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Negative Results for Absolute Approximation
Absolute approximation algorithms are the most desired

▷ For large objective values, small additive error is negligible

Generally absolute approximation algorithms exists for problems where the
optimal value lie in a small range

The hardness of such problems is determining the exact value of the
optimum solution within this range

An absolute approximate algorithm finds solution within a small range
and uses the fact that the range is small to get a tight guarantee

Not many hard problems have an absolute approximation algorithm

Typically such impossibility of absolute approximation (inapproximability)
results use the scaling method
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Negative Result by Scaling

Broad idea of scaling

1 Scale up certain parameters associated with the instance

2 Then show that if there is an absolute approximate algorithm for the
scaled up instance, then the solution can be rescaled to get an
optimum solution for the original instance

3 Conclude that this is an efficient algorithm to solve the np-hard
optimization problem, which by our assumption of P ̸= NP is not
possible
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Maximum Independent Set Problem

An independent set in G is subset of vertices no two of which are adjacent

A graph on 12 vertices An independent set of size 4

An independent set of size 3 An independent set of size 5 (max)

The max-ind-set(G) problem (MIS): Find a max independent set in G?
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MIS: Impossibility of absolute approximation

P ̸= NP =⇒ there is no poly-time k-absolute approximation algorithm for MIS

Proof: Suppose there is a k-absolute approximation algorithm A
Scale the original instance I by a factor of 2 (call this instance 2I)

In I Max Ind. set is of size 5 In 2I Max Ind. set is of size 10

Note: f (opt(2I)) = 2f (opt(I))

Run A on 2I to get an ind-set of size ≥ f (opt(2I)) − k = 2f (opt(I)) − k
▷ This gives an independent set in I of size ≥ f (opt(I)) − k/2

We got a better algorithm — a k/2-absolute approximate algorithm
Repeat the scaling trick until the approximation guarantee drops below 1
Using integrality of optimal solution we get an optimal solution
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MIS: Impossibility of absolute approximation

P ̸= NP =⇒ there is no poly-time k-absolute approximation algorithm for MIS

Proof: Suppose there is a k-absolute approximation algorithm A
Scale the original instance G by a factor of (k + 1) (call this instance G ′)

G G G G G. . .

G′ : (k + 1) copies with no edges between copies︷ ︸︸ ︷
G

Note: f (OPT (G′)) = (k + 1)f (OPT (G))

A on G ′ gives ind-set of size ≥ f (opt(G ′)) − k = (k + 1)f (opt(G)) − k

We get an ind-set in G of size ≥ f (opt(G)) − k/k+1 ≥ f (opt(G))

Hence we get a maximum independent set in G (of size f (opt(G))

Thus, we solved MIS problem in poly-time and proved P = NP
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The knapsack Problem
Input:

Items: U = {a1, . . . , an} ▷ Fixed order
Weights: w : U → Z+ ▷ (w1, · · · , wn)
Values: v : U → R+ ▷ (v1, · · · , vn)
Capacity: C ∈ Z+

Output:
A subset S ⊂ U
Capacity constraint: ∑

ai ∈S
wi ≤ C

Objective: Maximize ∑
ai ∈S

vi

Imdad ullah Khan (LUMS) Approximation Algorithms 7 / 8



knapsack: Impossibility of Absolute Approximation

If P ̸= NP,then there is no polynomial time k-absolute approximation
algorithm for the knapsack problem

Proof: Suppose there is a k-absolute approximation algorithm A

Consider an instance I = [U, w , v , C ], with v : U → Z+

Make an instance I′ = [U, w , v ′, C ], v ′(u) = 2k · v(u)
▷ Note: f (opt(I′)) = (2k)f (opt(I))

Run A on I′ to get a S ⊆ U of total capacity ≤ C and total value
≥ f (opt(I′)) − k = 2kf (opt(I)) − k

S is also a solution of I of value (by v) 2kf (opt(I))−k/2k = f (opt(I)) − 1
2

By integrality, S is an optimal solution to I, contradicting P ̸= NP
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