Algorithms

Randomized Algorithms

- Deterministic and (Las Vegas \& Monte Carlo) Randomized Algorithms
- Probability Review
- Probabilistic Analysis of deterministic QUICK-SORT Algorithm

■ RANDOMIZED-SELECT and RANDOMIZED-QUICK-SORT

- Max-Cut
- Min-Cut
- max-3-SAT and Derandomization
- Closest pair
- Hashing, Bloom filters, Streams, Sampling, Reservoir sampling, Sketch

Imdad ullah Khan

Cuts in Graphs

- Cuts in graphs are useful structures
- Application in network flows, statistical physics, circuit design, complexity and approximation theory

A cut in G is a subset $S \subset V$

- Denoted as $[S, \bar{S}]$
- $S=\emptyset$ and $S=V$ are trivial cuts, we assume that $\emptyset \neq S \neq V$
- A graph on n vertices has 2^{n} cuts
- An edge (u, v) is crossing the cut $[S, \bar{S}]$, if $u \in S$ and $v \in \bar{S}$

The min-CUT(G) problem

A cut in G is a subset $S \subset V$

- Denoted as $[S, \bar{S}]$
- An edge (u, v) is crossing the cut $[S, \bar{S}]$, if $u \in S$ and $v \in \bar{S}$

Size (or cost) of a cut in the number of crossing edges

■ In weighted graph size of cut is the sum of weights of crossing edges

The min-Cut (G) problem: Find a cut in G of minimum size?

The min-CuT(G) problem

A cut in G is a subset $S \subset V$

■ Denoted as $[S, \bar{S}]$

- An edge (u, v) is crossing the cut $[S, \bar{S}]$, if $u \in S$ and $v \in \bar{S}$

Size (or cost) of a cut in the number of crossing edges

- Min cut does not have to be unique
- size of min-cut is at most the minimum degree of any vertex

Global Min-Cut

The min-cut (G) problem: Find a cut in G of minimum size?

Also called Global Min-Cut

Min-cut has applications in network reliability and robustness analysis

The network on the left is easier to disconnect
Normalized min-cut spectral clustering applied to image segmentation

Global Min-Cut: Image Segmentation

Separate foreground from background (e.g Aircraft/missile from horizon)

https://stackonerflow.comp/

Global Min-Cut: Image Segmentation

Separate foreground from background (e.g Aircraft/missile from horizon) If pixel (x, y) is background/foreground, then so are nearby pixels

Global Min-Cut: Image Segmentation

Separate foreground from background (e.g Aircraft/missile from the sky) If pixel (x, y) is background/foreground, then so are nearby pixels Make a graph with nodes for each pixel adjacent to neighboring pixels

Global Min-Cut: Image Segmentation

Separate foreground from background (e.g Aircraft/missile from the sky) If pixel (x, y) is background/foreground, then so are nearby pixels Make a graph with nodes for each pixel adjacent to neighboring pixels

Global Min-Cut: Image Segmentation

Separate foreground from background (e.g Aircraft/missile from the sky) If pixel (x, y) is background/foreground, then so are nearby pixels Make a graph with nodes for each pixel adjacent to neighboring pixels weight of edge (i, j) is $p_{i j}$ a penalty of classifying i and j differently $p_{i j}$ is a "similarity measure" determined by image processing

Global Min-Cut: Image Segmentation

Separate foreground from background (e.g Aircraft/missile from the sky) If pixel (x, y) is background/foreground, then so are nearby pixels Make a graph with nodes for each pixel adjacent to neighboring pixels weight of edge (i, j) is $p_{i j}$ a penalty of classifying i and j differently $p_{i j}$ is a "similarity measure" determined by image processing

Global Min-Cut: Image Segmentation

Separate foreground from background (e.g Aircraft/missile from the sky) If pixel (x, y) is background/foreground, then so are nearby pixels Make a graph with nodes for each pixel adjacent to neighboring pixels weight of edge (i, j) is $p_{i j}$ a penalty of classifying i and j differently $p_{i j}$ is a "similarity measure" determined by image processing

Find a min-cut in this weighted graph

Global Min-Cut using min $s-t$ cut

Maximum $s-t$ flow in G is equal to minimum $s-t$ cut

- Value of the mincut is minimum over all possible $s-t$ cuts in G
- Brute Force Solution: compute min $s-t$ cut for all pairs of V
- $O\left(n^{2}\right)$ calls to min $s-t$ cut (max $s-t$ flow) solver
- $O\left(n^{2} \cdot m \cdot\left|f_{\max }\right|\right)$
\triangleright FORD-FULKERSON algorithm
■ $O\left(n^{2} \cdot n \cdot m^{2}\right) \quad \triangleright$ EDMOND-KARP algorithm
- $O\left(n^{2} \cdot n^{2} \cdot m\right)$ \triangleright DINIC's or push-relabel algorithm
- Smarter approach: A fixed node s must appear in one of S or \bar{S}. Fix s and find $\min s-t$ cut for all $t \in V$
- Only $O(n)$ calls to $\min s-t$ cut (max $s-t$ flow) solver

Algorithms for Min-Cut

Many deterministic algorithms have been proposed

- Stoer-Wagner $O\left(n m+n^{2} \log m\right)$ time algorithm
- We study a simple randomized algorithm by Karger

■ And an elegant extension of it due to Karger and Stein

These algorithms are based on the Edge Contraction Operation

Types of Graphs: PseudoGraphs and Multigraphs

- PseudoGraphs
$G=(V, E)$
V is set of vertices
E is set of edges
(self loops allowed)

■ Multigraphs
$G=(V, E)$
V is set of vertices
E is multi-set of edges
may have self loops too

Edge Contraction

Contraction of an edge (u, v) in G constructs a graph $G \backslash u v$

- u and v become one vertex $u v$
- edge (u, v) becomes a self-loop (we remove it)

■ All edges incident on u or v become incident on $u v$
The resulting graph may become a multigraph (we keep all edges)

CONTRACT
(e, d)

Edge Contraction

Contraction of an edge (u, v) in G constructs a graph $G \backslash u v$

- u and v become one vertex $u v$

■ edge (u, v) becomes a self-loop (we remove it)
■ All edges incident on u or v become incident on $u v$
The resulting graph may become a multigraph (we keep all edges)

Edge Contraction

Contraction of an edge (u, v) in G constructs a graph $G \backslash u v$

- u and v become one vertex $u v$

■ edge (u, v) becomes a self-loop (we remove it)
■ All edges incident on u or v become incident on $u v$
The resulting graph may become a multigraph (we keep all edges)

CONTRACT
($a, b g$)

Edge Contraction

Contraction of an edge (u, v) in G constructs a graph $G \backslash u v$

- u and v become one vertex $u v$
- edge (u, v) becomes a self-loop (we remove it)
- All edges incident on u or v become incident on $u v$

The resulting graph may become a multigraph (we keep all edges)

\triangleright Multigraphs can be saved with multiplicity as edge weight

Edge Contraction: Runtime

Edge contraction can be performed in $O(n)$ time

- Merge adjacency lists of u and v

■ Adjacency lists of other vertices can be updated in $O(n)$ time (if we keep corresponding pointers at entries of adjacency lists)

Edge Contraction

- Contraction of an edge (u, v) in G makes multigraph $G \backslash u v$
$\square u, v$ merged into $u v$, edges incident on u or v become incident on $u v$

What happens to min cut after contraction?

$$
\triangleright \text { If the min-cut in } G \text { is of size } 10 \text {, can } G \backslash u v \text { have min cut of size } 9 \text { ? }
$$

■ The min cut in $G \backslash u v$ is at least as large as min cut in G

- Because any cut in $G \backslash u v$ is "actually" a cut in G too
- The converse is not necessarily true

Edge contraction increases min cut if the edge is in all possible min cuts

Karger's Algorithm

Algorithm : Karger's algorithm for mincut (G)
while there are more than two vertices left in G do
Pick a random edge $e=(u, v)$

$$
G \leftarrow G \backslash u v
$$

return G
\triangleright the cut induced by the remaining two (super)nodes

A run of Karger algorithm that produces a sub-optimal cut (with 3 edges)

Karger's Algorithm

Algorithm : Karger's algorithm for mincut (G)
while there are more than two vertices left in G do
Pick a random edge $e=(u, v)$

$$
G \leftarrow G \backslash u v
$$

return G
\triangleright the cut induced by the remaining two (super)nodes

A run of Karger algorithm that produces an optimal cut (with 2 edges)

Karger's Algorithm: Runtime

Algorithm : Karger's algorithm for mincut (G)
while there are more than two vertices left in G do
Pick a random edge $e=(u, v)$
$G \leftarrow G \backslash u v$
return $G \quad \triangleright$ the cut induced by the remaining two (super)nodes

- With the right data structure a contraction can be done in $O(n)$
- Each contraction reduces the number of vertices by 1
- Number of contraction is $n-2$
- Total runtime is $O\left(n^{2}\right)$

Karger's Algorithm: Analysis

The intuition:

- Let $C=[S, \bar{S}]$ be a specific cut
- If during the execution some edge in C is contracted, the algorithm will not output the cut C
- If $(u, v) \in C \leftrightarrow u \in S \wedge v \in \bar{S}$ is contracted, then u and v will belong to the same supernode and (u, v) cannot be a crossing edge
- The algorithm will output C if it never contracts any edge in C

Among all cuts, min-cuts have the least probability of having an edge contracted

Karger's Algorithm: Analysis

Let $G_{0}=\left(V_{0}, E_{0}\right)=G=(V, E)$
$\triangleright\left|V_{i}\right|=n_{i},\left|E_{i}\right|=m_{i}$
For $0 \leq i \leq n-2, G_{i}=\left(V_{i}, E_{i}\right):$ graph after i th contraction $\quad \triangleright n_{i}=n-i$ Let $C=[S, \bar{S}]$ be a (specific) min-cut of size k

Every vertex has degree $\geq k \Longrightarrow m_{0} \geq k n_{0} / 2 \quad \triangleright \because C$ is a min-cut of size k
C has survived up to $G_{i}, \Longrightarrow m_{i} \geq k n_{i} / 2=k(n-1) / 2$
$\operatorname{Pr}[C$ is "killed" in 1st round $]=\operatorname{Pr}[$ an edge in C is contracted $]=k / m_{0} \leq 2 / n_{0}$
$\operatorname{Pr}[C$ survives in 1st round $]=\operatorname{Pr}[$ no edge in C is contracted $] \geq 1-2 / n_{0}$
$\operatorname{Pr}[C$ survives in $(i+1)$ th round $\mid C$ survived so far $]=1-k / m_{i} \geq 1-2 / n-i$
$\operatorname{Pr}[C$ survives all rounds $]=\prod_{i=0}^{n-3} \operatorname{Pr}[C$ survives round $i+1 \mid C$ survived so far $]$
$\operatorname{Pr}[C$ survives all rounds $]=\operatorname{Pr}[C$ is the output $]=\prod_{i=0}^{n-3} \frac{n-i-2}{n-i}$
$\operatorname{Pr}[C$ is the output $] \geq \frac{n-2}{n} \times \frac{n-3}{n-1} \times \frac{n-4}{n-2} \times \ldots \times \frac{2}{4} \times \frac{1}{3}=\frac{2}{n(n-1)}=1 /\binom{n}{2}$

Karger's Algorithm: Analysis

Let $G_{0}=\left(V_{0}, E_{0}\right)=G=(V, E)$

$$
\triangleright\left|V_{0}\right|=n,\left|E_{0}\right|=m
$$

Let $C=[S, \bar{S}]$ be a (specific) min-cut of size k

$$
\operatorname{Pr}[C \text { is the output }] \simeq 1 / n^{2}
$$

This probability is very small is it?

- There are 2^{m} cuts, many of them min-cuts, we find one of the min-cuts with probability $1 / n^{2}$

■ With repeated trials, we amplify the probability to any desired value

Karger's Algorithm: Analysis

Let $G_{0}=\left(V_{0}, E_{0}\right)=G=(V, E)$

$$
\triangleright\left|V_{0}\right|=n,\left|E_{0}\right|=m
$$

Let $C=[S, \bar{S}]$ be a (specific) min-cut of size k

$$
\operatorname{Pr}[C \text { is the output }] \simeq 1 / n^{2}
$$

■ With repeated trials, we amplify the probability to any desired value

Algorithm Good-Min-Cut(G, M)
 Run Min-Cut(G) M times
 Return smallest of these M cuts

Algorithm Min-Cut (G)

while more than two vertices left in G do
Pick a random edge $e=(u, v)$

$$
G \leftarrow G \backslash u v
$$

return G

Karger's Algorithm: Analysis

Let $G_{0}=\left(V_{0}, E_{0}\right)=G=(V, E)$
$C=[S, \bar{S}]:$ a (specific) min-cut of size k

$$
\triangleright\left|V_{0}\right|=n,\left|E_{0}\right|=m
$$

$\triangleright \operatorname{Pr}[C$ is the output $] \simeq 1 / n^{2}$

Algorithm Good-Min-Cut(G, M)
Run Min-Cut(G) M times
Return smallest of these M cuts

Algorithm Min-Cut (G)

while more than two vertices left in G do
Pick a random edge $e=(u, v)$
$G \leftarrow G \backslash u v$
return G
$\operatorname{Pr}[$ all M runs fail to output $C]=\prod_{i=1}^{n} \operatorname{Pr}[$ Run i fails $] \leq\left(1-1 / n^{2}\right)^{M}$

$$
\forall x \in \mathbb{R}(1+x)<e^{x}
$$

$\triangleright A$ very useful inequality
$\operatorname{Pr}[$ GOOD-MIN-CUT (G, M) fails to output $C] \leq e^{M / n^{2}}$
$M=c n^{2} \log n \Longrightarrow \operatorname{Pr}[$ GOOD-Min-CUT (G, M) outputs $C] \geq 1-1 / n^{c}$
Runtime is $O\left(n^{4} \log n\right)$

Karger-Stein Algorithm

Algorithm Good-Min-Cut(G, M)

Run Min-Cut(G) M times
Return smallest of these M cuts

Algorithm : Min-Cut (G)

while more than two vertices left in G do Pick a random edge $e=(u, v)$ $G \leftarrow G \backslash u v$
return G
$\operatorname{Pr}[C$ is "killed" in round 1$]=\operatorname{Pr}[$ an edge in C is contracted $]=k / m_{0} \leq 2 / n$
$\operatorname{Pr}[C$ is "killed" in round $2 \mid C$ survived round 1$]=k / m_{1} \leq 2 / n-1$
$\operatorname{Pr}[C$ is "killed" in rond $(i+1) \mid C$ survived so far $]=k / m_{i} \leq 2 / n-i$
$\operatorname{Pr}[C$ is "killed" in rond $(n-3) \mid C$ survived so far $] \leq 2 / 4$
$\operatorname{Pr}[C$ is "killed" in rond $(n-2) \mid C$ survived so far $] \leq 2 / 3$
Bound on probability of wrong contraction increases in each round
As G gets smaller, repeat increasingly many times to reduce the error probability
\triangleright do not waste time repeating the first "few" iterations

Karger-Stein Algorithm

Algorithm Fast-Cut(G)
if $n \leq 6$ then
return Min-cut (via brute force)
$t \leftarrow\lceil 1+n / \sqrt{2}\rceil$
$H_{1} \leftarrow \operatorname{Contract}(G, t)$
$H_{2} \leftarrow \operatorname{Contract}(G, t)$
$C_{1} \leftarrow \operatorname{FAST}-\operatorname{CuT}\left(H_{1}\right)$
$C_{2} \leftarrow \operatorname{FAST}-\operatorname{CUT}\left(H_{2}\right)$
return smaller of C_{1} and C_{2}

Algorithm Contract (G, t)
function CONTRACT (G, t) while more than t vertices left in G do

Pick a random edge $e=(u, v)$ $G \leftarrow G \backslash u v$
return G

- Two independent randomly contracted graphs H_{1} and H_{2} from G
- When H_{1} and H_{2} are small, make 4 random contractions
- and so on
- When graph has less 6 vertices, return min among all $\sim 2^{5}$ cuts
- Now we cannot chase a fixed minimum cut C, as both X_{1} and X_{2} could be min cuts (if successful) and we may choose either

Karger-Stein Algorithm

Algorithm Fast-Cut(G)
if $n \leq 6$ then
return Min-cut (via brute force)
$t \leftarrow\lceil 1+n / \sqrt{2}\rceil$
$H_{1} \leftarrow \operatorname{Contract}(G, t)$
$H_{2} \leftarrow \operatorname{Contract}(G, t)$
$\mathrm{C}_{1} \leftarrow \operatorname{FAST}-\operatorname{CuT}\left(H_{1}\right)$
$\mathrm{C}_{2} \leftarrow \operatorname{FAST}-\operatorname{CuT}\left(\mathrm{H}_{2}\right)$
return smaller of C_{1} and C_{2}

Algorithm Contract (G, t)
function Contract (G, t) while more than t vertices left in G do

Pick a random edge $e=(u, v)$ $G \leftarrow G \backslash u v$
return G

Let $T(n)$ be runtime of $\operatorname{FAST}-\operatorname{CUT}(G)$ with $|V(G)|=n$

$$
T(n)= \begin{cases}2 T(n / \sqrt{2})+O\left(n^{2}\right) & \text { if } n>6 \\ O(1) & \text { else }\end{cases}
$$

$$
\mathbf{T}(\mathbf{n})=\mathbf{O}\left(\mathbf{n}^{2} \log \mathbf{n}\right)
$$

\triangleright master theorem

Karger-Stein Algorithm: Quality

1: function FAST-CUT(G)
2: if $n \leq 6$ then
3: return Min-cut (brute force)
4: $\quad t \leftarrow\lceil 1+n / \sqrt{2}\rceil$
5: $\quad H_{1} \leftarrow \operatorname{Contract}(G, t)$
6: $\quad H_{2} \leftarrow \operatorname{CONTRACT}(G, t)$
7: $\quad C_{1} \leftarrow \operatorname{FAST}-\operatorname{CuT}\left(H_{1}\right)$
8: $\quad C_{2} \leftarrow \operatorname{FAST}-\operatorname{CuT}\left(H_{2}\right)$
9: return smaller of C_{1} and C_{2}

Algorithm Contract (G, t)
function CONTRACT (G, t)
while more than t vertices left in G do
Pick a random edge $e=(u, v)$
$G \leftarrow G \backslash u v$
return G

FAST-CUT(G) succeeds iff

- A min-cut survives the CONTRACT (G, t) step
- At least one of the $\operatorname{FAST}-\operatorname{Cut}\left(H_{1}\right)$ and $\operatorname{FAST}-\operatorname{CuT}\left(\mathrm{H}_{2}\right)$ finds a min-cut

Karger-Stein Algorithm: Quality

FAST-CUT (G) succeeds iff

1:	function FAST-CUT (G)
2:	if $n \leq 6$ then
3:	return Min-cut
4:	$t \leftarrow\lceil 1+n / \sqrt{2}\rceil$
5:	$H_{1} \leftarrow \operatorname{CONTRACT}(G, t)$
6:	$H_{2} \leftarrow \operatorname{ConTRACT}(G, t)$
7:	$C_{1} \leftarrow \operatorname{FAST-CUT}\left(H_{1}\right)$
8:	$C_{2} \leftarrow \operatorname{FAST-CUT}\left(H_{2}\right)$
9:	return MIN of C_{1} and C_{2}

Probability a min cut survive $\operatorname{CONTRACT}(G, t)$ step
\triangleright line $5 \& 6$
$\operatorname{Pr}[$ a cut survives $n-t$ contractions $]=\prod_{i=0}^{n-t-1} \frac{n-i-2}{n-i}$
$\operatorname{Pr}\left[\right.$ a cut survives $n-t$ contractions] $=\frac{n-2}{n} \times \ldots \times \frac{t}{t+2} \times \frac{t-1}{t+1}=\frac{t(t-1)}{n(n-1)}$
$\operatorname{Pr}[$ a cut survives $n-t$ contractions $]=t(t-1) / n(n-1) \simeq 1 / 2$
$\triangleright t=n / \sqrt{2}$

Karger-Stein Algorithm: Quality

FAST-CUT (G) succeeds iff

1:	function FAST-CUT (G)
2:	if $n \leq 6$ then
3:	return Min-cut
4:	$t \leftarrow\lceil 1+n / \sqrt{2}\rceil$
5:	$H_{1} \leftarrow \operatorname{CONTRACT}(G, t)$
6:	$H_{2} \leftarrow \operatorname{CONTRACT}(G, t)$
7:	$C_{1} \leftarrow \operatorname{FAST-CUT}\left(H_{1}\right)$
8:	$C_{2} \leftarrow \operatorname{FAST-CUT}\left(H_{2}\right)$
9:	return MIN of C_{1} and C_{2}

$P(j):$ prob that FAST-CUT (H) finds min-cut if $|V(H)|=j$

- A min-cut survives in H_{1} (line 5)
\triangleright Prob: 1/2
Probability that fast-Cut(G) succeeds:
- AND C_{1} is a min-cut in H_{1} (line 7) \triangleright Prob: $P(t)$

OR

$P(n)$

- A min-cut survives in H_{2} (line 6)
\triangleright Prob: 1/2
- AND C_{2} is a min-cut in H_{2} (line 8)
\triangleright Prob: $P(t)$

Karger-Stein Algorithm: Quality

$P(j)$: prob that FAST-CUT (H) finds min-cut if $|V(H)|=j$

- A min-cut survives in H_{1} (line 5)
- AND C_{1} is a min-cut in H_{1} (line 7)
- Prob: 1/2

Probability that FAST-CUT(G) succeeds
$\mathbf{P (n)}$

OR

- A min-cut survives in H_{2} (line 6)
\triangleright Prob: 1/2
- AND C_{2} is a min-cut in H_{2} (line 8)
$\operatorname{Pr}[$ Branch-i succeeds $]=\operatorname{Pr}\left[\begin{array}{l}\text { A min-cut survives in } H_{i}(\text { line 5/6) } \\ \text { AND } C_{i} \text { is min-cut in } H_{i}(\text { line } 7 / 8)\end{array}\right]=\frac{1}{2} \cdot P(t)$
$\operatorname{Pr}[$ Branch-i fails $]=1-1 / 2 P(t) \quad \operatorname{Pr}[$ Both Branches fail $]=(1-1 / 2 P(t))^{2}$
$\operatorname{Pr}[$ Algo succeeds $]=\operatorname{Pr}\left[\right.$ NOT Both Branches fail] $\geq 1-(1-1 / 2 P(t))^{2}$

Karger-Stein Algorithm: Quality

$P(j)$: prob that FAST-CUT (H) finds min-cut if $|V(H)|=j$
$\operatorname{Pr}[$ Branch-i succeeds $]=\operatorname{Pr}\left[\begin{array}{l}\text { A min-cut survives in } H_{i}(\text { line 5/6) } \\ \text { AND } C_{i} \text { is min-cut in } H_{i}(\text { line } 7 / 8)\end{array}\right]=\frac{1}{2} \cdot P(t)$
$\operatorname{Pr}[$ Branch-i fails $]=1-1 / 2 P(t) \quad \operatorname{Pr}[$ Both Branches fail $]=(1-1 / 2 P(t))^{2}$
$\operatorname{Pr}[$ Algo succeeds $]=\operatorname{Pr}\left[\right.$ NOT Both Branches fail] $\geq 1-(1-1 / 2 P(t))^{2}$

$$
P(n) \geq 1-(1-1 / 2 P(t))^{2}=1-(1-1 / 2 P(n / \sqrt{2}))^{2}=\Omega(1 / \log n)
$$

Easily proved via induction

Karger-Stein Algorithm: Quality

- FAST-CUT (G) takes $O\left(n^{2} \log n\right)$ times not much worse than $O\left(n^{2}\right)$ initial version

■ Has a success probability $\Omega(1 / \log n)$ much better than $\Omega\left(1 / n^{2}\right)$ of initial version

- The initial version amplified by $n^{2} \log n$ independent trial had runtime $O\left(n^{4} \log n\right)$ and success probability $\Omega\left(1-1 / n^{c}\right)$
- FAST-CUT (G) amplified by $c \log ^{2} n$ independent trial has runtime $O\left(n^{2} \log ^{3} n\right)$ and success probability $\Omega\left(1-1 / n^{c}\right)$

