Randomized Algorithms

- Deterministic and (Las Vegas & Monte Carlo) Randomized Algorithms
- Probability Review
- Probabilistic Analysis of deterministic QUICK-SORT Algorithm
- RANDOMIZED-SELECT and RANDOMIZED-QUICK-SORT
- Max-Cut
- Min-Cut
- MAX-3-SAT and Derandomization
- Closest pair
- Hashing, Bloom filters, Streams, Sampling, Reservoir sampling, Sketch

Imdad ullah Khan

Cuts in Graphs

- Cuts in graphs are useful structures
- Application in network flows, statistical physics, circuit design, complexity and approximation theory

A cut in G is a subset $S \subset V$

- Denoted as $[S, \overline{S}]$
- $S = \emptyset$ and S = V are trivial cuts, we assume that $\emptyset \neq S \neq V$
- A graph on n vertices has 2ⁿ cuts
- An edge (u, v) is crossing the cut $[S, \overline{S}]$, if $u \in S$ and $v \in \overline{S}$

The MIN-CUT(G) problem

A cut in G is a subset $S \subset V$

- Denoted as $[S, \overline{S}]$
- An edge (u, v) is crossing the cut $[S, \overline{S}]$, if $u \in S$ and $v \in \overline{S}$

Size (or cost) of a cut in the number of crossing edges

In weighted graph size of cut is the sum of weights of crossing edges

The MIN-CUT(G) problem: Find a cut in G of minimum size?

IMDAD ULLAH KHAN (LUMS)

Randomized Algorithms

The MIN-CUT(G) problem

A cut in G is a subset $S \subset V$

- Denoted as $[S, \overline{S}]$
- An edge (u, v) is crossing the cut $[S, \overline{S}]$, if $u \in S$ and $v \in \overline{S}$

Size (or cost) of a cut in the number of crossing edges

- Min cut does not have to be unique
- size of min-cut is at most the minimum degree of any vertex

The MIN-CUT(G) problem: Find a cut in G of minimum size?

Also called Global Min-Cut

Min-cut has applications in network reliability and robustness analysis

The network on the left is easier to disconnect

Normalized min-cut spectral clustering applied to image segmentation

Separate foreground from background (e.g Aircraft/missile from horizon)

IMDAD ULLAH KHAN (LUMS)

Separate foreground from background (e.g Aircraft/missile from horizon) If pixel (x, y) is background/foreground, then so are nearby pixels

Separate foreground from background (e.g Aircraft/missile from the sky) If pixel (x, y) is background/foreground, then so are nearby pixels Make a graph with nodes for each pixel adjacent to neighboring pixels

•	•	•	٠	•	•	•	•	•
•	•	•	•	٠	•	•	•	•
•	•	•	•	•	٠	•	•	•
٠	٠	٠	٠	•	•	•	٠	•
٠	٠	٠	٠	•	•	•	٠	•
•	٠	٠	٠	•	•	•	•	•
•	٠	•	٠	٠	٠	•	٠	٠
•	•	•	٠	•	٠	•	•	•

Separate foreground from background (e.g Aircraft/missile from the sky) If pixel (x, y) is background/foreground, then so are nearby pixels Make a graph with nodes for each pixel adjacent to neighboring pixels

Separate foreground from background (e.g Aircraft/missile from the sky) If pixel (x, y) is background/foreground, then so are nearby pixels Make a graph with nodes for each pixel adjacent to neighboring pixels weight of edge (i, j) is p_{ij} a penalty of classifying *i* and *j* differently p_{ij} is a "similarity measure" determined by image processing

Separate foreground from background (e.g Aircraft/missile from the sky) If pixel (x, y) is background/foreground, then so are nearby pixels Make a graph with nodes for each pixel adjacent to neighboring pixels weight of edge (i, j) is p_{ij} a penalty of classifying *i* and *j* differently p_{ij} is a "similarity measure" determined by image processing

Separate foreground from background (e.g Aircraft/missile from the sky) If pixel (x, y) is background/foreground, then so are nearby pixels Make a graph with nodes for each pixel adjacent to neighboring pixels weight of edge (i, j) is p_{ij} a penalty of classifying *i* and *j* differently p_{ij} is a "similarity measure" determined by image processing

Find a min-cut in this weighted graph

IMDAD ULLAH KHAN (LUMS)

Maximum s - t flow in G is equal to minimum s - t cut

- Value of the mincut is minimum over all possible s t cuts in G
- Brute Force Solution: compute min *s* − *t* cut for all pairs of *V*
- $O(n^2)$ calls to min s t cut (max s t flow) solver
 - $O(n^2 \cdot m \cdot |f_{max}|)$ \triangleright FORD-FULKERSON algorithm
 - $O(n^2 \cdot n \cdot m^2)$ > EDMOND-KARP algorithm
 - $O(n^2 \cdot n^2 \cdot m)$ \triangleright DINIC's or push-relabel algorithm
- Smarter approach: A fixed node *s* must appear in one of *S* or \overline{S} . Fix *s* and find min s - t cut for all $t \in V$
- Only O(n) calls to min s t cut (max s t flow) solver

Many deterministic algorithms have been proposed

- Stoer-Wagner $O(nm + n^2 \log m)$ time algorithm
- We study a simple randomized algorithm by Karger
- And an elegant extension of it due to Karger and Stein

These algorithms are based on the Edge Contraction Operation

PseudoGraphs

G = (V, E)

- V is set of vertices
- E is set of edges
- (self loops allowed)

Multigraphs

G = (V, E)

- V is set of vertices
- E is multi-set of edges

may have self loops too

Contraction of an edge (u, v) in *G* constructs a graph $G \setminus uv$

- *u* and *v* become one vertex *uv*
- edge (u, v) becomes a self-loop (we remove it)
- All edges incident on u or v become incident on uv

The resulting graph may become a multigraph (we keep all edges)

Contraction of an edge (u, v) in *G* constructs a graph $G \setminus uv$

- *u* and *v* become one vertex *uv*
- edge (u, v) becomes a self-loop (we remove it)
- All edges incident on u or v become incident on uv

The resulting graph may become a multigraph (we keep all edges)

Contraction of an edge (u, v) in *G* constructs a graph $G \setminus uv$

- *u* and *v* become one vertex *uv*
- edge (u, v) becomes a self-loop (we remove it)
- All edges incident on u or v become incident on uv

The resulting graph may become a multigraph (we keep all edges)

Edge Contraction

Contraction of an edge (u, v) in G constructs a graph $G \setminus uv$

- u and v become one vertex uv
- edge (u, v) becomes a self-loop (we remove it)
- All edges incident on u or v become incident on uv

The resulting graph may become a multigraph (we keep all edges)

> Multigraphs can be saved with multiplicity as edge weight

Edge Contraction: Runtime

Edge contraction can be performed in O(n) time

- Merge adjacency lists of u and v
- Adjacency lists of other vertices can be updated in O(n) time (if we keep corresponding pointers at entries of adjacency lists)

Edge Contraction

- Contraction of an edge (u, v) in G makes multigraph $G \setminus uv$
- u, v merged into uv, edges incident on u or v become incident on uv

What happens to min cut after contraction?

▷ If the min-cut in G is of size 10, can $G \setminus uv$ have min cut of size 9?

- The min cut in $G \setminus uv$ is at least as large as min cut in G
 - Because any cut in $G \setminus uv$ is "actually" a cut in G too
- The converse is not necessarily true

Edge contraction increases min cut if the edge is in all possible min cuts

Algorithm : Karger's algorithm for mincut (*G*)

while there are more than two vertices left in G do

Pick a random edge
$$e = (u, v)$$

$$G \leftarrow G \setminus uv$$

return G \triangleright the cut induced by the remaining two (super)nodes

A run of Karger algorithm that produces a sub-optimal cut (with 3 edges)

Algorithm : Karger's algorithm for mincut (*G*)

while there are more than two vertices left in G do

Pick a random edge
$$e = (u, v)$$

$$G \leftarrow G \setminus uv$$

return G \triangleright the cut induced by the remaining two (super)nodes

A run of Karger algorithm that produces an optimal cut (with 2 edges)

Algorithm : Karger's algorithm for mincut (G)while there are more than two vertices left in G doPick a random edge e = (u, v) $G \leftarrow G \setminus uv$ return G> the cut induced by the remaining two (super)nodes

- With the right data structure a contraction can be done in O(n)
- Each contraction reduces the number of vertices by 1
- Number of contraction is *n* − 2
- Total runtime is $O(n^2)$

The intuition:

- Let $C = [S, \overline{S}]$ be a specific cut
- If during the execution some edge in C is contracted, the algorithm will not output the cut C
 - If $(u, v) \in C \iff u \in S \land v \in \overline{S}$ is contracted, then *u* and *v* will belong to the same supernode and (u, v) cannot be a crossing edge
- The algorithm will output C if it never contracts any edge in C

Among all cuts, min-cuts have the least probability of having an edge contracted

Karger's Algorithm: Analysis

Let $G_0 = (V_0, E_0) = G = (V, E)$ $\triangleright |V_i| = n_i, |E_i| = m_i$ For $0 \le i \le n-2$, $G_i = (V_i, E_i)$: graph after *i*th contraction $\triangleright n_i = n - i$ Let $C = [S, \overline{S}]$ be a (specific) min-cut of size k

Every vertex has degree $\geq k \implies m_0 \geq \frac{kn_0}{2} \implies C$ is a min-cut of size k

C has survived up to G_i , $\implies m_i \geq \frac{kn_i}{2} = \frac{k(n-1)}{2}$

 $Pr[C \text{ is "killed" in 1st round}] = Pr[\text{an edge in } C \text{ is contracted}] = \frac{k}{m_0} \leq \frac{2}{n_0}$ $Pr[C \text{ survives in 1st round}] = Pr[\text{no edge in } C \text{ is contracted}] \geq 1 - \frac{2}{n_0}$ $Pr[C \text{ survives in } (i+1)\text{th round} \mid C \text{ survived so far}] = 1 - \frac{k}{m_i} \geq 1 - \frac{2}{n-i}$ $Pr[C \text{ survives all rounds}] = \prod_{i=0}^{n-3} Pr[C \text{ survives round } i+1 \mid C \text{ survived so far}]$ $Pr[C \text{ survives all rounds}] = Pr[C \text{ is the output}] = \prod_{i=0}^{n-3} \frac{n-i-2}{n-i}$ $Pr[C \text{ is the output}] \geq \frac{n-2}{n} \times \frac{n-3}{n-1} \times \frac{n-4}{n-2} \times \ldots \times \frac{2}{4} \times \frac{1}{3} = \frac{2}{n(n-1)} = \frac{1}{n} \binom{n}{2}$

Let $G_0 = (V_0, E_0) = G = (V, E)$ $\triangleright |V_0| = n, |E_0| = m$ Let $C = [S, \overline{S}]$ be a (specific) min-cut of size kPr[C is the output] $\simeq 1/n^2$

This probability is very small is it?

- There are 2^m cuts, many of them min-cuts, we find one of the min-cuts with probability 1/n²
- With repeated trials, we amplify the probability to any desired value

Karger's Algorithm: Analysis

Let $G_0 = (V_0, E_0) = G = (V, E)$ $\triangleright |V_0| = n, |E_0| = m$

Let $C = [S, \overline{S}]$ be a (specific) min-cut of size k

 $Pr[C \text{ is the output}] \simeq 1/n^2$

• With repeated trials, we amplify the probability to any desired value

Algorithm Min-Cut (G)		
while more than two vertices left in G do		
Pick a random edge $e = (u, v)$		
${\it G} \leftarrow {\it G} \setminus {\it uv}$		

return G

Karger's Algorithm: Analysis

ize <i>k</i>	\triangleright $Pr[C$ is the output] $\simeq 1/n^2$	
Algorithm	Min-Cut (<i>G</i>)	
while more than two vertices left in G do Pick a random edge $e = (u, v)$ $G \leftarrow G \setminus uv$		
return G		
	while more Pick a ra $G \leftarrow G$	

 $Pr[\text{all } M \text{ runs fail to output } C] = \prod_{i=1}^{n} Pr[\text{Run } i \text{ fails}] \leq (1 - 1/n^2)^{M}$

 $\forall x \in \mathbb{R} \ (1+x) < e^x$

▷ A very useful inequality

 $Pr[\text{GOOD-MIN-CUT}(G, M) \text{ fails to output } C] \leq e^{M/n^2}$

 $M = cn^2 \log n \implies Pr[\text{GOOD-MIN-CUT}(G, M) \text{ outputs } C] \ge 1 - 1/n^c$

Runtime is $O(n^4 \log n)$

IMDAD ULLAH KHAN (LUMS)

Algorithm Good-Min-Cut(G, M)	Algorithm : Min-Cut (G)				
Run MIN-CUT(G) M times	while more than two vertices left in G do				
Return smallest of these M cuts	Pick a random edge $e = (u, v)$				
	${\it G} \leftarrow {\it G} \setminus {\it uv}$				
	return G				
$Pr[C \text{ is "killed" in round 1}] = Pr[an edge in C is contracted}] = k/m_0 \leq 2/n$					
$Pr[C \text{ is "killed" in round 2} \mid C \text{ survived round 1}] = k/m_1 \leq 2/n-1$					
$Pr[C ext{ is "killed" in rond } (i+1) \ C ext{ survived so far}] = k/m_i \leq 2/n-i$					
$Pr[C ext{ is "killed" in rond } (n-3) C ext{ survived so far}] \leq 2/4$					
$Pr[C ext{ is "killed" in rond } (n-2) C ext{ survived so far}] \leq 2/3$					

Bound on probability of wrong contraction increases in each round As G gets smaller, repeat increasingly many times to reduce the error probability \triangleright do not waste time repeating the first "few" iterations

Algorithm Contract (G, t)		
function CONTRACT (G, t)		
while more than t vertices left		
Pick a random edge $e = (u,$		
$G \leftarrow G \setminus uv$		
return G		

- Two independent randomly contracted graphs H_1 and H_2 from G
- When H_1 and H_2 are small, make 4 random contractions
- and so on
- $\scriptstyle \blacksquare$ When graph has less 6 vertices, return min among all $\sim 2^5$ cuts
- Now we cannot chase a fixed minimum cut *C*, as both *X*₁ and *X*₂ could be min cuts (if successful) and we may choose either

in *G* **do** *v*) **Algorithm** Fast-Cut(*G*)

if $n \le 6$ then return Min-cut (via brute force) $t \leftarrow \lceil 1 + n/\sqrt{2} \rceil$ $H_1 \leftarrow \text{CONTRACT}(G, t)$ $H_2 \leftarrow \text{CONTRACT}(G, t)$ $C_1 \leftarrow \text{FAST-CUT}(H_1)$ $C_2 \leftarrow \text{FAST-CUT}(H_2)$ return smaller of C_1 and C_2 **Algorithm** Contract (*G*, *t*)

function CONTRACT(G, t) while more than t vertices left in G do Pick a random edge e = (u, v) $G \leftarrow G \setminus uv$ return G

Let T(n) be runtime of FAST-CUT(G) with |V(G)| = n

$$T(n) = \begin{cases} 2T(n/\sqrt{2}) + O(n^2) & \text{if } n > 6\\ O(1) & \text{else} \end{cases}$$

 $\mathbf{T}(\mathbf{n}) = \mathbf{O}(\mathbf{n}^2 \log \mathbf{n})$

▷ master theorem

Karger-Stein Algorithm: Quality

- 1: function FAST-CUT(G)
- 2: **if** $n \le 6$ **then**
- 3: return Min-cut (brute force)
- 4: $t \leftarrow \lceil 1 + n/\sqrt{2} \rceil$
- 5: $H_1 \leftarrow \text{CONTRACT}(G, t)$
- 6: $H_2 \leftarrow \text{CONTRACT}(G, t)$
- 7: $C_1 \leftarrow \text{Fast-cut}(H_1)$
- 8: $C_2 \leftarrow \text{Fast-cut}(H_2)$
- 9: return smaller of C_1 and C_2

AlgorithmContract (G, t)functionCONTRACT(G, t)while more than t vertices left in G doPick a random edge e = (u, v) $G \leftarrow G \setminus uv$ return G

FAST-CUT(G) succeeds iff

- A min-cut survives the CONTRACT(*G*, *t*) step
- At least one of the FAST-CUT(H₁) and FAST-CUT(H₂) finds a min-cut

FAST-CUT(G) succeeds iff

- A min-cut survives the CONTRACT(G, t) step
- At least one of the FAST-CUT(H_1) and FAST-CUT(H_2) finds a min-cut

- 1: function FAST-CUT(G)
- if n < 6 then 2:
- 3: return Min-cut

4:
$$t \leftarrow \lceil 1 + n/\sqrt{2} \rceil$$

5: $H_1 \leftarrow \text{CONTRAC}$

8

:
$$H_1 \leftarrow \text{CONTRACT}(G, t)$$

6: $H_2 \leftarrow \text{CONTRACT}(G, t)$

7:
$$C_1 \leftarrow \text{FAST-CUT}(H_1)$$

:
$$C_2 \leftarrow \text{FAST-CUT}(H_2)$$

9: **return** MIN of C_1 and C_2

Probability a min cut survive CONTRACT(G, t) step

⊳ line 5&6

 $Pr[a \text{ cut survives } n-t \text{ contractions}] = \prod_{n=1}^{n-t-1} \frac{n-t-2}{n-t}$

 $Pr[a \text{ cut survives } n-t \text{ contractions}] = \frac{n-2}{n} \times \ldots \times \frac{t}{t+2} \times \frac{t-1}{t+1} = \frac{t(t-1)}{n(n-1)}$

 $Pr[a \text{ cut survives } n-t \text{ contractions}] = \frac{t(t-1)}{n(n-1)} \simeq \frac{1}{2}$ $\triangleright t = n/\sqrt{2}$ FAST-CUT(G) succeeds iff

- A min-cut survives the CONTRACT(G, t) step
- At least one of the FAST-CUT(H_1) and FAST-CUT(H_2) finds a min-cut

- 1: function FAST-CUT(G)
- if n < 6 then 2:
- 3: return Min-cut

4:
$$t \leftarrow \lceil 1 + n/\sqrt{2} \rceil$$

- 5: $H_1 \leftarrow \text{CONTRACT}(G, t)$
- 6: $H_2 \leftarrow \text{CONTRACT}(G, t)$
- 7: $C_1 \leftarrow \text{FAST-CUT}(H_1)$

8:
$$C_2 \leftarrow \text{FAST-CUT}(H_2)$$

9: **return** MIN of C_1 and C_2

P(j): prob that FAST-CUT(H) finds min-cut if |V(H)| = j

• A min-cut survives in H_1 (line 5) \triangleright Prob: 1/2

Probability that FAST-CUT(G) succeeds: P(n)

AND C_1 is a min-cut in H_1 (line 7) \triangleright Prob: P(t)

OR

- A min-cut survives in H_2 (line 6) \triangleright Prob: 1/2
- **AND** C_2 is a min-cut in H_2 (line 8) \triangleright Prob: P(t)

Karger-Stein Algorithm: Quality

P(j): prob that FAST-CUT(H) finds min-cut if |V(H)| = j

Probability that FAST-CUT(G) succeeds P(n) A min-cut survives in H_1 (line 5) AND C_1 is a min-cut in H_1 (line 7) OR A min-cut survives in H_2 (line 6) Prob: 1/2

■ AND
$$C_2$$
 is a min-cut in H_2 (line 8)
 ▷ Prob: $P(t)$

$$Pr[\text{Branch-i succeeds}] = Pr \begin{bmatrix} A \text{ min-cut survives in } H_i \text{ (line 5/6)} \\ AND \ C_i \text{ is min-cut in } H_i \text{ (line 7/8)} \end{bmatrix} = \frac{1}{2} \cdot P(t)$$

 $Pr[Branch-i fails] = 1 - \frac{1}{2}P(t)$ $Pr[Both Branches fail] = (1 - \frac{1}{2}P(t))^2$

 $Pr[Algo succeeds] = Pr[NOT Both Branches fail] \ge 1 - (1 - 1/2P(t))^2$

P(j): prob that FAST-CUT(H) finds min-cut if |V(H)| = j

 $Pr[Branch-i \text{ succeeds}] = Pr\left[\begin{array}{c} A \text{ min-cut survives in } H_i \text{ (line 5/6)} \\ AND \ C_i \text{ is min-cut in } H_i \text{ (line 7/8)} \end{array}\right] = \frac{1}{2} \cdot P(t)$

 $Pr[Branch-i fails] = 1 - \frac{1}{2}P(t)$ $Pr[Both Branches fail] = (1 - \frac{1}{2}P(t))^2$

 $Pr[Algo succeeds] = Pr[NOT Both Branches fail] \ge 1 - (1 - 1/2P(t))^2$

$$P(n) \geq 1 - (1 - 1/2P(t))^2 = 1 - (1 - 1/2P(n/\sqrt{2}))^2 = \Omega(1/\log n)$$

Easily proved via induction

- FAST-CUT(G) takes O(n² log n) times not much worse than O(n²) initial version
- Has a success probability $\Omega(1/\log n)$ much better than $\Omega(1/n^2)$ of initial version
- The initial version amplified by $n^2 \log n$ independent trial had runtime $O(n^4 \log n)$ and success probability $\Omega(1 1/n^c)$
- FAST-CUT(G) amplified by $c \log^2 n$ independent trial has runtime $O(n^2 \log^3 n)$ and success probability $\Omega(1 1/n^c)$