Algorithms

Randomized Algorithms

- Deterministic and (Las Vegas \& Monte Carlo) Randomized Algorithms
- Probability Review
- Probabilistic Analysis of deterministic QUICK-SORT Algorithm

■ RANDOMIZED-SELECT and RANDOMIZED-QUICK-SORT

- Max-Cut
- Min-Cut
- max-3-sat and Derandomization
- Closest pair
- Hashing, Bloom filters, Streams, Sampling, Reservoir sampling, Sketch

Imdad ullah Khan

Input: An array S with n distinct numbers and $k \in \mathbb{Z}(1 \leq k \leq n)$ Output: The k th smallest number in S (a number with rank k)

Obvious solutions:

- For $1 \leq i \leq n$, find rank of $S[i]$ in S
\triangleright Each find rank takes $O(n)$ time
- Sort S, and return $S[k]$

Input: An array S with n distinct numbers and $k \in \mathbb{Z}(1 \leq k \leq n)$
Output: The k th smallest number in S (a number with rank k)
For $z \in S$, partition S into $S_{L}(<z), S_{z}(=z)$ and $S_{G}(>z)$

The following recurrence gives a clear algorithm (subject to choosing z)

$$
\operatorname{Select}(S, k)= \begin{cases}\operatorname{select}\left(S_{L}, k\right) & \text { if } k \leq\left|S_{L}\right| \\ z & \text { if } k=r=\left|S_{L}\right|+1 \\ \operatorname{SeLECT}\left(S_{G}, k-\left|S_{L}\right|-1\right) & \text { if } k>\left|S_{L}\right|+1\end{cases}
$$

For $z \in S$, partition S into $S_{L}(<z), S_{z}(=z)$ and $S_{G}(>z)$

$$
\operatorname{SELECT}(S, k)= \begin{cases}\operatorname{SELECT}\left(S_{L}, k\right) & \text { if } k \leq\left|S_{L}\right| \\ z & \text { if } k=r=\left|S_{L}\right|+1 \\ \operatorname{SELECT}\left(S_{G}, k-\left|S_{L}\right|-1\right) & \text { if } k>\left|S_{L}\right|+1\end{cases}
$$

Let $T(n)$ be the runtime of this algorithm on $|S|=n$

$$
T(n)=T(\max \{r, n-r-1\})+\Theta(n)
$$

- Worst case $T(n)=\Theta\left(n^{2}\right)$
\triangleright imbalanced partition
■ Choose z at random
\triangleright want $z \sim \operatorname{MEDIAN}(S)$

Let $T(n)$ be the runtime of partition-based SELECT algorithm on $|S|=n$ For random $z, T(n)=T(\max \{r, n-r-1\})+\Theta(n)$ is a random variable

$$
E[T(n)]=n+\sum_{r=1}^{k} T(r) p[\operatorname{rank}(z)=r]+\sum_{r=k+1}^{n} T(n-r) p[\operatorname{rank}(z)=r]
$$

- $\operatorname{Pr}[\operatorname{rank}(z)=r]=1 / n$
$E[T(n)]=n+\frac{1}{n}\left[\sum_{r=1}^{k} T(r)+\sum_{r=k+1}^{n} T(n-r)\right] \leq n+\frac{2}{n}\left[\sum_{r=\lfloor n / 2\rfloor}^{n} T(r)\right]$
$E[T(n)] \leq c n$
\triangleright Easily proved by induction

