Approximation Algorithms

- Approximation Algorithms for Optimization Problems: Types
- Absolute Approximation Algorithms
- Inapproximability by Absolute Approximate Algorithms
- Relative Approximation Algorithm
- InApproximability by Relative Approximate Algorithms
- Polynomial Time Approximation Schemes
- Fully Polynomial Time Approximation Schemes

IMDAD ULLAH KHAN

Quality of Approximation: Types

Fully Polynomial Time Approximation Scheme (FPTAS)

Given an optimization problem P with value function f on solution space

A family of algorithms $A(\epsilon)$ is called a **fully polynomial time** approximation scheme if for a given ϵ , on any instance I, $A(\epsilon)$ achieves an approximation error ϵ and runtime of A is polynomial in |I|=n and $1/\epsilon$

- For a minimization problem this means $f(A(I)) \leq (1+\epsilon) \cdot f(\text{OPT}(I))$
- For a maximization problem this means $f(A(I)) \ge (1 \epsilon) \cdot f(\text{OPT}(I))$

Runtime of A cannot be exponential in $1/\epsilon$

 \triangleright e.g. $O(1/\epsilon^2 n^3)$

Constant factor decrease in ϵ increases runtime by a constant factor

Knapsack Problem

Input:

- Items: $U = \{a_1, ..., a_n\}$
- Weights: $w: U \to \mathbb{Z}^+$
- Values: $v: U \to \mathbb{R}^+$
- **Capacity**: $C \in \mathbb{R}^+$

⊳ Fixed order

 $\triangleright (w_1,\ldots,w_n)$

$$\triangleright (v_1,\ldots,v_n)$$

Output:

- A subset $S \subset U$
- Capacity constraint:

$$\sum_{a_i \in S} w_i \le C$$

Objective: Maximize

$$\sum_{a_i \in S} v_i$$

Lemma 1: If for some $0 < \epsilon < 1/2$, all $w_i \le \epsilon C$, then MODIFIED-GREEDY-BY-RATIO is $(1 - \epsilon)$ -approximate

- 1 Scale down all weights to meet above requirement
- **2** Run $(1-\epsilon)$ -approximate MODIFIED-GREEDY-BY-RATIO
- Scale up resulting solution

▶ Scaling up may violate capacity constraint

Develop scaling friendly solution using dynamic programming

Scaling w.r.t. desired ϵ ,

we get a $(1-\epsilon)$ -approximate solution polynomial in both n and $\frac{1}{\epsilon}$ (FPTAS)

Recall that for the items subset $\{a_1, \cdots, a_i\}$ and capacity c

$$ext{OPT}(i,c) = \max egin{cases} 0 & ext{if } c \leq 0 \ 0 & ext{if } i = 0 \ ext{OPT}(i-1,c-w_i) + v_i \ ext{OPT}(i-1,c) \end{cases}$$

Runtime is $\mathcal{O}(nC)$

□ not polynomial unless C is in unary

For above solution, the question is:

What is the maximum value achievable if capacity is *c*?

Now, the question is transformed to:

What is the minimum weight needed to gain a value of p?

Note: all values are integers

Scaling Friendly Dynamic Programming

Let $\widehat{\mathrm{OPT}}(i, v)$ be the min capacity needed to get value v from items $\{a_1, \dots, a_i\}$

Let
$$P = \sum_{i}^{n} v_{i}$$

maximum achievable value

We need $\widehat{\mathrm{OPT}}(i, v)$ for $0 \le i \le n$ and $0 \le v \le P$

 $\triangleright n \cdot P$ subproblems

If v_m is the max value of an item, then $P \leq nv_m > O(n \cdot nv_m)$ subproblems

$$\widehat{\mathrm{OPT}}(i,v) = \begin{cases} 0 & \text{if } v = 0 \\ \infty & \text{if } i = 0 \text{ and } v > 0 \\ \widehat{\mathrm{OPT}}(i-1,v) & \text{if } i \geq 1 \text{ and } 1 \leq v < v_i \\ \min\left\{\widehat{\mathrm{OPT}}(i-1,v), \widehat{\mathrm{OPT}}(i-1,p-v_i) + w_i\right\} & \text{if } i \geq 1 \text{ and } v \geq v_i \end{cases}$$

Solution to an instance [U, w, v, C] is the maximum v s.t. $\widehat{\mathrm{OPT}}(n, v) \leq C$ $\widehat{OPT}(n, P)$ can be computed in $O(n^2v_m)$ (pseudo-polynomial) \triangleright bottom-up DP If v_m is polynomial in n (e.g. n^k), then runtime is polynomial

Solution to an instance [U, w, v, C] is the maximum v s.t. $\widehat{\mathrm{OPT}}(n, v) \leq C$ $\widehat{\mathrm{OPT}}(n, P)$ can be computed in $O(n^2 v_m)$ (pseudo-polynomial) \triangleright bottom-up DP \triangleright If v_m is polynomial in n (e.g. n^k), then runtime is polynomial If item values are not polynomial. To get an approximate solution

I Scale down values so they are not too large and round to integers

▷ Error introduced as exact values are unknown (not used)

We bound the error due to scaling to $\leq \epsilon \cdot \mathtt{OPT}$ to get a $(1-\epsilon)$ -approximation

Let $b = \frac{\epsilon}{n}$ OPT and let $v_i' = \left\lceil \frac{v_i}{b} \right\rceil$ i.e. v_i' is the smallest integer s.t. $v_i \le v_i' \cdot b$

 \triangleright Note: If $v_i \le v_j$, then $v_i' < v_j'$ for $1 \le i, j \le n$

$$\mathrm{OPT} \; \geq \; v_m \qquad \Longrightarrow \qquad v_m' \; = \; \left\lceil \frac{v_m}{b} \right\rceil \; = \; \left\lceil \frac{v_m}{\epsilon/n \cdot \mathrm{OPT}} \right\rceil \; \leq \; \left\lceil \frac{n \cdot v_m}{\epsilon \cdot v_m} \right\rceil \; = \; \left\lceil \frac{n}{\epsilon} \right\rceil$$

Run scaling-friendly dynamic programming with values v'_i

Get opt solution
$$S'$$
 w.r.t v'_i in $O(n^2v_m) = O(n^3 \cdot \frac{1}{\epsilon})$ time $\triangleright \operatorname{poly}(n, 1/\epsilon)$

 $\triangleright w(S') < C$ as capacity and weights were unchanged

What is the error?

Let S be the optimal solution using v_i , i.e. $OPT = \sum_{i \in S} v_i$

Let
$$v'(S) = \sum_{i \in S} v'_i$$
 and $v'(S') = \sum_{i \in S'} v'_i$

 \triangleright Since S' is optimal w.r.t. v_i'

▶ By definition,

Use above observations to upper bound on OPT in terms of v(S') and ϵ

$$\begin{aligned} \text{OPT} &= \sum_{i \in S} v_i \, \leq \, \sum_{i \in S} b \cdot v_i' \, \leq \, b \cdot \sum_{i \in S} v_i' \, \leq \, b \cdot v'(S) \, \leq \, b \cdot v'(S') \\ &\leq \, b \cdot \sum_{i \in S'} v_i' \, \leq \, b \cdot \sum_{i \in S'} \frac{v_i}{b} + 1 \, = \, b \sum_{i \in S'} \frac{v_i + b}{b} \\ &= \, \sum_{i \in S'} v_i + b \cdot |S'| \, \leq \, v(S') + n \cdot b \, = \, v(S') + \epsilon \cdot \text{OPT} \end{aligned}$$

$$v(S') \geq (1-\epsilon) \cdot ext{OPT} \quad \Longrightarrow \quad S' \; ext{ is } \; (1-\epsilon) ext{-approximate}$$

- The value of OPT (used in b) is unknown
- lacksquare Use lower bound $ext{OPT} \geq v_m$ for $b = rac{\epsilon}{n} \cdot v_m$
- Above analysis results in OPT $\leq v(S') + \epsilon \cdot v_m \leq v(S') + \epsilon \cdot$ OPT