Algorithms

Approximation Algorithms

■ Approximation Algorithms for Optimization Problems: Types

- Absolute Approximation Algorithms

■ Inapproximability by Absolute Approximate Algorithms

- Relative Approximation Algorithm
- InApproximability by Relative Approximate Algorithms
- Polynomial Time Approximation Schemes
- Fully Polynomial Time Approximation Schemes

```
Imdad ullah Khan
```


Quality of Approximation: Types

Fully Polynomial Time Approximation Scheme (FPTAS)

Given an optimization problem P with value function f on solution space
A family of algorithms $A(\epsilon)$ is called a fully polynomial time approximation scheme if for a given ϵ, on any instance $I, A(\epsilon)$ achieves an approximation error ϵ and runtime of A is polynomial in $|I|=n$ and $1 / \epsilon$

- For a minimization problem this means $f(A(I)) \leq(1+\epsilon) \cdot f(\operatorname{OPT}(I))$
- For a maximization problem this means $f(A(I)) \geq(1-\epsilon) \cdot f(\mathrm{OPT}(I))$

Runtime of A cannot be exponential in $1 / \epsilon$
\triangleright e.g. $O\left(1 / \epsilon^{2} n^{3}\right)$
Constant factor decrease in ϵ increases runtime by a constant factor

Knapsack Problem

Input:

■ Items: $U=\left\{a_{1}, \ldots, a_{n}\right\}$
■ Weights: $w: U \rightarrow \mathbb{Z}^{+}$
■ Values: $v: U \rightarrow \mathbb{R}^{+}$
■ Capacity: $C \in \mathbb{R}^{+}$

Output:

- A subset $S \subset U$
- Capacity constraint:

$$
\sum_{a_{i} \in S} w_{i} \leq C
$$

- Objective: Maximize

$$
\sum_{a_{i} \in S} v_{i}
$$

FPTAS for KNAPSACK

Lemma 1: If for some $0<\epsilon<1 / 2$, all $w_{i} \leq \epsilon C$, then MODIFIED-GREEDY-BY-RATIO is $(1-\epsilon)$-approximate

1 Scale down all weights to meet above requirement
2 Run ($1-\epsilon$)-approximate MODIFIED-GREEDY-BY-RATIO
3 Scale up resulting solution
\triangleright Scaling up may violate capacity constraint

Develop scaling friendly solution using dynamic programming
Scaling w.r.t. desired ϵ,
we get a $(1-\epsilon)$-approximate solution polynomial in both n and $\frac{1}{\epsilon}$ (FPTAS)

FPTAS for KNAPSACK

Recall that for the items subset $\left\{a_{1}, \cdots, a_{i}\right\}$ and capacity c

$$
\operatorname{OPT}(i, c)=\max \begin{cases}0 & \text { if } c \leq 0 \\ 0 & \text { if } i=0 \\ \operatorname{OPT}\left(i-1, c-w_{i}\right)+v_{i} \\ \operatorname{OPT}(i-1, c) & \end{cases}
$$

Runtime is $\mathcal{O}(n C)$
\triangleright not polynomial unless C is in unary
For above solution, the question is:
What is the maximum value achievable if capacity is c ?
Now, the question is transformed to:
What is the minimum weight needed to gain a value of p ?
Note: all values are integers

Scaling Friendly Dynamic Programming

Let $\widehat{O P T}(i, v)$ be the min capacity needed to get value v from items $\left\{a_{1},, \cdots, a_{i}\right\}$ Let $P=\sum_{i}^{n} v_{i}$
\triangleright maximum achievable value
We need $\widehat{O P T}(i, v)$ for $0 \leq i \leq n$ and $0 \leq v \leq P \quad \triangleright n \cdot P$ subproblems If v_{m} is the max value of an item, then $P \leq n v_{m}$
$\triangleright O\left(n \cdot n v_{m}\right)$ subproblems

$$
\widehat{\mathrm{OPT}}(i, v)= \begin{cases}0 & \text { if } v=0 \\ \infty & \text { if } i=0 \text { and } v>0 \\ \widehat{\mathrm{OPT}}(i-1, v) & \text { if } i \geq 1 \text { and } 1 \leq v<v_{i} \\ \min \left\{\widehat{\operatorname{OPT}}(i-1, v), \widehat{\operatorname{OPT}}\left(i-1, p-v_{i}\right)+w_{i}\right\} & \text { if } i \geq 1 \text { and } v \geq v_{i}\end{cases}
$$

Solution to an instance $[U, w, v, C]$ is the maximum v s.t. $\widehat{\mathrm{OPT}}(n, v) \leq C$ $\widehat{\mathrm{OPT}}(n, P)$ can be computed in $O\left(n^{2} v_{m}\right)$ (pseudo-polynomial) \triangleright bottom-up DP If v_{m} is polynomial in n (e.g. n^{k}), then runtime is polynomial

FPTAS for KNAPSACK

Solution to an instance $[U, w, v, C]$ is the maximum v s.t. $\widehat{\text { OPT }}(n, v) \leq C$ $\widehat{\text { OPT }}(n, P)$ can be computed in $O\left(n^{2} v_{m}\right)$ (pseudo-polynomial) \triangleright bottom-up DP \triangleright If v_{m} is polynomial in $n\left(\right.$ e.g. $\left.n^{k}\right)$, then runtime is polynomial If item values are not polynomial. To get an approximate solution

1 Scale down values so they are not too large and round to integers
\triangleright Error introduced as exact values are unknown (not used)
We bound the error due to scaling to $\leq \epsilon \cdot$ OPT to get a ($1-\epsilon$)-approximation Let $b=\frac{\epsilon}{n} \mathrm{OPT}$ and let $v_{i}^{\prime}=\left\lceil v_{i}\right\rceil$ i.e. v_{i}^{\prime} is the smallest integer s.t. $v_{i} \leq v_{i}^{\prime} \cdot b$
\triangleright Note: If $v_{i} \leq v_{j}$, then $v_{i}^{\prime}<v_{j}^{\prime}$ for $1 \leq i, j \leq n$

$$
\mathrm{OPT} \geq v_{m} \quad \Longrightarrow \quad v_{m}^{\prime}=\left\lceil\frac{v_{m}}{b}\right\rceil=\left\lceil\frac{v_{m}}{\epsilon / n \cdot \mathrm{OPT}}\right\rceil \leq\left\lceil\frac{n \cdot v_{m}}{\epsilon \cdot v_{m}}\right\rceil=\left\lceil\frac{n}{\epsilon}\right\rceil
$$

FPTAS for KNAPSACK

Run scaling-friendly dynamic programming with values v_{i}^{\prime}
Get opt solution S^{\prime} w.r.t v_{i}^{\prime} in $O\left(n^{2} v_{m}\right)=O\left(n^{3} \cdot \frac{1}{\epsilon}\right)$ time $\quad \triangleright \operatorname{poly}(n, 1 / \epsilon)$
$\triangleright w\left(S^{\prime}\right)<C$ as capacity and weights were unchanged
What is the error?
Let S be the optimal solution using v_{i}, i.e. OPT $=\sum_{i \in S} v_{i}$
Let $\quad v^{\prime}(S)=\sum_{i \in S} v_{i}^{\prime} \quad$ and $\quad v^{\prime}\left(S^{\prime}\right)=\sum_{i \in S^{\prime}} v_{i}^{\prime}$
$1 v^{\prime}\left(S^{\prime}\right) \geq v^{\prime}(S)$
\triangleright Since S^{\prime} is optimal w.r.t. v_{i}^{\prime}
$2 v_{i} / b \leq v_{i}^{\prime} \leq v_{i} / b+1$
\triangleright By definition,

Use above observations to upper bound on OPT in terms of $v\left(S^{\prime}\right)$ and ϵ

FPTAS for KNAPSACK

$$
\begin{aligned}
\mathrm{OPT} & =\sum_{i \in S} v_{i} \leq \sum_{i \in S} b \cdot v_{i}^{\prime} \leq b \cdot \sum_{i \in S} v_{i}^{\prime} \leq b \cdot v^{\prime}(S) \leq b \cdot v^{\prime}\left(S^{\prime}\right) \\
& \leq b \cdot \sum_{i \in S^{\prime}} v_{i}^{\prime} \leq b \cdot \sum_{i \in S^{\prime}} v_{i} / b+1=b \sum_{i \in S^{\prime}} \frac{v_{i}+b}{b} \\
& =\sum_{i \in S^{\prime}} v_{i}+b \cdot\left|S^{\prime}\right| \leq v\left(S^{\prime}\right)+n \cdot b=v\left(S^{\prime}\right)+\epsilon \cdot \text { OPT } \\
v\left(S^{\prime}\right) & \geq(1-\epsilon) \cdot \mathrm{OPT} \Longrightarrow S^{\prime} \text { is }(1-\epsilon) \text {-approximate }
\end{aligned}
$$

- The value of OPT (used in b) is unknown

■ Use lower bound OPT $\geq v_{m}$ for $b=\frac{\epsilon}{n} \cdot v_{m}$

- Above analysis results in OPT $\leq v\left(S^{\prime}\right)+\epsilon \cdot v_{m} \leq v\left(S^{\prime}\right)+\epsilon \cdot$ OPT

