
Algorithms

Heuristics: Local Search Algorithms

Coping with NP-Complete Problem

Local Search

Local Search for Max-cut

Gradient Descent

Metropolis Algorithm

Simulated Annealing

Imdad ullah Khan

Imdad ullah Khan (LUMS) Local Search 1 / 29

Intractable Problems in Practice

Try to solve a problem through some design paradigm

If fruitless, try to prove that your problem is NP-Hard

You can tell your boss one of the three things!

source: slideplayer.com via Google images

Good theoretical exercise, but the problem doesn’t go away

In this lecture we briefly explore what to do in this case

NP-Completeness is not a death certificate, it is the beginning of
a fascinating adventure

Imdad ullah Khan (LUMS) Local Search 2 / 29

NP-Hardness

When you prove a problem X to be NP-Hard, then as per the almost
consensus opinion of P ̸= NP, it essentially means

1 There is no polynomial time

2 deterministic algorithm

3 to exactly/optimally solve the problem X

4 for all possible input instances

What are the option? Things to consider when your problem is NP-Hard

Imdad ullah Khan (LUMS) Local Search 3 / 29

Coping with NP-Hardness

Do I need to solve the problem for all valid input instances?

Sometimes just need to solve a restricted version of the problem -

▷ (special cases) that include realistic instances

Is exponential-time OK for my instances?

Exponential-time algorithms are “not slow” ▷ they don’t scale well

If relevant instances are small, then they may be acceptable

Can bring exponent/base of runtime down ▷ 2n → 2
√
n or 2n → 1.5n

Is non-optimality OK?

What if our algorithm is better than others ▷ faster than bruteforce

Imdad ullah Khan (LUMS) Local Search 4 / 29

Coping with NP-Hardness

To cope with NP-Hardness, sacrifice one of these features

Poly-time Deterministic
Exact/Opt
Solution

All cases/
Parameters

Algorithmic Paradigm

✓ ✓ ✓ ✗
Special Cases Algorithms
Fixed Parameter Tractability

✓ ✓ ✗ ✓
Approximation Algorithms
Heuristic Algorithms

✗ ✓ ✓ ✓
Intelligent
Exhaustive Search

✓ ✗ E(✓) ✓
Mote Carlo
Randomized Algorithm

E(✓) ✗ ✓ ✓
Las Vegas
Randomized Algorithm

Special cases of input instances (based on structure of a range of parameter(s))

Approximation algorithms guarantee a bound on suboptimality

Heuristics algorithms do not have any guarantee

Randomized algorithms generally used for problems in class P

Imdad ullah Khan (LUMS) Local Search 5 / 29

Coping with NP-Hardness

Approaches to tackle hard problems

1 Special Cases: Relevant structure on which the problem is easy

Exact results in poly-time only for special cases or a range of parameters

2 Intelligent Exhaustive Search: Exponential time in worst case

The base and/or exponent are usually smaller

Could be efficient on typical more realistic instances

Backtracking, Brand-and-Bound

3 Nearly exact solutions: Output is ‘close’ to exact (optimal) solution

Approximation Algorithms: Solutions of guaranteed quality in poly-time

Heuristic: Solutions hopefully good in poly-time

4 Randomized Algorithms: Use coin flips for making decisions

Typically used for approximation, also used problems in P

Imdad ullah Khan (LUMS) Local Search 6 / 29

Local Search Algorithms

A widely used method to estimate solution of optimization problems

▷ Very rarely there is a guarantee on the quality of solution

1 A local search algorithm begins with a feasible solution

2 At each step it “slightly” modifies the current solution to “improve” it

3 “Slight” modification in the solution means to move to a better
solution in the “local neighborhood”

4 A fundamental ingredient is definition of neighborhood in solution space

▷ For a candidate solution x ∈ X , identify solutions y ∈ X as
neighbors

Imdad ullah Khan (LUMS) Local Search 7 / 29

The Generic Local Search Algorithm

Explore the solution space in sequential fashion

Move step by step from current solution to a “nearby” one

Algorithm Local Search

s ← some initial solution

while a solution s ′ in the neighborhood
of s is better than s : do

s ← s ′ ▷ Key ingredient

return s ▷ Locally optimal solution

Imdad ullah Khan (LUMS) Local Search 8 / 29

Neighborhood for some NP-hard Problems

1 tsp: two neighboring tours differ from each other by 2 edges

u v

w x

u v

w x

Cannot differ in just one edge. why?

2 max-cut: A neighboring cut can be obtained by moving one vertex
from one side to the other in the current cut

3 k-sat: Two assignments are neighbors if they differ in the value of a
single variable i.e. one can be obtained by flipping just one variable

4 vertex-cover: A neighboring vertex-cover can be obtained by
adding or deleting one vertex

Imdad ullah Khan (LUMS) Local Search 9 / 29

Key Characteristics of Local Search Algorithm

Unlike greedy algorithms, we do not require maintaining a feasible
solution all the time

Greedy algorithm typically build the solution bottom-up

We need to have a solution so we can compute its value in order to
determine whether or not to make a move to a neighboring solution

Easy to design an algorithm

Generally, No provable guarantees on the quality of the solution

Can get a local optimum instead of a global optimum

The larger the neighborhood, the better the resulting solution and the
higher the running time

Imdad ullah Khan (LUMS) Local Search 10 / 29

Cuts in Graphs

Cuts in graphs are very useful structures

Application in network flows, statistical physics, circuit design,
complexity and approximation theory

A cut in G is a subset S ⊂ V

Denoted as [S ,S]

S = ∅ and S = V are trivial cuts, we assume that ∅ ≠ S ̸= V

A graph on n vertices has 2n cuts

An edge (u, v) is crossing the cut [S ,S], if u ∈ S and v ∈ S

A

F

E

G

D

C

B

cu
t
ed
ge
s

E

A

F

D

C

B

3

2

1

4

8
5

6

6G
13

Imdad ullah Khan (LUMS) Local Search 11 / 29

The max-cut(G) problem

A cut in G is a subset S ⊂ V

Denoted as [S ,S]

An edge (u, v) is crossing the cut [S ,S], if u ∈ S and v ∈ S

Size (or cost) of a cut in the number of crossing edges

A cut of size 3 A min cut of size 2

In weighted graphs size of cut is the sum of weights of crossing edges

The max-cut(G) problem: Find a cut in G of maximum size?

Imdad ullah Khan (LUMS) Local Search 12 / 29

The max-cut(G) problem

A cut in G is a subset S ⊂ V

Denoted as [S ,S]

An edge (u, v) is crossing the cut [S ,S], if u ∈ S and v ∈ S

Size (or cost) of a cut in the number of crossing edges

In weighted graph size of cut is the sum of weights of crossing edges

The max-cut(G) problem: Find a cut in G of maximum size?

The decision version of the max-cut(G) problem is NP-Complete

Imdad ullah Khan (LUMS) Local Search 13 / 29

Max-Cut: Local Search Algorithm

Local Search Idea for Max Cut

Begin with a cut and while possible improve it in each step

Algorithm Max-Cut-Local-Search(G = (V ,E))

[A,B]← an arbitrary partition of V

while some node v has higher degree in the other side do

move v to the other side ▷ move to neighboring cut

return [A,B]

Neighboring cut differ by one vertex

Imdad ullah Khan (LUMS) Local Search 14 / 29

Max-Cut: Local Search Algorithm

Local Search Idea for Max Cut

Begin with a cut and while possible improve it in each step

Algorithm Max-Cut-Local-Search(G = (V ,E))

[A,B]← an arbitrary partition of V

while some node v has higher degree in the other side do

move v to the other side ▷ move to neighboring cut

return [A,B]

For v ∈ V
degint(v) : the number of neighbors of v in its own part

degcrs(v) : the number of neighbors of v in the other part

Size of cut [A,B] =
∑
v∈A

degcrs(v) =
∑
v∈B

degcrs(v)

Imdad ullah Khan (LUMS) Local Search 15 / 29

Max-Cut: Local Search Algorithm

Algorithm Max-Cut-Local-Search(G = (V ,E))

[A,B]← an arbitrary partition of V

while some node v has higher degree in the other side do

move v to the other side ▷ move to neighboring cut

return [A,B]

In every iteration the size of cut increase by at least 1

Hence the algorithm terminates (in O(|E |) steps)

f (opt(G)) ≤ |E | = 1
2

∑
v
deg(v) =

∑
v
degint(v) + degcrs(v) ▷ UB

At end of execution for every v ∈ V degcrs(v) ≥ degint(v)

f ([A,B]) = 1
2

∑
v
degcrs(v) ≥ 1

2

∑
v

1
2deg(v) ≥

|E |
2 ≥

1
2 f (opt(G))

max-cut-local-search is a 2-approximate algorithm

Imdad ullah Khan (LUMS) Local Search 16 / 29

Local Search: Issues

How to pick the initial solution s?

Pick a random solution
Use best heuristics

If there several better neighbors s ′, which one to choose?

Choose s ′ at random
Choose the best of s ′

How to define the neighborhoods?

The larger the neighborhood the longer it takes
Tradeoff between solution quality vs computational resources required

Is local search guaranteed to converge (eventually)?

Yes, if solution space is finite as in max-cut and tsp

Is local search guaranteed to converge quickly (polynomial time)?

Usually not : “Smoothed Analysis”- to estimate runtime

Are local optima generally good approximations to global optima?

No. To mitigate, random (re)start, choose best of many local optima

Imdad ullah Khan (LUMS) Local Search 17 / 29

Dealing with Local Optimum

1 Randomization and restarts

2 Gradient Descent

3 Simulated Annealing

Imdad ullah Khan (LUMS) Local Search 18 / 29

Randomization and Restarts

Randomization and Restarts

Pick a random initial solution e.g: a random tsp tour, random cut

When there are many local optima, randomization make sure there is
at least some probability of getting to the better local optima

Repeat local search several times, each time with random initial
solution and return the best solution

How many iterations to run the local search?

Your choice: Solution quality vs computational resources required

Imdad ullah Khan (LUMS) Local Search 19 / 29

Gradient Descent or Hill-Climbing Algorithm

Local search can easily get stuck in a not so good local optima

In continuous solution spaces, ‘infinitely’ many local neighbors

Step-size (displacement of current and next solution) determines

Convergence rate
and quality of end solution

When the value function is differentiable both the step-size and
direction are determined by the derivative (gradient)

Imdad ullah Khan (LUMS) Local Search 20 / 29

Gradient Descent

Algorithm Gradient-Descent

x ← initial-solution

h← step-size

while f ′(x) ≁ 0 do

direction = −f ′(x)
x ← x − h f ′(x)

return x

0 x

f

1

2

3

4

5

6

7

f(x)

2nd soln

step size

first guess

1 2 3 4 5 6 7 8 9

gradient

Imdad ullah Khan (LUMS) Local Search 21 / 29

Gradient Descent

Algorithm Gradient-Descent

x ← initial-solution

h← step-size

while f ′(x) ≁ 0 do

direction = −f ′(x)
x ← x − h f ′(x)

return x

0 1 2 3 4 5 6 7 8 9 x

f

1

2

3

4

5

6

7

f(x)
first guess

2nd soln

output

gradient

For higher dimension gradient is vector of
partial derivatives ∇f (x , y) =

∂f (x ,y)
∂x

∂f (x ,y)
∂y


Imdad ullah Khan (LUMS) Local Search 22 / 29

Gradient Descent: Step Size

Algorithm Gradient-Descent
x ← initial-solution

h← step-size

while f ′(x) ≁ 0 do

direction = −f ′(x)
x ← x − h f ′(x)

return x

0 x

f

1

2

3

4

5

6

7

f(x)

2nd soln

step size

first guess

1 2 3 4 5 6 7 8 9

large step size, far next point

could oscillate around minima

0 x

f

1

2

3

4

5

6

7

f(x)

1 2 3 4 5 6 7 8 9

small step size
takes long to converge

first guess

Imdad ullah Khan (LUMS) Local Search 23 / 29

Metropolis Algorithm and Simulated Annealing

For many problems, the ratio of number of bad to number of good
local optima is large

Simple randomized-restart may not be effective

Metropolis Algorithm combines gradient descent with random walk

Occasionally allows the move that increases the cost

▷ to avoid trapping into a bad local optima

Imdad ullah Khan (LUMS) Local Search 24 / 29

Metropolis Algorithm

Algorithm Metropolis Algorithm

s ← initial solution

while stopping condition is not
met do

s ′ ← random() solution in
neighborhood of s

∆← f (s ′)− f (s)
if ∆ < 0 then

s ← s ′

else
s ← s ′with pr. e−∆/T

return s

Imdad ullah Khan (LUMS) Local Search 25 / 29

Metropolis Algorithm

Takes input parameter T (temperature)

Algorithm Metropolis Algorithm

s ← initial solution

while stopping condition is not met do

s ′ ← random() solution in neighborhood of s

if ∆ = f (s ′)− f (s) < 0 then

s ← s ′

else
s ← s ′ with probablity e−∆/T

return s

If T = 0, this is almost gradient descent

If T is moderately large, then uphill moves are occasionally accepted

If T is too large, it just becomes random walk

Imdad ullah Khan (LUMS) Local Search 26 / 29

Simulated Annealing

Simulated Annealing executes Metropolis Algorithm but decreases T as
the algorithm proceeds

Initially T is large

Solution varies a lot

helps escaping local optima

In the end T is small

Solution are nearby

helps settles at a (hopefully good) local optima

If T decreases slowly enough, then simulated annealing is very likely to
find a global optima

Widely used in VLSI layout, airline scheduling, etc.

Imdad ullah Khan (LUMS) Local Search 27 / 29

Simulated Annealing

Simulated Annealing executes Metropolis Algorithm but decreases T as
the algorithm proceeds

Imdad ullah Khan (LUMS) Local Search 28 / 29

Simulated Annealing

Simulated Annealing

Inspired by the physics of crystallization

Annealing is a heating method to produce metals and glass with
desirable physical properties

Metal is heated to temperature below its melting point, but high
enough so the crystalline lattice structures within the metal break
apart

With gradual cooling the crystalline structures reform and grow larger

These structures correspond to a low energy state

Imdad ullah Khan (LUMS) Local Search 29 / 29

