Algorithms

Approximation Algorithms

■ Approximation Algorithms for Optimization Problems: Types

- Absolute Approximation Algorithms

■ Inapproximability by Absolute Approximate Algorithms

- Relative Approximation Algorithm
- InApproximability by Relative Approximate Algorithms
- Polynomial Time Approximation Schemes
- Fully Polynomial Time Approximation Schemes

```
Imdad ullah Khan
```


Relative Approximation Algorithms

Given an optimization problem P with value function f on solution space
Approximation ratio/factor of algorithm A is $\max \left\{\frac{f(A(I))}{f(\operatorname{OPT}(I))}, \frac{f(\mathrm{OPT}(I))}{f(A(I))}\right\}$

Relative Approximation Algorithms

An algorithm \boldsymbol{A} is called a $\alpha(n)$-approximate algorithm, if for any instance I of size n, A achieves an approximation ratio $\alpha(n)$

- For a minimization problem this means $f(A(I)) \leq \alpha(n) \cdot f($ OPT $(I))$
- For a maximization problem this means $f(A(I)) \geq 1 / \alpha(n) \cdot f(\mathrm{OPT}(I))$

When α does not depend on n, A is called constant factor (relative) approximation algorithm

- Given a set U of n elements
- A collection \mathcal{S} of m subsets of $U, \quad S_{1}, S_{2}, \ldots, S_{m}$
- A Set Cover is a subcollection $I \subset\{1,2, \ldots, m\}$ with $\bigcup_{i \in I} S_{i}=U$
$U:\{1,2,3,4,5,6\}$
$\mathcal{S}:\{1,2,3\},\{3,4\},\{1,3,4,5\},\{2,4,6\},\{1,3,5,6\},\{1,2,4,5,6\}$
Cover-1: $\{1,2,3\}, \quad\{1,3,4,5\},\{2,4,6\}$
Cover-2: $\{1,2,3\}$,
$\{1,2,4,5,6\}$
Cover-3:
$\{1,3,4,5\}$,
$\{1,2,4,5,6\}$

The first cover has size 3, the latter two have size 2 each

- Given a set U of n elements

■ A collection \mathcal{S} of m subsets of $U, S_{1}, S_{2}, \ldots, S_{m}$
■ A Set Cover is a subcollection $I \subset\{1,2, \ldots, m\}$ with $\bigcup_{i \in I} S_{i}=U$

SET-COVER

- Given a set U of n elements
- A collection \mathcal{S} of m subsets of $U, S_{1}, S_{2}, \ldots, S_{m}$

■ A Set Cover is a subcollection $I \subset\{1,2, \ldots, m\}$ with $\bigcup_{i \in I} S_{i}=U$

The min-SET-COVER (U, \mathcal{S}) problem: Find a cover of minimum size?

In the more general version, each set in \mathcal{S} has a weight/cost and the goal is to find a cover with minimum total weight

SET-COVER: Greedy Approximation Algorithm

Choose a set S_{i} from \mathcal{S} that covers the most number of (yet) uncovered elements, until all elements of U are covered

Algorithm GREEDY-SET-COVER (U, \mathcal{S})

$X \leftarrow U \quad \triangleright$ Yet uncovered elements
$C \leftarrow \emptyset$
while $X \neq \emptyset$ do
Select an $S_{i} \in \mathcal{S}$ that maximizes $\left|S_{i} \cap X\right|$
\triangleright Covers most elements $C \leftarrow C \cup S_{i}$ $X \leftarrow X \backslash S_{i}$
return C
$U=\{1,2,3,4,5\}, \quad \mathcal{S}=\{\{1,2\},\{1\},\{1,4\},\{4\},\{1,2,3,5\},\{4,5\}\}$
1 First pick $\{1,2,3,5\}$ as it covers 4 elements
2 Next pick $\{1,4\},\{4\}$ or $\{4,5\}$ to cover all elements of U

SET-COVER: Greedy Approximation Algorithm

Algorithm Greedy-Set-cover (U, \mathcal{S})
$X \leftarrow U$
\triangleright Yet uncovered elements
$C \leftarrow \emptyset$
while $X \neq \emptyset$ do
Select an $S_{i} \in \mathcal{S}$ that maximizes $\left|S_{i} \cap X\right|$
\triangleright Covers most elements

$$
\begin{aligned}
& C \leftarrow C \cup S_{i} \\
& X \leftarrow X \backslash S_{i}
\end{aligned}
$$

return C

The algorithm will select S_{1}, S_{2}, and S_{3}. While optimal is S_{2} and S_{3}

SET-COVER: Greedy Approximation Algorithm

Quality of $\operatorname{GreEDY-SET-COVER}(U, \mathcal{S})$:
Let $|U|=n$, and let k be the size of an optimal set cover
By pigeon-hold principle, there exists a set $S \in \mathcal{S}$ covering $\geq n / k$ elements
Let n_{i} be the number of uncovered elements after i th iteration
$\triangleright|X|$
There is a set $S \notin C$ covering at least n_{i} / k elements
\triangleright Actually there will be a set covering at least $n_{i} / k-i$ elements
We get $\quad n_{i} \leq(1-1 / k) n_{i-1} \leq(1-1 / k)^{2} n_{i-2} \leq \cdots \leq(1-1 / k)^{i} n$

- The algorithm stops after t iterations when $n_{t} \leq(1-1 / k)^{t} n<1$

■ This happens when $t=k \ln n$
Approximation ratio of greedy-set-cover (U, \mathcal{S}) is $O(\log n)$

SET-COVER: Greedy Approximation Algorithm

■ GREEDY-SET-COVER selects $C_{t}, C_{t-1}, \cdots, C_{1}$

- The optimal solution is R_{1} and R_{2}
- On this example, the algorithm approximation factor is $O(\log n)$
\triangleright Hence, the analysis is tight It is knwn that, unless $\mathrm{P}=\mathrm{NP}$, this is the best approximation guarantee

Relative Approximation Algorithm for VERTEX-COVER

VERTEX-COVER

An vertex cover in a graph is subset C of vertices such that each edge has at least one endpoint in C

The min-vertex-cover(G) problem: Find a min vertex cover in G ?

vertex-cover: Greedy Algorithm

The greedy idea: Keep adding vertices that cover maximum edges
\triangleright Essentially graph version of GREEDY-SET-COVER (U, \mathcal{S}) algorithm
Algorithm GREEDY-VERTEX-COVER(G)
$C \leftarrow \emptyset$
while $E(G) \neq \emptyset$ do
Select v that has maximum degree
$C \leftarrow C \cup\{v\}$
$G \leftarrow G-v$
return C

Clearly returns a vertex cover and is $O(\log n)$-approximate algorithm

vertex-cover: Greedy Algorithm

The greedy idea: Keep adding vertices that cover maximum edges

Algorithm GREEDY-VERTEX-COVER(G)

$C \leftarrow$ emptyset
while $E(G) \neq \emptyset$ do
Select v that has maximum degree

$$
C \leftarrow C \cup\{v\} \quad G \leftarrow G-v
$$

return C

Depending on tie-breaking, the algorithm could select the the 2 green vertices, 3 blue vertices, then 6 red vertices
$\triangleright|C|=11$ While minimum vertex cover is of size 6 (red vertices)

vertex-cover: Greedy Algorithm

The greedy idea: Keep adding vertices that cover maximum edges
Another view of the above example
3! vertices of degree 3

OPT-Cover : Top Vertices: 3!
Greedy Cover: Bottom Vertices: 3! $\left(\frac{1}{3}+\frac{1}{2}+\frac{1}{1}\right)$

vertex-cover: Greedy Algorithm

The greedy idea: Keep adding vertices that cover maximum edges A tight example for GREEDY-VERTEX-COVER(G)

vertex-cover: Constant Factor Approximation

VERTEX-COVER is a special case, we exploit it's special structure Note: For every edge $(x, y), x$ or y or both have to be in optimal cover

Algorithm APPROX-VERTEX-COVER(G)

$C \leftarrow \emptyset$
while $E \neq \emptyset$ do
pick any edge $\{u, v\} \in E, \quad$ select arbitrarily u or v (call it s)
$C \leftarrow C \cup\{s\}$
Remove all edges incident on s
return C
APPROX-VERTEX-COVER (G) clearly produces a cover Output could be very arbitrarily bad
\triangleright Optimal cover is $\left\{v_{0}\right\}$
\triangleright Output could be all other vertices

vertex-cover: Constant Factor Approximation

Note: For every edge $(x, y), x$ or y or both have to be in optimal cover BETTER-APPROX-VERTEX-COVER (G) uses the seemingly wasteful idea

Algorithm BETTER-APPROX-VERTEX-COVER(G)
$C \leftarrow \emptyset$
while $E \neq \emptyset$ do
pick any $\{u, v\} \in E$
$C \leftarrow C \cup\{u, v\}$
Remove all edges incident to either u or v return C

BETTER-APPROX-VERTEX-COVER(G) clearly produces a cover

How good is the output cover?

vertex-cover: Constant Factor Approximation

 \(C \leftarrow \emptyset\)
 while \(E \neq \emptyset\) do
 pick any \(\{u, v\} \in E\)
 \(C \leftarrow C \cup\{u, v\}\)
 Remove all edges incident to either \(u\) or \(v\)
 return \(C\)
    ```
```

```
Algorithm
```

```
Algorithm

Remove all edges incident to either \(u\) or \(v\) return \(C\)

BETTER-APPROX-VERTEX-COVER ( \(G\) ) clearly produces a cover

How good is the output cover?

\section*{BETTER-APPROX-VERTEX-COVER (G) is 2-approximate}
- For each edge \(e=(u, v)\), OPT must include either \(u\) or \(v\)
- At worst BETTER-APPROX-VERT-COV \((G)\) picks \(u\) and \(v \triangleright f(C) \leq 2 f\) (opt)

- An optimal cover is \(\{a, d\}\)
- We choose \(\{a, b, c, d\}\)
- Best known guarantee for vertex cover is \(2-O(\log \log n / \log n)\)
- The best known lower bound is \(4 / 3\)
\(\triangleright\) Open problem: close the gap

\section*{Scheduling on Identical Parallel Machines}

\section*{Scheduling on Identical Parallel Machines}

This is a general problem of load balancing
- An instance of the scheduling problem consists of

■ P : Set of \(n\) jobs (processes) \(\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}\)
\(\triangleright\) Each job \(p_{i}\) has a processing time \(t_{i}\)
■ \(\mathbf{M}\) : Set of \(k\) identical machines \(\left\{m_{1}, m_{2}, \cdots, m_{k}\right\}\)
■ A schedule, \(S: \mathbf{P} \rightarrow \mathbf{M}\) is an assignment of jobs to machines
- Let \(A(j)\) be set of jobs assigned to \(m_{j}\) (preimages of \(m_{j}\) )

■ Load \(L_{j}\) of machine \(m_{j}\) is the total time of processes assigned to it
\[
L_{j}=\sum_{p_{i} \in A(j)} t_{i}
\]
- MAKESPAN of a schedule is the maximum load of any machine

■ \(\operatorname{MAKESpan}(S)=\max _{m_{j}} L_{j}\)

\section*{Scheduling on Identical Parallel Machines}

Instance: [ \(\mathbf{P}, \mathbf{M}\) ]
■ P: Set of \(n\) jobs \(\quad\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}\) each with time \(t_{i}\)
- \(\mathbf{M}\) : Set of \(k\) identical machines \(\left\{m_{1}, m_{2}, \cdots, m_{k}\right\}\)
- A schedule, \(S: P \rightarrow M\) is an assignment of jobs to machines
- Let \(A(j)\) be set of jobs assigned to \(m_{j}\)
- Load \(L_{j}\) of \(m_{j}\) is the total time of processes assigned to it \(L_{j}=\sum_{p_{i} \in A(j)} t_{i}\)
- makespan of a schedule is the max load of a machine \(\operatorname{makespan}(S)=\max _{m_{j}} L_{j}\)

min-makespan \((P, M)\) problem: Find a schedule \(S\) with min makespan \((S)\)
The decision version min-makespan \((P, M, t)\) is NP-Complete

\section*{min-makespan: List Scheduling Algorithm}

List scheduling [Graham (1966)] is a simple greedy algorithm
1 Go through jobs one by one in some fixed order
2 Assign \(p_{i}\) to a machine that currently has the lowest load

\section*{Algorithm List Scheduling Algorithm}
\[
\begin{aligned}
\text { for } j & =1: k \text { do } \\
A_{j} & \leftarrow \emptyset \\
L_{j} & \leftarrow 0
\end{aligned}
\]
for \(i=1 \rightarrow n\) do
\(m_{j}\) : machine with minimum load at this time: \(m_{j}=\arg \min _{j} L_{j}\)
\(A_{j} \leftarrow A_{j} \cup p_{i}\)
\(L_{j} \leftarrow L_{j}+t_{i}\)
\(\triangleright\) The first approximation algorithm (with proper worst case analysis)

\section*{MIN-MAKESPAN: List Scheduling Algorithm}

\section*{Algorithm List Scheduling Algorithm}
```

for $j=1: k$ do
$A_{j} \leftarrow \emptyset$
$L_{j} \leftarrow 0$
for $i=1 \rightarrow n$ do
m_{j} : machine with minimum load at this time: $m_{j}=\arg \min L_{j}$
$A_{j} \leftarrow A_{j} \cup p_{i}$
$L_{j} \leftarrow L_{j}+t_{i}$

```

\(p_{5} \quad 2\)
\(p_{6}\)
2
order \(2,3,4,6,2,2\)

\section*{min-MAKESPAN: List Scheduling Algorithm}

\section*{Algorithm List Scheduling Algorithm}
```

for $j=1: k$ do
$A_{j} \leftarrow \emptyset$
$L_{j} \leftarrow 0$

```
    for \(i=1 \rightarrow n\) do
        Let \(m_{j}\) be a machine with minimum load at this time: \(m_{j}=\arg \min _{j} L_{j}\)
        \(A_{j} \leftarrow A_{j} \cup p_{i}\)
        \(L_{j} \leftarrow L_{j}+t_{i}\)

\(p_{4} \quad 6\)
\(p_{5} \quad 2\)
\(p_{6}\)
2

order \(2,3,4,6,2,2\)

\section*{min-MAKESPAN: List Scheduling Algorithm}

\section*{Algorithm List Scheduling Algorithm}
```

for $j=1: k$ do
$A_{j} \leftarrow \emptyset$
$L_{j} \leftarrow 0$

```
    for \(i=1 \rightarrow n\) do
        Let \(m_{j}\) be a machine with minimum load at this time: \(m_{j}=\arg \min _{j} L_{j}\)
        \(A_{j} \leftarrow A_{j} \cup p_{i}\)
        \(L_{j} \leftarrow L_{j}+t_{i}\)

\(p_{4} \quad 6\)
\(p_{5}\)

\(p_{6}\)

order \(2,3,4,6,2,2\)

\section*{min-MAKESPAN: List Scheduling Algorithm}

\section*{Algorithm List Scheduling Algorithm}
```

for $j=1: k$ do
$A_{j} \leftarrow \emptyset$
$L_{j} \leftarrow 0$

```
    for \(i=1 \rightarrow n\) do
        Let \(m_{j}\) be a machine with minimum load at this time: \(m_{j}=\arg \min _{j} L_{j}\)
        \(A_{j} \leftarrow A_{j} \cup p_{i}\)
        \(L_{j} \leftarrow L_{j}+t_{i}\)

\(p_{4} \quad 6\)
\(p_{5}\)
        2
\(p_{6}\)
order \(2,3,4,6,2,2\)

\section*{min-MAKESPAN: List Scheduling Algorithm}

\section*{Algorithm List Scheduling Algorithm}
```

for $j=1: k$ do
$A_{j} \leftarrow \emptyset$
$L_{j} \leftarrow 0$

```
    for \(i=1 \rightarrow n\) do
        Let \(m_{j}\) be a machine with minimum load at this time: \(m_{j}=\arg \min _{j} L_{j}\)
        \(A_{j} \leftarrow A_{j} \cup p_{i}\)
        \(L_{j} \leftarrow L_{j}+t_{i}\)

\(p_{5}\)

\(p_{6}\)

order \(2,3,4,6,2,2\)

\section*{min-MAKESPAN: List Scheduling Algorithm}

\section*{Algorithm List Scheduling Algorithm}
```

for $j=1: k$ do
$A_{j} \leftarrow \emptyset$
$L_{j} \leftarrow 0$

```
    for \(i=1 \rightarrow n\) do
        Let \(m_{j}\) be a machine with minimum load at this time: \(m_{j}=\arg \min _{j} L_{j}\)
        \(A_{j} \leftarrow A_{j} \cup p_{i}\)
        \(L_{j} \leftarrow L_{j}+t_{i}\)

\(p_{5}\)

\(p_{6}\)

order \(2,3,4,6,2,2\)

\section*{min-MAKeSpan: List Scheduling Algorithm}

\section*{Algorithm List Scheduling Algorithm}
```

for $j=1: k$ do
$A_{j} \leftarrow \emptyset$
$L_{j} \leftarrow 0$

```
    for \(i=1 \rightarrow n\) do
        Let \(m_{j}\) be a machine with minimum load at this time: \(m_{j}=\arg \min _{j} L_{j}\)
    \(A_{j} \leftarrow A_{j} \cup p_{i}\)
    \(L_{j} \leftarrow L_{j}+t_{i}\)


order \(2,3,4,6,2,2\)

■ If the order of jobs is \(2,3,4,6,2,2\)

\section*{min-MAKespan: List Scheduling Algorithm}

\section*{Algorithm List Scheduling Algorithm}
\[
\begin{gathered}
\text { for } j=1: k \text { do } \\
A_{j} \leftarrow \emptyset \\
L_{j} \leftarrow 0
\end{gathered}
\]
for \(i=1 \rightarrow n\) do
Let \(m_{j}\) be a machine with minimum load at this time: \(m_{j}=\arg \min L_{j}\)
\(A_{j} \leftarrow A_{j} \cup p_{i}\)
\(L_{j} \leftarrow L_{j}+t_{i}\)


order \(2,3,4,6,2,2\)

order \(6,4,3,2,2,2\)
- If the order of jobs is \(2,3,4,6,2,2\)
- If the order of jobs is \(6,4,3,2,2,2\)
\(\triangleright L_{1}=8\)
\(\triangleright L_{3}=7\) (optimal)
- Notice that order is very critical

\section*{min-makespan: List Scheduling Algorithm}

Analysis of list scheduling algorithm for minimizing makespan problem We establish the following lower bounds

Let \(I=[P, M]\) be an instance of minimizing makespan
\[
\operatorname{OPT}(I) \geq \max _{p_{i} \in P} t_{i}=t_{\max }
\]
\(\triangleright \because\) the machine getting the longest process will have load at least \(t_{\text {max }}\)
\[
\operatorname{OPT}(I) \geq \frac{1}{k} \sum_{i} t_{i}
\]
\(\triangleright\) By PHP one of the \(k\) machines must do at least \(\frac{1}{k} \sum_{i} t_{i}\) work

\section*{MIN-MAKESPAN: List Scheduling Algorithm}

Analysis of list scheduling algorithm for minimizing makespan problem
\[
\operatorname{OPT}(I) \geq \max _{p_{i} \in P} t_{i}=t_{\max } \quad \text { and } \quad \operatorname{OPT}(I) \geq \frac{1}{k} \sum_{i} t_{i}
\]
- WLOG say \(m_{1}\) has max load and let \(p_{i}\) be the last job placed at \(m_{1}\)
- At the time \(p_{i}\) (iteration \(i\) ) was assigned to \(m_{1}\), load of \(m_{1}\) was lowest
- Let \(L_{1}^{\prime}\) be the load of \(m_{1}\) at the time of assigning \(p_{i}\)
- \(p_{i}\) is the last job placed at \(m_{1} \Longrightarrow L_{1}^{\prime}=L_{1}-t_{i}\)

■ \(m_{1}\) was least loaded at time \(i\), so for all other machines \(L_{j} \geq L_{1}-t_{i}\)
- \(\sum_{m_{j} \in M} L_{j}=\sum_{p_{i} \in P} t_{i} \geq k\left(L_{1}-t_{i}\right)+t_{i}\)
\(\square \operatorname{OPT}(I) \geq \frac{1}{k} \sum_{p_{i} \in P} t_{i} \geq \frac{1}{k}\left(k\left(L_{1}-t_{i}\right)+t_{i}\right)=L_{1}-(1-1 / k) t_{i}\)
\(\square \operatorname{OPT}(I) \geq L_{1}-(1-1 / k) \operatorname{OPT}(I) \quad \triangleright\) First Lower bound
- \(\operatorname{MAKESPAN}(A(I))=L_{1} \leq(2-1 / k) \operatorname{OPT}(I)\)

\section*{min-makespan: List Scheduling Algorithm}

The List scheduling algorithm is \((2-1 / k)\)-approximate
This analysis is tight
\(k(k-1)+1\) jobs. Time of first \(k(k-1)\) jobs is 1 . Time of last is \(k\)
- \(k(k-1)\) jobs of time 1 scheduled on each machine in round-robin fashion
- Then the last job will be scheduled on any one machine


OPT: First \(k(k-1)\) jobs uniformly on \(k-1\) machines, last job to \(M_{k}\) The achieved approximation factor is \(2 k-1 / k=2-1 / k\)

\section*{min-makespan: List Scheduling Algorithm with LPT}

The example show that we should not delay assigning long processes
Graham (1969): Longest Processing Time First (LPT rule)
1 Go through jobs one by one in some fixed decreasing order
2 Assign \(p_{i}\) to a machine that currently has the lowest load
Algorithm List Scheduling Algorithm with LPT ( \(P, M\) )
\(\operatorname{SORT}(P)\) so that \(t_{1} \geq t_{2} \ldots \geq t_{n}\)
for \(j=1: k\) do
\(A_{j} \leftarrow \emptyset\)
\(L_{j} \leftarrow 0\)
for \(i=1 \rightarrow n\) do
\(m_{j}\) : machine with minimum load at this time: \(m_{j}=\arg \min _{j} L_{j}\)
\(A_{j} \leftarrow A_{j} \cup p_{i}\)
\(L_{j} \leftarrow L_{j}+t_{i}\)

\section*{min-makespan: List Scheduling Algorithm with LPT}

Analysis of list scheduling algorithm with LPT
■ [LB-1] \(\operatorname{OPT}(I) \geq \max _{p_{i} \in P} t_{i}=t_{\text {max }}\)
■ [LB-2] \(\operatorname{OPT}(I) \geq \frac{1}{k} \sum_{i} t_{i}\)
If \(n \leq k\), then list scheduling gives optimal solution
Assume \(n>k\), then with LPT, a tighter lower bound is:
- [LB-3] \(\operatorname{OPT}(I) \geq 2 t_{k+1}\)

Since \(\quad t_{1} \geq t_{k-1} \geq t_{k} \geq t_{k+1}\)
Some machine must get at least two jobs among the first \(k+1\) jobs, its load will be \(\geq 2 t_{k+1}\)

Analysis of list scheduling algorithm with LPT
- [LB-1] \(\operatorname{OPT}(I) \geq \max _{p_{i} \in P} t_{i}=t_{\text {max }}\)

■ [LB-2] \(\operatorname{OPT}(I) \geq \frac{1}{k} \sum_{i} t_{i}\)
- [LB-3] \(\operatorname{OPT}(I) \geq 2 t_{k+1}\)
\(\triangleright\) Assuming \(n>k\)
- WLOG say \(m_{1}\) has max load and let \(p_{i}\) be the last job placed at \(m_{1}\)
- At the time \(p_{i}\) (iteration \(i\) ) was assigned to \(m_{1}\), load of \(m_{1}\) was lowest

■ Let \(L_{1}^{\prime}\) be the load of \(m_{1}\) at time \(i, \quad L_{1}^{\prime}=L_{1}-t_{i}\)
■ For all \(j, \quad L_{j} \geq L_{1}-t_{i}, \therefore \sum_{m_{j} \in M} L_{j}=\sum_{p_{i} \in P} t_{i} \geq k\left(L_{1}-t_{i}\right)+t_{i}\)
- \(\operatorname{OPT}(I) \geq 1 / k \sum_{p_{i} \in P} t_{i} \geq 1 / k\left(k\left(L_{1}-t_{i}\right)+t_{i}\right)=L_{1}-(1-1 / k) t_{i}\)
- \(\operatorname{OPT}(I) \geq L_{1}-(1-1 / k) \frac{1}{2} \operatorname{OPT}(I)\)
\(\triangleright\) [LB-3]
- \(\operatorname{makESPAN}(A(I))=L_{1} \leq(3 / 2-1 / 2 k) \operatorname{OPT}(I)\)

\section*{min-makespan: List Scheduling Algorithm with LPT}

The List Scheduling Algorithm with LPT is ( \(3 / 2-1 / 2 k\) )-approximate
This analysis is not tight - A more sophisticated analysis yields
The List Scheduling Algorithm with LPT is ( \(4 / 3-1 / 3 k\) )-approximate
This analysis is tight, Consider \(2 k+1\) jobs
■ 3 of duration \(k \quad\) and 2 each of \(k+i, \quad 1 \leq i \leq k-1\)
- The algorithm gives all but one machine 2 jobs with total load \(3 m-1\)
- The remaining machine gets 3 jobs and load \(4 m\) - 1
- OPT: 3 length \(k\) jobs on a machine and remaining loads are \(3 k\)
- The achieved approximation factor is \(4 k-1 / 3 k=4 / 3-1 / 3 k\)


Optimal Schedule
```

