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Quality of Approximation: Types

Approximation Factor/Ratio

Given an optimization problem P with value function f on solution space

The approximation ratio or approximation factor of an algorithm A is
defined as the ratio ‘between’ value of output of A and value of opt

For minimization problem it is f
(

A(I)
)
/f

(
opt(I)

)
For maximization problem it is f

(
opt(I)

)
/f

(
A(I)

)
▷ Note: approximation factor is always bigger than 1

Generally, approximation factor is defined as max
{

f
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A(I)
)

f
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opt(I)
) ,

f
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)

f
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Quality of Approximation: Types

Approximation Error

Given an optimization problem P with value function f on solution space

The approximation error of A is its approximation factor minus 1

For a minimization problem it is
f
(

A(I)
)
/f

(
opt(I)

)
− 1 = f

(
A(I)

)
−f

(
opt(I)

)
/f

(
opt(I)

)
For a maximization problem it is
f
(

opt(I)
)
/f

(
A(I)

)
− 1 = f

(
opt(I)

)
−f

(
A(I)

)
/f

(
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)
▷ Useful when approximation ratio is close to 1

Also called relative approximation error
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Quality of Approximation: Types

Polynomial Time Approximation Scheme (PTAS)

Given an optimization problem P with value function f on solution space

A family of algorithms A(ϵ) is called a polynomial time approximation
scheme if for a given parameter ϵ, on any instance I, A(ϵ) achieves an
approximation error ϵ and runtime of A is polynomial in |I| = n

For a minimization problem this means f
(
A(I)

)
≤ (1 + ϵ) · f

(
opt(I)

)
For a maximization problem this means f

(
A(I)

)
≥ (1− ϵ) · f

(
opt(I)

)
Runtime of A could be exponential in 1/ϵ ▷ e.g. O(n1/ϵ)
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Knapsack Problem

Input:
Items: U = {a1, . . . , an} ▷ Fixed order
Weights: w : U → Z+ ▷ (w1, . . . , wn)
Values: v : U → R+ ▷ (v1, . . . , vn)
Capacity: C ∈ R+

Output:
A subset S ⊂ U
Capacity constraint: ∑

ai ∈S
wi ≤ C

Objective: Maximize ∑
ai ∈S

vi
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Knapsack Problem

Input:

Items: U = {a1, . . . , an} (fixed order)
Weights: w : U → Z+: w1, . . . , wn

Values: v : U → R+: v1, . . . , vn

Capacity: C ∈ R+

Output:

A subset S ⊂ U
Capacity constraint:

∑
ai ∈S

wi ≤ C

Objective: Maximize
∑

ai ∈S
vi

ID weight value
1 1 1
2 2 6
3 5 18
4 6 22
5 7 28
6 98 99

C = 11

{1, 2} weight 3, value 7
{1, 2, 4} weight 9, value 29
{3, 4} weight 11, value 40
{4, 5} weight 13, value 50
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Knapsack Problem: Greedy Algorithms

Input:

Items: U = {a1, . . . , an} (fixed order)
Weights: w : U → Z+: w1, . . . , wn

Values: v : U → R+: v1, . . . , vn

Capacity: C ∈ R+

Output:

A subset S ⊂ U
Capacity constraint:

∑
ai ∈S

wi ≤ C

Objective: Maximize
∑

ai ∈S
vi

Greedy by Value
Select the most profitable item
Check if its fits remaining capacity
Repeat

ID weight value
1 51 51
2 50 50
3 50 50

C = 100

{1} weight 51, value 51

Optimal {2, 3} weight 100, value 100
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Knapsack Problem: Greedy Algorithms

Input:

Items: U = {a1, . . . , an} (fixed order)
Weights: w : U → Z+: w1, . . . , wn

Values: v : U → R+: v1, . . . , vn

Capacity: C ∈ R+

Output:

A subset S ⊂ U
Capacity constraint:

∑
ai ∈S

wi ≤ C

Objective: Maximize
∑

ai ∈S
vi

Greedy by weight
Select the least weighted item
Check if its fits remaining capacity
Repeat

ID weight value
1 1 1
2 50 50
3 50 50

C = 100

{1, 2} weight 51, value 51

Optimal {2, 3} weight 100, value 100
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Knapsack Problem: Greedy Algorithms

Input:

Items: U = {a1, . . . , an} (fixed order)
Weights: w : U → Z+: w1, . . . , wn

Values: v : U → R+: v1, . . . , vn

Capacity: C ∈ R+

Output:

A subset S ⊂ U
Capacity constraint:

∑
ai ∈S

wi ≤ C

Objective: Maximize
∑

ai ∈S
vi

greedy-by-ratio
Select item with highest vi/wi

Check if its fits capacity
Repeat

ID weight value ratio
1 1 1 1
2 2 6 3
3 5 18 3.6
4 6 22 3.67
5 7 28 4
6 98 99 1.01

C = 11
{5, 2, 1} weight 10, value 35
Optimal {3, 4} weight 11, value 40

Imdad ullah Khan (LUMS) Approximation Algorithms 9 / 21



Knapsack Problem: greedy-by-ratio
The greedy-by-ratio algorithm is suboptimal but worth exploring

Algorithm greedy-by-ratio
if

∑n
i=1 wi ≤ C then ▷ If all items fit in the sack, then take all

return U
sort items by vi/wi ▷ assume v1/w1 ≥ v2/w2 ≥ . . . ≥ vn/wn

weight ← 0 ▷ total weight collected so far
value ← 0 ▷ total value collected so far
S ← ∅ ▷ Initially the knapsack is empty
for i = 1→ n do

if weight + wi < C then
S ← S ∪ {ai}
value ← value + vi

weight ← weight + wi

Imdad ullah Khan (LUMS) Approximation Algorithms 10 / 21



Knapsack Problem: greedy-by-ratio

We saw example where greedy-by-ratio algorithm was suboptimal
The following example show that it could be arbitrarily bad
The ratio vi/wi is called the density of item ai

Density is not necessarily a good measure of profitability

greedy-by-ratio

ID weight value
1 1 2
2 C C

C : is the capacity
Ouput: {1} weight 1, value 2
Optimal: {2} weight C , value C
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Knapsack Problem: modified-greedy-by-ratio
Can improve greedy-by-ratio with a simple trick
Run another algorithm in parallel- chooses the first item this one skips
Return the best of the above two algorithms

Algorithm modified-greedy-by-ratio
sort items by vi/wi ▷ assume v1/w1 ≥ v2/w2 ≥ . . . ≥ vn/wn

weight ← 0 ▷ total weight collected so far
value ← 0 ▷ total value collected so far
S ← ∅ ▷ initially the knapsack is empty
for i = 1→ n do

if weight + wi < C then
• S ← S ∪ {ai} • value ← value + vi • weight ← weight + wi

k ← index of first item skipped above
if value ≥ vk then return S
else return {ak}

Imdad ullah Khan (LUMS) Approximation Algorithms 12 / 21



Knapsack Problem: modified-greedy-by-ratio

modified-greedy-by-ratio algorithm is 2-approximate

Let S be the output of A = modified-greedy-by-ratio

Let k be the index of first item skipped by A

v1 + v2 + . . . + vk−1 ≤ opt why?

v1 + v2 + . . . + vk−1 + vk ≥ opt

Actually, v1 + v2 + . . . + vk−1 + c · vk ≥ opt ▷ c = C−(w1+w2+...+wk−1)
wk

numerator is remaining capacity after packing the first k − 1 items
c-fraction of ak can be packed (if fractional packing is allowed)
suppose we packed {a1, . . . , ak−1} and c-fraction of ak

we consumed whole C it is optimal as we took largest density

The two red statements implies that either
v1 + v2 + . . . + vk−1 ≥ opt/2 or vk ≥ opt/2

f (S) = max
{

v1 + v2 + . . . + vk−1 , vk
}
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Knapsack Problem: modified-greedy-by-ratio

modified-greedy-by-ratio algorithm is 2-approximate

We show that this analysis is tight

Consider the instance

U = {a1, a2, a3}
v1 = 1 + ϵ/2, v2 = v3 = 1
w1 = 1 + ϵ/3, w2 = w3 = 1
C = 2

S = {a1}

opt = {a2, a3}

Let S be the output of A = modified-greedy-by-ratio

Approximation ratio achieved is arbitrarily close to 2

Runtime of A is O(n log n) (pseudo-polynomial)
each density computation takes log(C ·

∑n
i=1 vi)

Recall runtime of dynamic programming algorithm is O(n · C)
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A pseudo-polynomial time algorithm for Knapsack
modified-greedy-by-ratio algorithm for knapsack is

pseudo polynomial in runtime

2-approximate

We identify cases where its output is even better

Lemma 1: If for some 0 < ϵ < 1/2, all wi ≤ ϵC , then
modified-greedy-by-ratio is (1− ϵ)-approximate

Lemma 2: If for some 0 < ϵ < 1/2, all vi ≤ ϵopt, then
modified-greedy-by-ratio is (1− ϵ)-approximate

We will use these lemmas to obtain a ptas for knapsack
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ptas for the Knapsack Problem

Lemma 1: If for some 0 < ϵ < 1/2, all wi ≤ ϵC , then
modified-greedy-by-ratio is (1− ϵ)-approximate

Items sorted by v·/w· =⇒ ∀ 1 ≤ i ≤ k, vi
wi
≥ vk

wk
=⇒ vi ≥ wi

vk
wk

Adding up all these inequalities:

v1 + v2 + · · ·+ vk ≥ (w1 + w2 + · · ·+ wk) vk
wk

=⇒ wk ·
v1 + v2 + · · ·+ vk

w1 + w2 + · · ·+ wk
≥ vk

Recall ak is the first item skipped by A = modified-greedy-by-ratio

Plugging w1 + w2 + · · ·+ wk > C in above inequality:

vk ≤
wk
C · v1 + v2 + · · ·+ vk
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ptas for the Knapsack Problem

Since all wi ≤ ϵC , plugging wk ≤ ϵC in above inequality:

vk ≤ ϵ · (v1 + v2 + · · ·+ vk) ≤ ϵ

1− ϵ
· (v1 + v2 + · · ·+ vk−1)

If (v1 + v2 + · · ·+ vk−1) ≥ (1− ϵ)opt, then we have (1− ϵ)-approximation

If (v1 + v2 + · · ·+ vk−1) < (1− ϵ)opt, then vk ≤ ϵopt

Combining these two:

v1 + v2 + · · ·+ vk−1 + vk < (1− ϵ)opt + ϵopt < opt

which contradicts the fact that ak−1 is the last item chosen

Thus, either (v1 + v2 + · · ·+ vk−1) ≥ (1− ϵ)opt or vk ≥ (1− ϵ)opt, giving a
(1− ϵ)-approximation
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ptas for the Knapsack Problem

Lemma 2: If for some 0 < ϵ < 1/2, all vi ≤ ϵopt, then
modified-greedy-by-ratio is (1− ϵ)-approximate

Since ak is the first item skipped by A

(v1 + v2 + · · ·+ vk−1 + vk) ≥ opt

Since vk ≤ ϵopt , then

(v1 + v2 + · · ·+ vk−1) ≥ (1− ϵ)opt

This gives a (1− ϵ)-approximation
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ptas for the knapsack Problem

In any optimal solution with total value opt and any 0 < ϵ < 1,
there are ≤ ⌈1/ϵ⌉ items with values ≥ ϵopt

▷ This follows from basic counting
We use this fact to design a ptas for knapsack problem

1 First, get ‘heavier’ items of the opt-solution values > ϵopt

2 Use modified-greedy-by-ratio for lighter items among remaining

Problem: How to get the heavier items of the opt-solution
▷ opt is unknown, only a bound on number of heavier items is known

1 Try all n⌈1/ϵ⌉+1 subsets of U of sizes ≤ ⌈1/ϵ⌉

2 and select the most valuable feasible subset
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ptas for the knapsack Problem

For a set S ⊆ U, w(S) =
∑

i∈S wi and v(S) =
∑

i∈S vi

Algorithm : knapsack-ptas

h← ⌈1/ϵ⌉
max-tot-value-heavy-items ← 0
max-value-heavy-set ← ∅
for each H ⊆ U, such that |H| ≤ h and w(H) ≤ C do

vm ← argmini∈H(vi)
U ′ ← {ai ∈ U \ H : vi < vm} ▷ lighter items in U \ H
S ← modified-greedy-by-ratio(U ′, C − w(H))
if max-tot-value-heavy-items < v(H) + v(S) then

max-tot-value-heavy-items ← v(H) + v(S)
max-value-heavy-set ← H ∪ S
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ptas for the knapsack Problem

Runtime:

For each of the O(n⌈1/ϵ⌉+1) subsets, linear work is done
before calling modified-greedy-by-ratio
Sorting done only once but dominated by loop
Total time polynomial in n and exponential in 1/ϵ

Approximation Ratio:
Consider the iteration where the set H is part of optimal solution

▷ since all subsets of size at most h are checked
H can not have more than h items of value > ϵ · opt
Let U ′ ← {ai ∈ U \ H : vi < vm} and opt′ be optimal value for U ′

▷ opt = v(H) + opt′

Since ∀ i ∈ U ′, vi ≤ ϵ · opt, solution for U ′ has value ≥ (1− ϵ)opt′

value of knapsack-ptas output is v(H) + (1− ϵ)opt′ ≥ (1− ϵ)opt

▷ v(H) may be 0, i.e. optimal solution may not include any heavy item
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