
Algorithms

Approximation Algorithms

Approximation Algorithms for Optimization Problems: Types

Absolute Approximation Algorithms

Inapproximability by Absolute Approximate Algorithms

Relative Approximation Algorithm

InApproximability by Relative Approximate Algorithms

Polynomial Time Approximation Schemes

Fully Polynomial Time Approximation Schemes

Imdad ullah Khan
Imdad ullah Khan (LUMS) Approximation Algorithms 1 / 21

Quality of Approximation: Types

Approximation Factor/Ratio

Given an optimization problem P with value function f on solution space

The approximation ratio or approximation factor of an algorithm A is
defined as the ratio ‘between’ value of output of A and value of opt

For minimization problem it is f
(

A(I)
)
/f

(
opt(I)

)
For maximization problem it is f

(
opt(I)

)
/f

(
A(I)

)
▷ Note: approximation factor is always bigger than 1

Generally, approximation factor is defined as max
{

f
(

A(I)
)

f
(

opt(I)
) ,

f
(

opt(I)
)

f
(

A(I)
) }

Imdad ullah Khan (LUMS) Approximation Algorithms 2 / 21

Quality of Approximation: Types

Approximation Error

Given an optimization problem P with value function f on solution space

The approximation error of A is its approximation factor minus 1

For a minimization problem it is
f
(

A(I)
)
/f

(
opt(I)

)
− 1 = f

(
A(I)

)
−f

(
opt(I)

)
/f

(
opt(I)

)
For a maximization problem it is
f
(

opt(I)
)
/f

(
A(I)

)
− 1 = f

(
opt(I)

)
−f

(
A(I)

)
/f

(
A(I)

)
▷ Useful when approximation ratio is close to 1

Also called relative approximation error

Imdad ullah Khan (LUMS) Approximation Algorithms 3 / 21

Quality of Approximation: Types

Polynomial Time Approximation Scheme (PTAS)

Given an optimization problem P with value function f on solution space

A family of algorithms A(ϵ) is called a polynomial time approximation
scheme if for a given parameter ϵ, on any instance I, A(ϵ) achieves an
approximation error ϵ and runtime of A is polynomial in |I| = n

For a minimization problem this means f
(
A(I)

)
≤ (1 + ϵ) · f

(
opt(I)

)
For a maximization problem this means f

(
A(I)

)
≥ (1− ϵ) · f

(
opt(I)

)
Runtime of A could be exponential in 1/ϵ ▷ e.g. O(n1/ϵ)

Imdad ullah Khan (LUMS) Approximation Algorithms 4 / 21

Knapsack Problem

Input:
Items: U = {a1, . . . , an} ▷ Fixed order
Weights: w : U → Z+ ▷ (w1, . . . , wn)
Values: v : U → R+ ▷ (v1, . . . , vn)
Capacity: C ∈ R+

Output:
A subset S ⊂ U
Capacity constraint: ∑

ai ∈S
wi ≤ C

Objective: Maximize ∑
ai ∈S

vi

Imdad ullah Khan (LUMS) Approximation Algorithms 5 / 21

Knapsack Problem

Input:

Items: U = {a1, . . . , an} (fixed order)
Weights: w : U → Z+: w1, . . . , wn

Values: v : U → R+: v1, . . . , vn

Capacity: C ∈ R+

Output:

A subset S ⊂ U
Capacity constraint:

∑
ai ∈S

wi ≤ C

Objective: Maximize
∑

ai ∈S
vi

ID weight value
1 1 1
2 2 6
3 5 18
4 6 22
5 7 28
6 98 99

C = 11

{1, 2} weight 3, value 7
{1, 2, 4} weight 9, value 29
{3, 4} weight 11, value 40
{4, 5} weight 13, value 50

Imdad ullah Khan (LUMS) Approximation Algorithms 6 / 21

Knapsack Problem: Greedy Algorithms

Input:

Items: U = {a1, . . . , an} (fixed order)
Weights: w : U → Z+: w1, . . . , wn

Values: v : U → R+: v1, . . . , vn

Capacity: C ∈ R+

Output:

A subset S ⊂ U
Capacity constraint:

∑
ai ∈S

wi ≤ C

Objective: Maximize
∑

ai ∈S
vi

Greedy by Value
Select the most profitable item
Check if its fits remaining capacity
Repeat

ID weight value
1 51 51
2 50 50
3 50 50

C = 100

{1} weight 51, value 51

Optimal {2, 3} weight 100, value 100

Imdad ullah Khan (LUMS) Approximation Algorithms 7 / 21

Knapsack Problem: Greedy Algorithms

Input:

Items: U = {a1, . . . , an} (fixed order)
Weights: w : U → Z+: w1, . . . , wn

Values: v : U → R+: v1, . . . , vn

Capacity: C ∈ R+

Output:

A subset S ⊂ U
Capacity constraint:

∑
ai ∈S

wi ≤ C

Objective: Maximize
∑

ai ∈S
vi

Greedy by weight
Select the least weighted item
Check if its fits remaining capacity
Repeat

ID weight value
1 1 1
2 50 50
3 50 50

C = 100

{1, 2} weight 51, value 51

Optimal {2, 3} weight 100, value 100

Imdad ullah Khan (LUMS) Approximation Algorithms 8 / 21

Knapsack Problem: Greedy Algorithms

Input:

Items: U = {a1, . . . , an} (fixed order)
Weights: w : U → Z+: w1, . . . , wn

Values: v : U → R+: v1, . . . , vn

Capacity: C ∈ R+

Output:

A subset S ⊂ U
Capacity constraint:

∑
ai ∈S

wi ≤ C

Objective: Maximize
∑

ai ∈S
vi

greedy-by-ratio
Select item with highest vi/wi

Check if its fits capacity
Repeat

ID weight value ratio
1 1 1 1
2 2 6 3
3 5 18 3.6
4 6 22 3.67
5 7 28 4
6 98 99 1.01

C = 11
{5, 2, 1} weight 10, value 35
Optimal {3, 4} weight 11, value 40

Imdad ullah Khan (LUMS) Approximation Algorithms 9 / 21

Knapsack Problem: greedy-by-ratio
The greedy-by-ratio algorithm is suboptimal but worth exploring

Algorithm greedy-by-ratio
if

∑n
i=1 wi ≤ C then ▷ If all items fit in the sack, then take all

return U
sort items by vi/wi ▷ assume v1/w1 ≥ v2/w2 ≥ . . . ≥ vn/wn

weight ← 0 ▷ total weight collected so far
value ← 0 ▷ total value collected so far
S ← ∅ ▷ Initially the knapsack is empty
for i = 1→ n do

if weight + wi < C then
S ← S ∪ {ai}
value ← value + vi

weight ← weight + wi

Imdad ullah Khan (LUMS) Approximation Algorithms 10 / 21

Knapsack Problem: greedy-by-ratio

We saw example where greedy-by-ratio algorithm was suboptimal
The following example show that it could be arbitrarily bad
The ratio vi/wi is called the density of item ai

Density is not necessarily a good measure of profitability

greedy-by-ratio

ID weight value
1 1 2
2 C C

C : is the capacity
Ouput: {1} weight 1, value 2
Optimal: {2} weight C , value C

Imdad ullah Khan (LUMS) Approximation Algorithms 11 / 21

Knapsack Problem: modified-greedy-by-ratio
Can improve greedy-by-ratio with a simple trick
Run another algorithm in parallel- chooses the first item this one skips
Return the best of the above two algorithms

Algorithm modified-greedy-by-ratio
sort items by vi/wi ▷ assume v1/w1 ≥ v2/w2 ≥ . . . ≥ vn/wn

weight ← 0 ▷ total weight collected so far
value ← 0 ▷ total value collected so far
S ← ∅ ▷ initially the knapsack is empty
for i = 1→ n do

if weight + wi < C then
• S ← S ∪ {ai} • value ← value + vi • weight ← weight + wi

k ← index of first item skipped above
if value ≥ vk then return S
else return {ak}

Imdad ullah Khan (LUMS) Approximation Algorithms 12 / 21

Knapsack Problem: modified-greedy-by-ratio

modified-greedy-by-ratio algorithm is 2-approximate

Let S be the output of A = modified-greedy-by-ratio

Let k be the index of first item skipped by A

v1 + v2 + . . . + vk−1 ≤ opt why?

v1 + v2 + . . . + vk−1 + vk ≥ opt

Actually, v1 + v2 + . . . + vk−1 + c · vk ≥ opt ▷ c = C−(w1+w2+...+wk−1)
wk

numerator is remaining capacity after packing the first k − 1 items
c-fraction of ak can be packed (if fractional packing is allowed)
suppose we packed {a1, . . . , ak−1} and c-fraction of ak

we consumed whole C it is optimal as we took largest density

The two red statements implies that either
v1 + v2 + . . . + vk−1 ≥ opt/2 or vk ≥ opt/2

f (S) = max
{

v1 + v2 + . . . + vk−1 , vk
}

Imdad ullah Khan (LUMS) Approximation Algorithms 13 / 21

Knapsack Problem: modified-greedy-by-ratio

modified-greedy-by-ratio algorithm is 2-approximate

We show that this analysis is tight

Consider the instance

U = {a1, a2, a3}
v1 = 1 + ϵ/2, v2 = v3 = 1
w1 = 1 + ϵ/3, w2 = w3 = 1
C = 2

S = {a1}

opt = {a2, a3}

Let S be the output of A = modified-greedy-by-ratio

Approximation ratio achieved is arbitrarily close to 2

Runtime of A is O(n log n) (pseudo-polynomial)
each density computation takes log(C ·

∑n
i=1 vi)

Recall runtime of dynamic programming algorithm is O(n · C)

Imdad ullah Khan (LUMS) Approximation Algorithms 14 / 21

A pseudo-polynomial time algorithm for Knapsack
modified-greedy-by-ratio algorithm for knapsack is

pseudo polynomial in runtime

2-approximate

We identify cases where its output is even better

Lemma 1: If for some 0 < ϵ < 1/2, all wi ≤ ϵC , then
modified-greedy-by-ratio is (1− ϵ)-approximate

Lemma 2: If for some 0 < ϵ < 1/2, all vi ≤ ϵopt, then
modified-greedy-by-ratio is (1− ϵ)-approximate

We will use these lemmas to obtain a ptas for knapsack

Imdad ullah Khan (LUMS) Approximation Algorithms 15 / 21

ptas for the Knapsack Problem

Lemma 1: If for some 0 < ϵ < 1/2, all wi ≤ ϵC , then
modified-greedy-by-ratio is (1− ϵ)-approximate

Items sorted by v·/w· =⇒ ∀ 1 ≤ i ≤ k, vi
wi
≥ vk

wk
=⇒ vi ≥ wi

vk
wk

Adding up all these inequalities:

v1 + v2 + · · ·+ vk ≥ (w1 + w2 + · · ·+ wk) vk
wk

=⇒ wk ·
v1 + v2 + · · ·+ vk

w1 + w2 + · · ·+ wk
≥ vk

Recall ak is the first item skipped by A = modified-greedy-by-ratio

Plugging w1 + w2 + · · ·+ wk > C in above inequality:

vk ≤
wk
C · v1 + v2 + · · ·+ vk

Imdad ullah Khan (LUMS) Approximation Algorithms 16 / 21

ptas for the Knapsack Problem

Since all wi ≤ ϵC , plugging wk ≤ ϵC in above inequality:

vk ≤ ϵ · (v1 + v2 + · · ·+ vk) ≤ ϵ

1− ϵ
· (v1 + v2 + · · ·+ vk−1)

If (v1 + v2 + · · ·+ vk−1) ≥ (1− ϵ)opt, then we have (1− ϵ)-approximation

If (v1 + v2 + · · ·+ vk−1) < (1− ϵ)opt, then vk ≤ ϵopt

Combining these two:

v1 + v2 + · · ·+ vk−1 + vk < (1− ϵ)opt + ϵopt < opt

which contradicts the fact that ak−1 is the last item chosen

Thus, either (v1 + v2 + · · ·+ vk−1) ≥ (1− ϵ)opt or vk ≥ (1− ϵ)opt, giving a
(1− ϵ)-approximation

Imdad ullah Khan (LUMS) Approximation Algorithms 17 / 21

ptas for the Knapsack Problem

Lemma 2: If for some 0 < ϵ < 1/2, all vi ≤ ϵopt, then
modified-greedy-by-ratio is (1− ϵ)-approximate

Since ak is the first item skipped by A

(v1 + v2 + · · ·+ vk−1 + vk) ≥ opt

Since vk ≤ ϵopt , then

(v1 + v2 + · · ·+ vk−1) ≥ (1− ϵ)opt

This gives a (1− ϵ)-approximation

Imdad ullah Khan (LUMS) Approximation Algorithms 18 / 21

ptas for the knapsack Problem

In any optimal solution with total value opt and any 0 < ϵ < 1,
there are ≤ ⌈1/ϵ⌉ items with values ≥ ϵopt

▷ This follows from basic counting
We use this fact to design a ptas for knapsack problem

1 First, get ‘heavier’ items of the opt-solution values > ϵopt

2 Use modified-greedy-by-ratio for lighter items among remaining

Problem: How to get the heavier items of the opt-solution
▷ opt is unknown, only a bound on number of heavier items is known

1 Try all n⌈1/ϵ⌉+1 subsets of U of sizes ≤ ⌈1/ϵ⌉

2 and select the most valuable feasible subset

Imdad ullah Khan (LUMS) Approximation Algorithms 19 / 21

ptas for the knapsack Problem

For a set S ⊆ U, w(S) =
∑

i∈S wi and v(S) =
∑

i∈S vi

Algorithm : knapsack-ptas

h← ⌈1/ϵ⌉
max-tot-value-heavy-items ← 0
max-value-heavy-set ← ∅
for each H ⊆ U, such that |H| ≤ h and w(H) ≤ C do

vm ← argmini∈H(vi)
U ′ ← {ai ∈ U \ H : vi < vm} ▷ lighter items in U \ H
S ← modified-greedy-by-ratio(U ′, C − w(H))
if max-tot-value-heavy-items < v(H) + v(S) then

max-tot-value-heavy-items ← v(H) + v(S)
max-value-heavy-set ← H ∪ S

Imdad ullah Khan (LUMS) Approximation Algorithms 20 / 21

ptas for the knapsack Problem

Runtime:

For each of the O(n⌈1/ϵ⌉+1) subsets, linear work is done
before calling modified-greedy-by-ratio
Sorting done only once but dominated by loop
Total time polynomial in n and exponential in 1/ϵ

Approximation Ratio:
Consider the iteration where the set H is part of optimal solution

▷ since all subsets of size at most h are checked
H can not have more than h items of value > ϵ · opt
Let U ′ ← {ai ∈ U \ H : vi < vm} and opt′ be optimal value for U ′

▷ opt = v(H) + opt′

Since ∀ i ∈ U ′, vi ≤ ϵ · opt, solution for U ′ has value ≥ (1− ϵ)opt′

value of knapsack-ptas output is v(H) + (1− ϵ)opt′ ≥ (1− ϵ)opt

▷ v(H) may be 0, i.e. optimal solution may not include any heavy item

Imdad ullah Khan (LUMS) Approximation Algorithms 21 / 21

