
Algorithms

Approximation Algorithms

Approximation Algorithms for Optimization Problems: Types

Absolute Approximation Algorithms

Inapproximability by Absolute Approximate Algorithms

Relative Approximation Algorithm

InApproximability by Relative Approximate Algorithms

Polynomial Time Approximation Schemes

Fully Polynomial Time Approximation Schemes

Imdad ullah Khan
Imdad ullah Khan (LUMS) Approximation Algorithms 1 / 8



Negative Results for Absolute Approximation
Absolute approximation algorithms are the most desired

▷ For large objective values, small additive error is negligible

Generally absolute approximation algorithms exists for problems where the
optimal value lie in a small range

The hardness of such problems is determining the exact value of the
optimum solution within this range

An absolute approximate algorithm finds solution within a small range
and uses the fact that the range is small to get a tight guarantee

Not many hard problems have an absolute approximation algorithm

Typically such impossibility of absolute approximation (inapproximability)
results use the scaling method

Imdad ullah Khan (LUMS) Approximation Algorithms 2 / 8



Negative Result by Scaling

Broad idea of scaling

1 Scale up certain parameters associated with the instance

2 Then show that if there is an absolute approximate algorithm for the
scaled up instance, then the solution can be rescaled to get an
optimum solution for the original instance

3 Conclude that this is an efficient algorithm to solve the np-hard
optimization problem, which by our assumption of P ̸= NP is not
possible

Imdad ullah Khan (LUMS) Approximation Algorithms 3 / 8



Maximum Independent Set Problem

An independent set in G is subset of vertices no two of which are adjacent

A graph on 12 vertices An independent set of size 4

An independent set of size 3 An independent set of size 5 (max)

The max-ind-set(G) problem (MIS): Find a max independent set in G?

Imdad ullah Khan (LUMS) Approximation Algorithms 4 / 8



MIS: Impossibility of absolute approximation

P ̸= NP =⇒ there is no poly-time k-absolute approximation algorithm for MIS

Proof: Suppose there is a k-absolute approximation algorithm A
Scale the original instance I by a factor of 2 (call this instance 2I)

In I Max Ind. set is of size 5 In 2I Max Ind. set is of size 10

Note: f (opt(2I)) = 2f (opt(I))

Run A on 2I to get an ind-set of size ≥ f (opt(2I)) − k = 2f (opt(I)) − k
▷ This gives an independent set in I of size ≥ f (opt(I)) − k/2

We got a better algorithm — a k/2-absolute approximate algorithm
Repeat the scaling trick until the approximation guarantee drops below 1
Using integrality of optimal solution we get an optimal solution

Imdad ullah Khan (LUMS) Approximation Algorithms 5 / 8



MIS: Impossibility of absolute approximation

P ̸= NP =⇒ there is no poly-time k-absolute approximation algorithm for MIS

Proof: Suppose there is a k-absolute approximation algorithm A
Scale the original instance G by a factor of (k + 1) (call this instance G ′)

G G G G G. . .

G′ : (k + 1) copies with no edges between copies︷ ︸︸ ︷
G

Note: f (OPT (G′)) = (k + 1)f (OPT (G))

A on G ′ gives ind-set of size ≥ f (opt(G ′)) − k = (k + 1)f (opt(G)) − k

We get an ind-set in G of size ≥ f (opt(G)) − k/k+1 ≥ f (opt(G))

Hence we get a maximum independent set in G (of size f (opt(G))

Thus, we solved MIS problem in poly-time and proved P = NP

Imdad ullah Khan (LUMS) Approximation Algorithms 6 / 8



The knapsack Problem
Input:

Items: U = {a1, . . . , an} ▷ Fixed order
Weights: w : U → Z+ ▷ (w1, · · · , wn)
Values: v : U → R+ ▷ (v1, · · · , vn)
Capacity: C ∈ Z+

Output:
A subset S ⊂ U
Capacity constraint: ∑

ai ∈S
wi ≤ C

Objective: Maximize ∑
ai ∈S

vi

Imdad ullah Khan (LUMS) Approximation Algorithms 7 / 8



knapsack: Impossibility of Absolute Approximation

If P ̸= NP,then there is no polynomial time k-absolute approximation
algorithm for the knapsack problem

Proof: Suppose there is a k-absolute approximation algorithm A

Consider an instance I = [U, w , v , C ], with v : U → Z+

Make an instance I′ = [U, w , v ′, C ], v ′(u) = 2k · v(u)
▷ Note: f (opt(I′)) = (2k)f (opt(I))

Run A on I′ to get a S ⊆ U of total capacity ≤ C and total value
≥ f (opt(I′)) − k = 2kf (opt(I)) − k

S is also a solution of I of value (by v) 2kf (opt(I))−k/2k = f (opt(I)) − 1
2

By integrality, S is an optimal solution to I, contradicting P ̸= NP

Imdad ullah Khan (LUMS) Approximation Algorithms 8 / 8


