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NP-Hardness

When you prove a problem X to be NP-Hard, then as per the almost
consensus opinion of P ̸= NP, it essentially means

1 There is no polynomial time

2 deterministic algorithm

3 to exactly/optimally solve the problem X

4 for all possible input instances

What are the option? Things to consider when your problem is NP-Hard
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Coping with NP-Hardness

Do I need to solve the problem for all valid input instances?
Sometimes just need to solve a restricted version of the problem -

▷ (special cases) that include realistic instances

Is exponential-time OK for my instances?
Exponential-time algorithms are “not slow” ▷ they don’t scale well
If relevant instances are small, then they may be acceptable
Can bring exponent/base of runtime down ▷ 2n → 2

√
n or 2n → 1.5n

Is non-optimality OK?
What if our algorithm is better than others ▷ faster than bruteforce
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Coping with NP-Hardness

Approaches to tackle hard problems

1 Special Cases: Relevant structure on which the problem is easy
Exact results in poly-time only for special cases or a range of parameters

2 Intelligent Exhaustive Search: Exponential time in worst case
The base and/or exponent are usually smaller
Could be efficient on typical more realistic instances
Backtracking, Brand-and-Bound

3 Nearly exact solutions: Output is ‘close’ to exact (optimal) solution
Approximation Algorithms: Solutions of guaranteed quality in poly-time
Heuristic: Solutions hopefully good in poly-time

4 Randomized Algorithms: Use coin flips for making decisions
Typically used for approximation, also used for problems in P
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Coping with NP-Hardness
To cope with NP-Hardness, sacrifice one of these features

Poly-time Deterministic Exact/Opt
Solution

All cases/
Parameters Algorithmic Paradigm

✓ ✓ ✓ ✗
Special Cases Algorithms
Fixed Parameter Tractability

✓ ✓ ✗ ✓
Approximation Algorithms
Heuristic Algorithms

✗ ✓ ✓ ✓
Intelligent
Exhaustive Search

✓ ✗ E(✓) ✓
Mote Carlo
Randomized Algorithm

E(✓) ✗ ✓ ✓
Las Vegas
Randomized Algorithm

Special cases of input instances (based on structure of a range of parameter(s))
Approximation algorithms guarantee a bound on suboptimality
Heuristics algorithms do not have any guarantee
Randomized algorithms are generally used for problems in class P
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Optimization Problems

An optimization problem P is characterized by three things

I: set of (valid) input instances
S(I): solution space, set of feasible solutions for an instance I ∈ I
f : S(I) → R: function giving value to each feasible solution

Optimization Problem can be

A maximization problem: Given I ∈ I, the objective is to find a
solution s∗ ∈ S(I) such that f (s∗) is maximum, i.e.

∀s ∈ S(I), f (s∗) ≥ f (s)
A minimization problem is defined analogously

Note that optimal solution (s∗) need not be unique
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Approximation Algorithms

Relax the requirement that algorithm always outputs optimal solution

Instead look for a feasible solution s ′, whose value f (s ′) is close to the
value of optimal solution s∗

An approximation algorithm A for an optimization problem P, is a
polynomial time algorithm that on input instance I ∈ I outputs a
solution s ∈ S(I) such that f (s) is close to f (s∗)

A(I): the solution output by A

opt(I): an optimal solution

We seek worst case closeness guarantees on values of outputs of A

i.e. we try to bound max
I∈I

∣∣f (A(I)) − f (opt(I))
∣∣
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Quality of Approximation: Types

Absolute Approximation Algorithms

Given an optimization problem P with value function f on solution space

An algorithm A is called absolute approximation algorithm if there is a
constant k such that for any instance I∣∣f (

A(I)
)

− f
(
opt(I)

)∣∣ ≤ k

For a minimization problem this means f (A(I)) ≤ f (opt(I)) + k

For a maximization problem this means f (A(I)) ≥ f (opt(I)) − k
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Quality of Approximation: Types

Approximation Factor/Ratio

Given an optimization problem P with value function f on solution space

The approximation ratio or approximation factor of an algorithm A is
defined as the ratio ‘between’ value of output of A and value of opt

For minimization problem it is f
(

A(I)
)
/f

(
opt(I)

)
For maximization problem it is f

(
opt(I)

)
/f

(
A(I)

)
▷ Note: approximation factor is always bigger than 1

Generally, approximation factor is defined as max
{

f
(

A(I)
)

f
(

opt(I)
) ,

f
(

opt(I)
)

f
(

A(I)
) }
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Quality of Approximation: Types

Relative Approximation Algorithm

Given an optimization problem P with value function f on solution space

An algorithm A is called a α(n)-approximate algorithm, if for any
instance I of size n, A achieves an approximation ratio α(n)

For a minimization problem this means f
(
A(I)

)
≤ α(n) · f

(
opt(I)

)
For a maximization problem this means f

(
A(I)

)
≥ 1/α(n) · f

(
opt(I)

)
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Quality of Approximation: Types

Constant Factor (relative) Approximation Algorithm

Given an optimization problem P with value function f on solution space

An algorithm A is called an α-approximate algorithm, if for any instance
I, A achieves an approximation ratio α

For a minimization problem this means f
(
A(I)

)
≤ α · f

(
opt(I)

)
For a maximization problem this means f

(
A(I)

)
≥ 1/α · f

(
opt(I)

)
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Quality of Approximation: Types

Approximation Error

Given an optimization problem P with value function f on solution space

The approximation error of A is its approximation factor minus 1

For a minimization problem it is
f
(

A(I)
)
/f

(
opt(I)

)
− 1 = f

(
A(I)

)
−f

(
opt(I)

)
/f

(
opt(I)

)
For a maximization problem it is
f
(

opt(I)
)
/f

(
A(I)

)
− 1 = f

(
opt(I)

)
−f

(
A(I)

)
/f

(
A(I)

)
▷ Useful when approximation ratio is close to 1

Also called relative approximation error
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Quality of Approximation: Types

Polynomial Time Approximation Scheme (PTAS)

Given an optimization problem P with value function f on solution space

A family of algorithms A(ϵ) is called a polynomial time approximation
scheme if for a given parameter ϵ, on any instance I, A(ϵ) achieves an
approximation error ϵ and runtime of A is polynomial in |I| = n

For a minimization problem this means f
(
A(I)

)
≤ (1 + ϵ) · f

(
opt(I)

)
For a maximization problem this means f

(
A(I)

)
≥ (1 − ϵ) · f

(
opt(I)

)
Runtime of A could be exponential in 1/ϵ ▷ e.g. O(n1/ϵ)
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Quality of Approximation: Types

Fully Polynomial Time Approximation Scheme (FPTAS)

Given an optimization problem P with value function f on solution space

A family of algorithms A(ϵ) is called a fully polynomial time
approximation scheme if for a given ϵ, on any instance I, A(ϵ) achieves
an approximation error ϵ and runtime of A is polynomial in |I| = n and 1/ϵ

For a minimization problem this means f
(
A(I)

)
≤ (1 + ϵ) · f

(
opt(I)

)
For a maximization problem this means f

(
A(I)

)
≥ (1 − ϵ) · f

(
opt(I)

)
Runtime of A cannot be exponential in 1/ϵ ▷ e.g. O(1/ϵ2n3)

Constant factor decrease in ϵ increases runtime by a constant factor
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Quality of Approximation: Types

Some simple exercises to clarify the definitions

What does an k-absolute approximate algorithm mean for k = 0?

What does an α-approximate algorithm mean for α = 1?

What is the error of 2-approximate algorithm?

What is the approx. factor of an algor with 1% approx. error?

Is α-approximate algorithm the same α = (1 + ϵ)-PTAS ?

An absolute approximate algorithm is the most desirable, why?

Absolute approximate algorithms are rare, fptas is the next desirable
▷ Not known for many problem, but when available they are almost

as good as an optimal algorithm
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