done in O(n)
m Each contraction reduces the number of vertices by 1
m Number of contraction is n — 2

m Total runtime is O(n?)
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Karger's Algorithm: Analysis

The intuition:

m Let C =[S, 5] be a specific cut
m If during the execution some edge in C is contracted, the algorithm
will not output the cut C

m If (u,v) € C < u€ SAvESis contracted, then u and v will belong
to the same supernode and (u, v) cannot be a crossing edge

m The algorithm will output C if it never contracts any edge in C

Among all cuts, min-cuts have the least probability of having an edge

contracted
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Karger's Algorithm: Analysis

Let Go = (Vo, Eo) = G = (V,E) > Vil =n;, |E| = m;
For 0<i<n-—2, G;=(V;E): graph after ith contraction > nj=n—i

Let C =[S, 5] be a (specific) min-cut of size k

Every vertex has degree > k — mg > km/2 > .- C is a min-cut of size k J

C has survived up to G;, = m; > kni/2 = k(n-1)/> J

Pr[C is “killed" in 1st round] = Pr[an edge in C is contracted] = k/my < 2/n,
Pr[C survives in 1st round] = Pr[no edge in C is contracted] > 1 — 2/n,
Pr[C survives in (i + 1)th round | C survived so far] = 1 — k/m; > 1 —2/n—

Pr[C survives all rounds] = H;:o3 Pr[C survives round i + 1 | C survived so far]

Pr[C survives all rounds] = Pr[C is the output] = 7:_03 n=iz2
: 2 n=3 _ n-4 2,1 2 "
Pr[C is the output] > "5 X 7=3 X 7=5 X ... X 7 X 3 = ) = 1(5)
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Karger's Algorithm: Analysis

Let GoZ(V(),Eo):G:(V,E) > |V0|:n,\E0|:m

Let C =[S, S] be a (specific) min-cut of size k
Pr[C is the output] ~ 1/n?

This probability is very small is it?

m There are 2™ cuts, many of them min-cuts, we find one of the
min-cuts with probability 1/n?

m With repeated trials, we amplify the probability to any desired value
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Karger's Algorithm: Analysis

Let GoZ(Vo,Eo):G:(V,E) > \V0|:n,\E0|:m
Let C = [S,S] be a (specific) min-cut of size k

Pr[C is the output] ~ 1/

m With repeated trials, we amplify the probability to any desired value

Algorithm Good-Min-Cut(G, M) Algorithm Min-Cut (G)

Run MIN-CUT(G) M times while more than two vertices left in G do
Return smallest of these M cuts Pick a random edge e = (u, v)
G+ G\ uv
return G
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Karger's Algorithm: Analysis

Let GOI(VQ,Eo):GI(V,E) > |V0|:n, |E0|:m

C=1[5,5] : a (specific) min-cut of size k > Pr[C is the output] ~ 1/n?

Algorithm Good-Min-Cut(G, M) Algorithm Min-Cut (G)

Run MIN-CUT(G) M times while more than two vertices left in G do
Return smallest of these M cuts Pick a random edge e = (u, v)
G+ G\ uv
return G
Prlall M runs fail to output C] = [];_; Pr[Run i fails] < (1-— 1/n2)M

VxeR (14+x) < & > A very useful inequalityJ

Pr[coop-MIN-CUT(G, M) fails to output C] < "/~

M = cn’logn = Pr[cooD-MIN-CUT(G, M) outputs C] > 1 —1/n

Runtime is O(n* log n)

IMDAD ULLAH KHAN (LUMS) Randomized Algorithms 29/38



Karger-Stein Algorithm

Algorithm Good-Min-Cut(G, M) Algorithm : Min-Cut (G)

Run MIN-CUT(G) M times while more than two vertices left in G do
Return smallest of these M cuts Pick a random edge e = (u,v)
G+ G\ uv
return G

Pr[C is “killed" in round 1] = Pr[an edge in C is contracted] = k/m, < 2/n
Pr[C is “killed" in round 2 | C survived round 1] = k/m; < 2/n—1

Pr[C is “killed" in rond (i + 1)| C survived so far] = k/m; < 2/n—i
Pr[C is “killed" in rond (n — 3)| C survived so far] < 2/s
Pr[C is “killed" in rond (n —2)| C survived so far] < 2/3

Bound on probability of wrong contraction increases in each round
As G gets smaller, repeat increasingly many times to reduce the error probability
> do not waste time repeating the first “few” iterations
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Karger-Stein Algorithm

Algorithm Fast-Cut(G) Algorithm Contract (G, t)
if n <6 then function CONTRACT(G, t)
return Min-cut (via brute force) while more than t vertices left in G do
t <+ [1+1/v2] Pick a random edge e = (u, v)
H: + CONTRACT(G, t) G+ G\ uv

H, + cONTRACT(G, t)

Ci + FAST-CUT(Hh)

G + FAST-CUT(Ho)
return smaller of G; and G,

return G

m Two independent randomly contracted graphs H; and H, from G
m When H; and H, are small, make 4 random contractions

m and so on

m When graph has less 6 vertices, return min among all ~ 2° cuts

m Now we cannot chase a fixed minimum cut C, as both X; and X5 could be
min cuts (if successful) and we may choose either
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Karger-Stein Algorithm

Algorithm Fast-Cut(G) Algorithm Contract (G, t)
if n <6 then function CONTRACT(G, t)
return Min-cut (via brute force) while more than t vertices left in G do
t <+ [1+1/v2] Pick a random edge e = (u, v)
H: + CONTRACT(G, t) G+ G\ uv

H, + cONTRACT(G, t)

Ci + FAST-CUT(Hh)

G + FAST-CUT(Ho)
return smaller of G; and G,

return G

Let T(n) be runtime of FAST-cUT(G) with |V(G)| = n

2T (n/v2) + O(n?) ifn>6
0(1) else

T(n) = O(n?logn) > master theorem
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Karger-Stein Algorithm: Quality

function FAST-CUT(G)
if n <6 then Algorithm Contract (G, t)
return Min-cut (brute force)

function CONTRACT(G, t)

1:
2
3
4t [1+7/v2] while more than t vertices left in G do
5: Hh ¢ CONTRACT(G, t) Pick a random edge e = (u, v)
6:  H, < CONTRACT(G, t)
G+ G\ uv
7: G « FAST-CUT(Hh)
8: G ¢ FAST-CUT(H>) return G
9 return smaller of G; and G

FAST-CUT(G) succeeds iff

m A min-cut survives the CONTRACT(G, t) step
m At least one of the FAST-cUT(H;) and @
FAST-CUT(H>) finds a min-cut G &)
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Karger-Stein Algorithm: Quality

FAST-CUT(G) succeeds iff

m A min-cut survives the CONTRACT(G, t) step

m At least one of the FAST-CUT(H;) and

1:
2
3
4:
5:
6.
FAST-CUT(H>) finds a min-cut g
9

Probability a min cut survive CONTRACT(G, t) step

function FAST-CUT(G)
if n <6 then
return Min-cut
t <+ [1+41/v2]
Hi + CONTRACT(G, t)
H, + coNTRACT(G, t)
(1 + FAST-CUT(H1)
G, + FAST-CUT(Ha)
return MIN of C; and G

> line 5&6

t—1 t(t—1)

t+2 t+1 = n(n—1)

~ 1/ >t ="/v2

Prla cut survives n — t contractions] = [ 2==2
i=0
Prla cut survives n — t contractions] = =2 x ... x
Pr[a cut survives n — t contractions] = t(t=1)/n(n—1)
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Karger-Stein Algorithm: Quality

function FAST-CUT(G)
if n <6 then
return Min-cut
t <+ [141/v2]

1:
FAST-CUT(G) succeeds iff 2
3
4:
5:  H; < CONTRACT(G, t)
6.
7
8
9

m A min-cut survives the CONTRACT(G, t) step

H, + coNTRACT(G, t)
(1 + FAST-CUT(H1)

G, + FAST-CUT(Ha)
return MIN of C; and G

m At least one of the FAST-CUT(H;) and
FAST-CUT(H>) finds a min-cut

P(j) : prob that FAST-cUT(H) finds min-cut if |V (H)| = j

m A min-cut survives in H; (line 5) > Prob: 1/2

E;Zg?g'{l;fl}/(g])at m AND G is a min-cut in H; (line 7) > Prob: P(t)
succeeds: OR

P(n) m A min-cut survives in H, (line 6) > Prob: 1/2

m AND G; is a min-cut in H, (line 8) > Prob: P(t)
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Karger-Stein Algorithm: Quality

P(j) : prob that FAsT-cUT(H) finds min-cut if |V(H)| =

- m A min-cut survives in Hy (line 5) > Prob: 1/2
Probability that m AND G is a min-cut in H; (line 7) > Prob: P(t)
FAST-CUT(G)
succeeds OR

P(n) m A min-cut survives in H, (line 6) > Prob: 1/2
m AND G is a min-cut in H> (line 8) > Prob: P(t)

A min-cut survives in H; (line 5/6)

AND C; is min-cut in H; (line 7/8) 2 P

Pr[Branch-i succeeds] = Pr

Pr[Branch-i fails] = 1 —1/2P(t) Pr[Both Branches fail] = (1 — 1/2P(t))?

Pr[Algo succeeds] = Pr[NOT Both Branches fail] > 1 — (1 —1/2P(t))?
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Karger-Stein Algorithm: Quality

P(j) : prob that FAsT-cUT(H) finds min-cut if |V(H)| =

. _ A min-cut survives in H; (line 5/6) _ 1
Pr{Branch-i succeeds] = Pr | AND ¢, is min-cut in H; (line 7/8) | — 2 7 ()
Pr[Branch-i fails] = 1 — 1/2P(t) Pr[Both Branches fail] = (1 — 1/2P(t))?

Pr[Algo succeeds] = Pr[NOT Both Branches fail] > 1 — (1 —12P(t))?

P(n) = 1-(1=1%2P(1))* = 1—(1—12P(7/v2))* = Q(Yiogn)

Easily proved via induction
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Karger-Stein Algorithm: Quality

m FAST-CUT(G) takes O(n?log n) times not much worse than O(n?)
initial version

m Has a success probability €(1/logn) much better than Q(1/n?) of initial
version

m The initial version amplified by n? log n independent trial had runtime
O(n*log n) and success probability (1 — 1/r¢)

m FAST-CUT(G) amplified by clog? n independent trial has runtime
O(n? log® n) and success probability Q(1 — 1/n°)
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