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Quality of Approximation: Types

Absolute Approximation Algorithms

Given an optimization problem P with value function f on solution space

An algorithm A is called absolute approximation algorithm if there is a
constant k such that for any instance I∣∣f (A(I ))− f

(
opt(I )

)∣∣ ≤ k

For a minimization problem this means f (A(I )) ≤ f (opt(I )) + k

For a maximization problem this means f (A(I )) ≥ f (opt(I ))− k
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How to Design an Approximation Algorithm?

Any approximation algorithm involves 2 main ingredients:

1 First step is to design a good algorithm A

For approximation guarantee on A(I ) we need the value of the optimal
solution f (opt(I ))

▷ How to find it? almost equally difficult (version of the problem)

2 We find a good lower or upper bound on f (opt(I ))

3 Compare f (A(I )) with the bound on f (opt(I ))

fLB f (opt(I)) f (A(I))

absolute approximation factor︷ ︸︸ ︷

fUBf (opt(I))f (A(I))

absolute approximation factor︷ ︸︸ ︷maximization
problem

minimization
problem
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Graph Coloring

A graph (vertex) coloring is to assign a color to each vertex such that no
two adjacent vertices get the same color

A graph G on 8 vertices A coloring with 6 colors

A coloring with 8 colors A coloring with (optimal) 3 colors

[Coloring(G ) problem:] Color G with minimum number of colors, χ(G )
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Graph Coloring (Optimization) Problem

The graph coloring (optimization) problem

I : Graphs

S(I ) : An assignment of colors to vertices of input graph, such that
no two adjacent vertices have the same color (feasibility)

f : S(I ) → Z+

For s ∈ S(I ), f (s) is number of colors used in the coloring s

χ(G ) : the minimum number of colors needed to color G

χ(G ) = f (opt(I ))
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Planar Graphs

Planar Graphs

A graph is planar if it can be drawn in the plane without any edge crossing

Four different drawings of the same graph, K4
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Planar Graphs

Planar Graphs

A graph is planar if it can be drawn in the plane without any edge crossing

Just because in a drawing of G edges cross does not mean G is not planar

Even harder to prove non-planarity
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Planar Graphs

Planar Graphs

A graph is planar if it can be drawn in the plane without any edge crossing

To prove planarity, move the vertices around, redraw the edges without
crossing (sometimes in a very indirect faction)

Even harder to prove non-planarity
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Planar Graphs

Planar Graphs

A graph is planar if it can be drawn in the plane without any edge crossing

To prove planarity, move the vertices around, redraw the edges without
crossing (sometimes in a very indirect faction)

Even harder to prove non-planarity

K5 K3,3
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Planar Graphs: A characterization

A graph is planar if it can be drawn in the plane without any edge crossing

We will find some invariants that planar graphs satisfy

To prove non-planarity of a graph G , we will show that G doesn’t satisfy
that invariant
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Planar Graphs: A characterization

A plane drawing of a planar graphs divides plane into regions or faces, one
of them the outer face

A region (or face) is a part of the plane disconnected from other parts by
the edges
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Planar Graphs: A characterization

Euler’s Formula: The number of faces of a connected planar graph is
invariant of its drawing and is given by

f = e − v + 2 f = |faces|, e = |E |, v = |V |

Verify it for the following planar graphs
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Planar Graphs: A characterization

Euler’s Formula: The number of faces of a connected planar graph is
invariant of its drawing and is given by

f = e − v + 2 f = |faces|, e = |E |, v = |V |

Face-Edge Handshaking Lemma

Let G be a planar graph, let R be its regions, then

2e =
∑
F∈R

deg(F )

If G is a connected planar graph with v ≥ 3, then e ≤ 3v − 6

An immediate corollary from this using the Handshaking Lemma is

Every planar graph has a vertex with degree at most 5
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Coloring Planar Graphs

The Planar-Graph-Coloring(G ) problems: Given a planar graph G ,
color it with minimum colors
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6-Coloring Planar Graphs

Every planar graph has a vertex with degree at most 5

Using this lemma we give a recursive 6-coloring algorithm

▷ Can apply the algorithm to components of disconnected graphs

Algorithm 6-color(G ,C = {c1, . . . , c6})
Let v ∈ V such that deg(v) ≤ 5

6-Color(G − v ,C = {c1, . . . , c6})
Let C ′ ⊂ C be the set of colors used for N(v) ▷ |C ′| ≤ 5

Color v with a color in C \ C ′

v v ▷ Clearly polynomial time
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6-Coloring Planar Graphs

Every planar graph has a vertex with degree at most 5

Using the lemma we give a recursive 6-coloring algorithm

▷ Can apply the algorithm to components of disconnected graphs

Can be implemented with no recursion or modification to adjacency list

1 Order vertices so no vertex has more than 5 neighbors preceding it

2 Greedily color vertices from left to right using the scheme in figure

v v ▷ Clearly polynomial time
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3-absolute approximation for Planar Graph Coloring

Theorem: The decision problem of planar graph 3-Coloring is NP-Complete

Use the fact that: If G is bipartite, then it is 2-colorable

Algorithm approx-planar-color(G )

if G is bipartite then ▷ Easy to check with a bfs

Color G with the obvious 2-coloring
else
6-Color(G ,C = {c1, . . . , c6})

approx-planar-color is a 3-absolute approximate algorithm

Non-bipartite graphs require ≥ 3 colors (f (opt(G )) ≥ 3) ▷ (LB)

We use at most 6 colors ▷ f
(
approx-planar-color(G )

)
≤ 6

The statement follows
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2 and 1-absolute approximation for Planar Graph Coloring

A slightly complicated algorithm colors planar graphs with 5 colors

That algorithm due to Kempe, is a 2-absolute approximate algorithm

Appel and Haken (1976) gave a complicated proof that planar graphs
can be colored with 4 colors

That “algorithm” is a 1-absolute approximate algorithm

UIUC stamp in honor of the 4-Color theorem
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