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Relative Approximation Algorithms

Given an optimization problem P with value function f on solution space

Approximation ratio/factor of algorithm A is max
{

f
(

A(I)
)

f
(

opt(I)
) ,

f
(

opt(I)
)

f
(

A(I)
) }

Relative Approximation Algorithms
An algorithm A is called a α(n)-approximate algorithm, if for any
instance I of size n, A achieves an approximation ratio α(n)

For a minimization problem this means f
(
A(I)

)
≤ α(n) · f

(
opt(I)

)
For a maximization problem this means f

(
A(I)

)
≥ 1/α(n) · f

(
opt(I)

)
When α does not depend on n, A is called constant factor (relative)
approximation algorithm
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set-cover

Given a set U of n elements

A collection S of m subsets of U, S1, S2, . . . , Sm

A Set Cover is a subcollection I ⊂ {1, 2, . . . , m} with
⋃
i∈I

Si = U

U : {1, 2, 3, 4, 5, 6}
S : {1, 2, 3}, {3, 4}, {1, 3, 4, 5}, {2, 4, 6}, {1, 3, 5, 6}, {1, 2, 4, 5, 6}

Cover-1: {1, 2, 3},{3, 4}, {1, 3, 4, 5}, {2, 4, 6}, {1, 3, 5, 6}, {1, 2, 4, 5, 6}

Cover-2: {1, 2, 3}, {3, 4}, {1, 3, 4, 5}, {2, 4, 6}, {1, 3, 5, 6},{1, 2, 4, 5, 6}

Cover-3: {1, 2, 3}, {3, 4},{1, 3, 4, 5}, {2, 4, 6}, {1, 3, 5, 6},{1, 2, 4, 5, 6}

The first cover has size 3, the latter two have size 2 each
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set-cover

Given a set U of n elements

A collection S of m subsets of U, S1, S2, . . . , Sm

A Set Cover is a subcollection I ⊂ {1, 2, . . . , m} with
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The min-set-cover(U,S) problem: Find a cover of minimum size?

In the more general version, each set in S has a weight/cost and the goal
is to find a cover with minimum total weight
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set-cover: Greedy Approximation Algorithm
Choose a set Si from S that covers the most number of (yet) uncovered
elements, until all elements of U are covered

Algorithm greedy-set-cover(U,S)
X ← U ▷ Yet uncovered elements
C ← ∅
while X ̸= ∅ do

Select an Si ∈ S that maximizes |Si ∩ X | ▷ Covers most elements
C ← C ∪ Si

X ← X \ Si

return C

U = {1, 2, 3, 4, 5}, S = {{1, 2}, {1}, {1, 4}, {4}, {1, 2, 3, 5}, {4, 5}}

1 First pick {1, 2, 3, 5} as it covers 4 elements

2 Next pick {1, 4}, {4} or {4, 5} to cover all elements of U
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set-cover: Greedy Approximation Algorithm
Algorithm greedy-set-cover(U,S)

X ← U ▷ Yet uncovered elements
C ← ∅
while X ̸= ∅ do

Select an Si ∈ S that maximizes |Si ∩ X | ▷ Covers most elements
C ← C ∪ Si
X ← X \ Si

return C

S1

S2 S3
U

The algorithm will select S1, S2, and S3. While optimal is S2 and S3
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set-cover: Greedy Approximation Algorithm
Quality of greedy-set-cover(U,S):

Let |U| = n, and let k be the size of an optimal set cover

By pigeon-hold principle, there exists a set S ∈ S covering ≥ n/k elements

Let ni be the number of uncovered elements after ith iteration ▷ |X |

There is a set S /∈ C covering at least ni/k elements

▷ Actually there will be a set covering at least ni/k−i elements

We get ni ≤ (1− 1/k)ni−1 ≤ (1− 1/k)2ni−2 ≤ · · · ≤ (1− 1/k)in

The algorithm stops after t iterations when nt ≤ (1− 1/k)tn < 1

This happens when t = k ln n

Approximation ratio of greedy-set-cover(U,S) is O(log n)
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set-cover: Greedy Approximation Algorithm

|R1 ∩ Ci| = |R2 ∩ Ci| = 2i−1

C1 C2 C3 C4 |Ci| = 2i |Ct| = 2t

R1

R2

|R1| = |R2| =
t∑

i=1

2i−1 = 2t − 1 n = |U | =
∣∣∣∣ t⋃
i=1

Ci

∣∣∣∣ = t∑
i=1

2i = 2t+1 − 2

greedy-set-cover selects Ct , Ct−1, · · · , C1

The optimal solution is R1 and R2

On this example, the algorithm approximation factor is O(log n)
▷ Hence, the analysis is tight

It is knwn that, unless P = NP, this is the best approximation guarantee
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Relative Approximation Algorithm for vertex-cover
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vertex-cover

An vertex cover in a graph is subset C of vertices such that each edge has
at least one endpoint in C

A graph on 11 vertices A vertex cover of size 5

A vertex cover of size 6 A vertex cover of size 3

The min-vertex-cover(G) problem: Find a min vertex cover in G?
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vertex-cover: Greedy Algorithm
The greedy idea: Keep adding vertices that cover maximum edges

▷ Essentially graph version of greedy-set-cover(U,S) algorithm

Algorithm greedy-vertex-cover(G)
C ← ∅
while E (G) ̸= ∅ do

Select v that has maximum degree
C ← C ∪ {v}
G ← G − v

return C

Clearly returns a vertex cover and is O(log n)-approximate algorithm
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vertex-cover: Greedy Algorithm
The greedy idea: Keep adding vertices that cover maximum edges

Algorithm greedy-vertex-cover(G)
C ← emptyset
while E(G) ̸= ∅ do

Select v that has maximum degree
C ← C ∪ {v} G ← G − v

return C

Depending on tie-breaking, the algorithm could select the
the 2 green vertices, 3 blue vertices, then 6 red vertices ▷ |C | = 11
While minimum vertex cover is of size 6 (red vertices)
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vertex-cover: Greedy Algorithm
The greedy idea: Keep adding vertices that cover maximum edges

Another view of the above example

3! vertices of degree 3︷ ︸︸ ︷

︸ ︷︷ ︸
3!
3
vertices of degree 3

︸ ︷︷ ︸
3!
2
vertices of degree 2

︸ ︷︷ ︸
3!
1
vertices of degree 1

OPT-Cover : Top Vertices: 3!

Greedy Cover: Bottom Vertices: 3!( 13 + 1
2 + 1

1 )
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vertex-cover: Greedy Algorithm
The greedy idea: Keep adding vertices that cover maximum edges

A tight example for greedy-vertex-cover(G)

k! vertices of degree k︷ ︸︸ ︷

︸ ︷︷ ︸
k!
k
vertices of degree k

︸ ︷︷ ︸
k!

k−1
vertices of degree k−1

︸ ︷︷ ︸
k!
1
vertices of degree 1

OPT-Cover : Top Vertices: k!

Greedy Cover: Bottom Vertices: k!( 1k + 1
k−1 + . . .+ 1

1 ) = k! log k

. . . . . . . . .︸ ︷︷ ︸
k!

k−2
vertices of degree k−2

. . . . . .
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vertex-cover: Constant Factor Approximation
vertex-cover is a special case, we exploit it’s special structure
Note: For every edge (x , y), x or y or both have to be in optimal cover

Algorithm approx-vertex-cover(G)
C ← ∅
while E ̸= ∅ do

pick any edge {u, v} ∈ E , select arbitrarily u or v (call it s)
C ← C ∪ {s}
Remove all edges incident on s

return C

approx-vertex-cover(G) clearly produces a cover
Output could be very arbitrarily bad

▷ Optimal cover is {v0}
▷ Output could be all other vertices

v1
v2

v3

v4v5v6

v7

v8
v0
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vertex-cover: Constant Factor Approximation
Note: For every edge (x , y), x or y or both have to be in optimal cover

better-approx-vertex-cover(G) uses the seemingly wasteful idea

Algorithm better-approx-vertex-cover(G)
C ← ∅
while E ̸= ∅ do

pick any {u, v} ∈ E
C ← C ∪ {u, v}
Remove all edges incident to either u or v

return C

better-approx-vertex-cover(G) clearly produces a cover

How good is the output cover?
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vertex-cover: Constant Factor Approximation
Algorithm better-approx-vert-cov(G)

C ← ∅
while E ̸= ∅ do

pick any {u, v} ∈ E
C ← C ∪ {u, v}
Remove all edges incident to either u or v

return C

better-approx-vertex-cover(G)
clearly produces a cover

How good is the output cover?

better-approx-vertex-cover(G) is 2-approximate

For each edge e = (u, v), opt must include either u or v
At worst better-approx-vert-cov(G) picks u and v ▷ f (C) ≤ 2f (opt)

a b

c d

An optimal cover is {a, d}
We choose {a, b, c, d}

Best known guarantee for vertex cover is 2− O(log log n/ log n)
The best known lower bound is 4/3 ▷ Open problem: close the gap
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Scheduling on Identical Parallel Machines
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Scheduling on Identical Parallel Machines
This is a general problem of load balancing

An instance of the scheduling problem consists of
P : Set of n jobs (processes) {p1, p2, · · · , pn}

▷ Each job pi has a processing time ti

M : Set of k identical machines {m1, m2, · · · , mk}

A schedule, S : P→M is an assignment of jobs to machines

Let A(j) be set of jobs assigned to mj (preimages of mj)

Load Lj of machine mj is the total time of processes assigned to it

Lj =
∑

pi ∈A(j) ti

makespan of a schedule is the maximum load of any machine

makespan(S) = maxmj Lj
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Scheduling on Identical Parallel Machines

Instance: [P, M] P : Set of n jobs {p1, p2, · · · , pn} each with time ti

M : Set of k identical machines {m1, m2, · · · , mk}

A schedule, S : P → M is an assignment of jobs to machines

Let A(j) be set of jobs assigned to mj

Load Lj of mj is the total time of processes assigned to it Lj =
∑

pi ∈A(j) ti

makespan of a schedule is the max load of a machine makespan(S) = max
mj

Lj
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min-makespan(P, M) problem: Find a schedule S with min makespan(S)

The decision version min-makespan(P, M, t) is NP-Complete
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min-makespan: List Scheduling Algorithm
List scheduling [Graham (1966)] is a simple greedy algorithm

1 Go through jobs one by one in some fixed order
2 Assign pi to a machine that currently has the lowest load

Algorithm List Scheduling Algorithm
for j = 1 : k do

Aj ← ∅
Lj ← 0

for i = 1→ n do
mj : machine with minimum load at this time: mj = arg min

j
Lj

Aj ← Aj ∪ pi
Lj ← Lj + ti

▷ The first approximation algorithm (with proper worst case analysis)
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min-makespan: List Scheduling Algorithm
Algorithm List Scheduling Algorithm

for j = 1 : k do
Aj ← ∅
Lj ← 0

for i = 1→ n do
mj : machine with minimum load at this time: mj = arg min

j
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Aj ← Aj ∪ pi
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If the order of jobs is 2, 3, 4, 6, 2, 2, we get L1 = 8
If the order of jobs is 6, 4, 3, 2, 2, 2, we get L3 = 7 (optimal)
Notice is that order is very critical
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min-makespan: List Scheduling Algorithm
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min-makespan: List Scheduling Algorithm
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min-makespan: List Scheduling Algorithm
Algorithm List Scheduling Algorithm
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If the order of jobs is 2, 3, 4, 6, 2, 2 ▷ L1 = 8
If the order of jobs is 6, 4, 3, 2, 2, 2, we get L3 = 7 (optimal)
Notice is that order is very critical
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min-makespan: List Scheduling Algorithm
Algorithm List Scheduling Algorithm

for j = 1 : k do
Aj ← ∅
Lj ← 0

for i = 1→ n do
Let mj be a machine with minimum load at this time: mj = arg min

j
Lj

Aj ← Aj ∪ pi
Lj ← Lj + ti

p1

p2

p3

p4

p5

p6

2

3

4

6

2

2

4

6 2

3

m
a
k
e
spa

n
︷

︸︸
︷2

2

order 2, 3, 4, 6, 2, 2 order 6, 4, 3, 2, 2, 2

6

m
a
k
e
spa

n
︷

︸︸
︷4

2

2

2

3

m1 m2 m3m1 m2 m3

If the order of jobs is 2, 3, 4, 6, 2, 2 ▷ L1 = 8
If the order of jobs is 6, 4, 3, 2, 2, 2 ▷ L3 = 7 (optimal)
Notice that order is very critical
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min-makespan: List Scheduling Algorithm
Analysis of list scheduling algorithm for minimizing makespan problem
We establish the following lower bounds

Let I = [P, M] be an instance of minimizing makespan

opt(I) ≥ max
pi ∈P

ti = tmax

▷ ∵ the machine getting the longest process will have load at least tmax

opt(I) ≥ 1
k

∑
i

ti

▷ By php one of the k machines must do at least 1
k

∑
i ti work
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min-makespan: List Scheduling Algorithm
Analysis of list scheduling algorithm for minimizing makespan problem

opt(I) ≥ max
pi ∈P

ti = tmax and opt(I) ≥ 1
k

∑
i ti

wlog say m1 has max load and let pi be the last job placed at m1

At the time pi (iteration i) was assigned to m1, load of m1 was lowest

Let L′
1 be the load of m1 at the time of assigning pi

pi is the last job placed at m1 =⇒ L′
1 = L1 − ti

m1 was least loaded at time i , so for all other machines Lj ≥ L1 − ti∑
mj ∈M Lj =

∑
pi ∈P ti ≥ k(L1 − ti) + ti

opt(I) ≥ 1
k

∑
pi ∈P ti ≥ 1

k (k(L1 − ti) + ti) = L1 − (1− 1/k) ti

opt(I) ≥ L1 − (1− 1/k) opt(I) ▷ First Lower bound

makespan(A(I)) = L1 ≤ (2− 1/k) opt(I)
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min-makespan: List Scheduling Algorithm

The list scheduling algorithm is (2− 1/k)-approximate

This analysis is tight

k(k − 1) + 1 jobs. Time of first k(k − 1) jobs is 1. Time of last is k

k(k − 1) jobs of time 1 scheduled on each machine in round-robin fashion

Then the last job will be scheduled on any one machine
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k
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opt: First k(k − 1) jobs uniformly on k − 1 machines, last job to Mk

The achieved approximation factor is 2k−1/k = 2− 1/k
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min-makespan: List Scheduling Algorithm with LPT

The example show that we should not delay assigning long processes
Graham (1969): Longest Processing Time First (LPT rule)

1 Go through jobs one by one in some fixed decreasing order
2 Assign pi to a machine that currently has the lowest load

Algorithm List Scheduling Algorithm with LPT (P, M)
sort(P) so that t1 ≥ t2 . . . ≥ tn
for j = 1 : k do

Aj ← ∅
Lj ← 0

for i = 1→ n do
mj : machine with minimum load at this time: mj = arg min

j
Lj

Aj ← Aj ∪ pi
Lj ← Lj + ti
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min-makespan: List Scheduling Algorithm with LPT

Analysis of list scheduling algorithm with lpt

[LB-1] opt(I) ≥ max
pi ∈P

ti = tmax

[LB-2] opt(I) ≥ 1
k

∑
i ti

If n ≤ k, then list scheduling gives optimal solution

Assume n > k, then with LPT, a tighter lower bound is:

[LB-3] opt(I) ≥ 2tk+1

Since t1 ≥ tk−1 ≥ tk ≥ tk+1

Some machine must get at least two jobs among the first k + 1 jobs,
its load will be ≥ 2tk+1
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min-makespan: List Scheduling Algorithm with LPT

Analysis of list scheduling algorithm with lpt

[LB-1] opt(I) ≥ maxpi ∈P ti = tmax

[LB-2] opt(I) ≥ 1
k

∑
i ti

[LB-3] opt(I) ≥ 2tk+1 ▷ Assuming n > k

wlog say m1 has max load and let pi be the last job placed at m1

At the time pi (iteration i) was assigned to m1, load of m1 was lowest

Let L′
1 be the load of m1 at time i , L′

1 = L1 − ti

For all j , Lj ≥ L1 − ti , ∴
∑

mj ∈M Lj =
∑

pi ∈P ti ≥ k(L1 − ti) + ti

opt(I) ≥ 1/k
∑

pi ∈P ti ≥ 1/k(k(L1 − ti) + ti) = L1 − (1− 1/k) ti

opt(I) ≥ L1 − (1− 1/k) 1/2 opt(I) ▷ [LB-3]

makespan(A(I)) = L1 ≤ (3/2− 1/2k) opt(I)
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min-makespan: List Scheduling Algorithm with LPT

The List Scheduling Algorithm with LPT is (3/2− 1/2k)-approximate

This analysis is not tight - A more sophisticated analysis yields

The List Scheduling Algorithm with LPT is (4/3− 1/3k)-approximate

This analysis is tight, Consider 2k + 1 jobs
3 of duration k and 2 each of k + i , 1 ≤ i ≤ k − 1
The algorithm gives all but one machine 2 jobs with total load 3m− 1
The remaining machine gets 3 jobs and load 4m − 1
opt: 3 length-k jobs on a machine and remaining loads are 3k
The achieved approximation factor is 4k−1/3k = 4/3− 1/3k
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