Approximation Algorithms

- Approximation Algorithms for Optimization Problems: Types
- Absolute Approximation Algorithms
- Inapproximability by Absolute Approximate Algorithms
- Relative Approximation Algorithm
- InApproximability by Relative Approximate Algorithms
- Polynomial Time Approximation Schemes
- Fully Polynomial Time Approximation Schemes

Imdad ullah Khan

Approximation Factor/Ratio

Given an optimization problem P with value function f on solution space

The approximation ratio or approximation factor of an algorithm A is defined as the ratio *'between'* value of output of A and value of OPT

- For minimization problem it is f(A(I))/f(OPT(I))
- For maximization problem it is f(OPT(I))/f(A(I))

 \triangleright Note: approximation factor is always bigger than 1

Generally, approximation factor is defined as max {

$$\left\{\frac{f(A(l))}{f(\text{OPT}(l))}, \frac{f(\text{OPT}(l))}{f(A(l))}\right\}$$

Approximation Error

Given an optimization problem P with value function f on solution space

The approximation error of A is its approximation factor minus 1

- For a minimization problem it is f(A(I))/f(OPT(I)) - 1 = f(A(I)) - f(OPT(I))/f(OPT(I))
- For a maximization problem it is f(OPT(I))/f(A(I)) - 1 = f(OPT(I)) - f(A(I))/f(A(I))

 \triangleright Useful when approximation ratio is close to 1

Also called relative approximation error

Polynomial Time Approximation Scheme (PTAS)

Given an optimization problem P with value function f on solution space

A family of algorithms $A(\epsilon)$ is called a **polynomial time approximation scheme** if for a given parameter ϵ , on any instance I, $A(\epsilon)$ achieves an approximation error ϵ and runtime of A is polynomial in |I| = n

For a minimization problem this means $f(A(I)) \leq (1 + \epsilon) \cdot f(OPT(I))$

For a maximization problem this means $f(A(I)) \ge (1 - \epsilon) \cdot f(OPT(I))$

Runtime of A could be exponential in $1/\epsilon$ \triangleright e.g. $O(n^{1/\epsilon})$

Knapsack Problem

Input:

- Items: $U = \{a_1, ..., a_n\}$
- Weights: $w: U \to \mathbb{Z}^+$
- Values: $v: U \to \mathbb{R}^+$
- Capacity: $C \in \mathbb{R}^+$

Output:

- A subset $S \subset U$
- Capacity constraint:

$$\sum_{a_i\in S}w_i\leq C$$

Objective: Maximize

$$\sum_{a_i\in S}v_i$$

 $\vdash \mathsf{Fixed order}$ $\vdash (w_1, \dots, w_n)$ $\vdash (v_1, \dots, v_n)$

Knapsack Problem

Input:

- Items: $U = \{a_1, \ldots, a_n\}$ (fixed order)
- Weights: $w: U \to \mathbb{Z}^+$: w_1, \ldots, w_n
- Values: $v : U \to \mathbb{R}^+$: v_1, \ldots, v_n
- Capacity: $C \in \mathbb{R}^+$

weight	value
1	1
2	6
5	18
6	22
7	28
98	99
	1 2 5 6 7

Output:

- A subset $S \subset U$
- Capacity constraint: $\sum_{a_i \in S} w_i \leq C$
- Objective: Maximize $\sum_{a_i \in S} v_i$

C = 11

- \blacksquare $\{1,2\}$ weight 3, value 7
- $\{1,2,4\}$ weight 9, value 29
- **a** $\{3,4\}$ weight 11, value 40
- {4,5} weight 13, value 50

Knapsack Problem: Greedy Algorithms

Input:

- Items: $U = \{a_1, \ldots, a_n\}$ (fixed order)
- Weights: $w: U \to \mathbb{Z}^+$: w_1, \ldots, w_n
- Values: $v: U \to \mathbb{R}^+$: v_1, \ldots, v_n
- Capacity: $C \in \mathbb{R}^+$

Output:

- A subset $S \subset U$
- Capacity constraint: $\sum_{a_i \in S} w_i \leq C$
- Objective: Maximize $\sum_{a_i \in S} v_i$

Greedy by Value

- Select the most profitable item
- Check if its fits remaining capacity

Repeat

ID	weight	value
1	51	51
2	50	50
3	50	50

C = 100

 $\{1\}$ weight 51, value 51

Optimal $\{2,3\}$ weight 100, value 100

Knapsack Problem: Greedy Algorithms

Input:

- Items: $U = \{a_1, \ldots, a_n\}$ (fixed order)
- Weights: $w: U \to \mathbb{Z}^+$: w_1, \ldots, w_n
- Values: $v: U \to \mathbb{R}^+$: v_1, \ldots, v_n
- Capacity: $C \in \mathbb{R}^+$

Output:

- A subset $S \subset U$
- Capacity constraint: $\sum_{a_i \in S} w_i \leq C$
- Objective: Maximize $\sum_{a_i \in S} v_i$

Greedy by weight

- Select the least weighted item
- Check if its fits remaining capacity

Repeat

ID	weight	value
1	1	1
2	50	50
3	50	50

C = 100

 $\{1,2\}$ weight 51, value 51

Optimal $\{2,3\}$ weight 100, value 100

Knapsack Problem: Greedy Algorithms

Input:

- Items: $U = \{a_1, \ldots, a_n\}$ (fixed order)
- Weights: $w: U \to \mathbb{Z}^+$: w_1, \ldots, w_n
- Values: $v: U \to \mathbb{R}^+$: v_1, \ldots, v_n
- Capacity: $C \in \mathbb{R}^+$

Output:

- A subset $S \subset U$
- Capacity constraint: $\sum_{a_i \in S} w_i \leq C$
- Objective: Maximize $\sum_{a_i \in S} v_i$

GREEDY-BY-RATIO

- Select item with highest v_i/w_i
- Check if its fits capacity
- Repeat

ID	weight	value	ratio
1	1	1	1
2	2	6	3
3	5	18	3.6
4	6	22	3.67
5	7	28	4
6	98	99	1.01

C = 11

 $\{5,2,1\}$ weight 10, value 35 Optimal $\{3,4\}$ weight 11, value 40

Knapsack Problem: GREEDY-BY-RATIO

The $\ensuremath{\operatorname{GREEDY-BY-RATIO}}$ algorithm is suboptimal but worth exploring

Algorithm GREEDY-BY-RATIO	
if $\sum_{i=1}^{n} w_i \leq C$ then	\triangleright If all items fit in the sack, then take all
return U	
SORT items by v_i/w_i	$\triangleright \text{ assume } v_1/w_1 \geq v_2/w_2 \geq \ldots \geq v_n/w_n$
weight $\leftarrow 0$	▷ total weight collected so far
$value \leftarrow 0$	▷ total value collected so far
$\mathcal{S} \leftarrow \emptyset$	▷ Initially the knapsack is empty
for $i=1 ightarrow n$ do	
if $weight + w_i < C$ then	
$\boldsymbol{S} \leftarrow \boldsymbol{S} \cup \{\boldsymbol{a}_i\}$	
$value \leftarrow value + v_i$	
weight \leftarrow weight + w _i	

...

Knapsack Problem: GREEDY-BY-RATIO

- We saw example where GREEDY-BY-RATIO algorithm was suboptimal
- The following example show that it could be arbitrarily bad
- The ratio v_i/w_i is called the density of item a_i
- Density is not necessarily a good measure of profitability

GREEDY-BY-RATIO

ID	weight	value
1	1	2
2	С	С

C : is the capacity

Ouput: $\{1\}$ weight 1, value 2

Optimal: $\{2\}$ weight C, value C

Knapsack Problem: MODIFIED-GREEDY-BY-RATIO

- Can improve GREEDY-BY-RATIO with a simple trick
- Run another algorithm in parallel- chooses the first item this one skips
- Return the best of the above two algorithms

Algorithm MODIFIED-GREEDY-BY-RATIO

SORT items by v_i/w_i ▷ assume $v_1/w_1 > v_2/w_2 > ... > v_n/w_n$ ▷ total weight collected so far weight $\leftarrow 0$ value $\leftarrow 0$ ▷ total value collected so far $S \leftarrow \emptyset$ ▷ initially the knapsack is empty for $i = 1 \rightarrow n$ do if weight $+ w_i < C$ then • $S \leftarrow S \cup \{a_i\}$ • value \leftarrow value $+ v_i$ • weight \leftarrow weight $+ w_i$ $k \leftarrow \text{index of first item skipped above}$ if value $> v_k$ then return S else return $\{a_k\}$

Knapsack Problem: MODIFIED-GREEDY-BY-RATIO

MODIFIED-GREEDY-BY-RATIO algorithm is 2-approximate

- Let *S* be the output of A = MODIFIED-GREEDY-BY-RATIO
- Let k be the index of first item skipped by A
- $v_1 + v_2 + ... + v_{k-1} \le OPT$ why?

•
$$v_1 + v_2 + \ldots + v_{k-1} + v_k \ge \text{OPT}$$

- Actually, $v_1 + v_2 + \ldots + v_{k-1} + c \cdot v_k \ge \text{OPT}$ $\triangleright c = \frac{C (w_1 + w_2 + \ldots + w_{k-1})}{w_k}$
 - numerator is remaining capacity after packing the first k-1 items
 - *c*-fraction of a_k can be packed (if fractional packing is allowed)
 - suppose we packed $\{a_1, \ldots, a_{k-1}\}$ and *c*-fraction of a_k
 - we consumed whole C it is optimal as we took largest density
- The two red statements implies that either

 $v_1 + v_2 + \ldots + v_{k-1} \geq OPT/2$ or $v_k \geq OPT/2$

$$f(S) = \max \{v_1 + v_2 + \ldots + v_{k-1}, v_k\}$$

Knapsack Problem: MODIFIED-GREEDY-BY-RATIO

MODIFIED-GREEDY-BY-RATIO algorithm is 2-approximate

We show that this analysis is tight

 $U = \{a_1, a_2, a_3\}$ $v_1 = 1 + \frac{\epsilon}{2}, v_2 = v_3 = 1$ $w_1 = 1 + \frac{\epsilon}{3}, w_2 = w_3 = 1$ C = 2 $S = \{a_1\}$ $OPT = \{a_2, a_3\}$

Consider the instance

- Let *S* be the output of A = MODIFIED-GREEDY-BY-RATIO
- Approximation ratio achieved is arbitrarily close to 2
- Runtime of A is O(n log n) (pseudo-polynomial)
 - each density computation takes $\log(C \cdot \sum_{i=1}^{n} v_i)$
- Recall runtime of dynamic programming algorithm is $O(n \cdot C)$

A pseudo-polynomial time algorithm for $\operatorname{KNAPSACK}$

MODIFIED-GREEDY-BY-RATIO algorithm for KNAPSACK is

- pseudo polynomial in runtime
- 2-approximate

We identify cases where its output is even better

Lemma 1: If for some $0 < \epsilon < 1/2$, all $w_i \leq \epsilon C$, then MODIFIED-GREEDY-BY-RATIO is $(1 - \epsilon)$ -approximate

Lemma 2: If for some $0 < \epsilon < 1/2$, all $v_i \leq \epsilon$ OPT, then MODIFIED-GREEDY-BY-RATIO is $(1 - \epsilon)$ -approximate

We will use these lemmas to obtain a $\ensuremath{\operatorname{PTAS}}$ for $\ensuremath{\operatorname{KNAPSACK}}$

PTAS for the KNAPSACK Problem

Lemma 1: If for some $0 < \epsilon < 1/2$, all $w_i \leq \epsilon C$, then MODIFIED-GREEDY-BY-RATIO is $(1 - \epsilon)$ -approximate

• Items sorted by $v_i/w_i \implies \forall 1 \le i \le k$, $\frac{v_i}{w_i} \ge \frac{v_k}{w_k} \implies v_i \ge w_i \frac{v_k}{w_k}$

Adding up all these inequalities:

$$v_1 + v_2 + \cdots + v_k \geq (w_1 + w_2 + \cdots + w_k) \frac{v_k}{w_k}$$

$$\implies w_k \cdot \frac{v_1 + v_2 + \dots + v_k}{w_1 + w_2 + \dots + w_k} \ge v_k$$

Recall a_k is the first item skipped by $\mathcal{A} = \text{MODIFIED-GREEDY-BY-RATIO}$

• Plugging $w_1 + w_2 + \cdots + w_k > C$ in above inequality:

$$v_k \leq \frac{w_k}{C} \cdot v_1 + v_2 + \cdots + v_k$$

• •

$\ensuremath{\operatorname{PTAS}}$ for the $\ensuremath{\operatorname{KNAPSACK}}$ Problem

Since all $w_i \leq \epsilon C$, plugging $w_k \leq \epsilon C$ in above inequality:

$$|\mathbf{v}_k| \leq \epsilon \cdot (\mathbf{v}_1 + \mathbf{v}_2 + \cdots + \mathbf{v}_k) \leq \frac{\epsilon}{1-\epsilon} \cdot (\mathbf{v}_1 + \mathbf{v}_2 + \cdots + \mathbf{v}_{k-1})$$

• If $(v_1 + v_2 + \dots + v_{k-1}) \ge (1 - \epsilon)$ OPT, then we have $(1 - \epsilon)$ -approximation

If $(v_1 + v_2 + \cdots + v_{k-1}) < (1 - \epsilon)$ OPT, then $v_k \leq \epsilon$ OPT

Combining these two:

 $v_1 + v_2 + \dots + v_{k-1} + v_k < (1 - \epsilon)$ opt + ϵ opt < opt

which contradicts the fact that a_{k-1} is the last item chosen

Thus, either $(v_1 + v_2 + \cdots + v_{k-1}) \ge (1 - \epsilon)$ OPT or $v_k \ge (1 - \epsilon)$ OPT, giving a $(1 - \epsilon)$ -approximation

$\ensuremath{\operatorname{PTAS}}$ for the $\ensuremath{\operatorname{KNAPSACK}}$ Problem

Lemma 2: If for some $0 < \epsilon < 1/2$, all $v_i \leq \epsilon$ OPT, then MODIFIED-GREEDY-BY-RATIO is $(1 - \epsilon)$ -approximate

■ Since *a_k* is the first item skipped by *A*

$$(v_1 + v_2 + \dots + v_{k-1} + v_k) \ge \text{OPT}$$

Since $v_k \leq \epsilon_{\mathrm{OPT}}$, then

$$(v_1 + v_2 + \cdots + v_{k-1}) \geq (1 - \epsilon)$$
OPT

• This gives a $(1 - \epsilon)$ -approximation

PTAS for the KNAPSACK Problem

In any optimal solution with total value ${\rm OPT}$ and any $0<\epsilon<1,$ there are $~\leq~\lceil 1/\epsilon\rceil$ items with values $~\geq~\epsilon{\rm OPT}$

▷ This follows from basic counting

We use this fact to design a $\ensuremath{\operatorname{PTAS}}$ for $\ensuremath{\operatorname{KNAPSACK}}$ problem

- 1 First, get 'heavier' items of the <code>OPT-SOLUTION</code> values $> \epsilon$ OPT
- **2** Use MODIFIED-GREEDY-BY-RATIO for lighter items among remaining

Problem: How to get the heavier items of the OPT-SOLUTION
OPT is unknown, only a bound on number of heavier items is known

- **1** Try all $n^{\lceil 1/\epsilon \rceil + 1}$ subsets of U of sizes $\leq \lceil 1/\epsilon \rceil$
- 2 and select the most valuable feasible subset

For a set $S \subseteq U$, $w(S) = \sum_{i \in S} w_i$ and $v(S) = \sum_{i \in S} v_i$

Algorithm : KNAPSACK-PTAS

 $h \leftarrow \lceil 1/\epsilon \rceil$ max-tot-value-heavy-items $\leftarrow 0$ max-value-heavy-set $\leftarrow \emptyset$ for each $H \subseteq U$, such that $|H| \leq h$ and $w(H) \leq C$ do $v_m \leftarrow \operatorname{argmin}_{i \in H}(v_i)$ $U' \leftarrow \{a_i \in U \setminus H : v_i < v_m\}$ \triangleright lighter items in $U \setminus H$ $S \leftarrow \text{MODIFIED-GREEDY-BY-RATIO}(U', C - w(H))$ if max-tot-value-heavy-items < v(H) + v(S) then max-tot-value-heavy-items $\leftarrow v(H) + v(S)$ max-value-heavy-set $\leftarrow H \cup S$

PTAS for the $\ensuremath{\mathsf{KNAPSACK}}$ Problem

■ For each of the O(n^{[1/ε]+1}) subsets, linear work is done before calling MODIFIED-GREEDY-BY-RATIO

Runtime:

- Sorting done only once but dominated by loop
- **Total time polynomial in** *n* and exponential in $1/\epsilon$

Approximation Ratio:

- Consider the iteration where the set H is part of optimal solution
 ▷ since all subsets of size at most h are checked
 H can not have more than h items of value > € OPT
- Let $U' \leftarrow \{a_i \in U \setminus H : v_i < v_m\}$ and OPT' be optimal value for $U' \triangleright$ OPT = v(H) +OPT'
- Since $\forall i \in U', v_i \leq \epsilon \cdot \text{OPT}$, solution for U' has value $\geq (1 \epsilon)\text{OPT}'$
- value of KNAPSACK-PTAS output is $v(H) + (1 \epsilon)$ OPT $' \ge (1 \epsilon)$ OPT

 $\triangleright v(H)$ may be 0, i.e. optimal solution may not include any heavy item