
Algorithms

Approximation Algorithms

Approximation Algorithms for Optimization Problems: Types

Absolute Approximation Algorithms

Inapproximability by Absolute Approximate Algorithms

Relative Approximation Algorithm

InApproximability by Relative Approximate Algorithms

Polynomial Time Approximation Schemes

Fully Polynomial Time Approximation Schemes

Imdad ullah Khan

Imdad ullah Khan (LUMS) Approximation Algorithms 1 / 15

NP-Hardness

When you prove a problem X to be NP-Hard, then as per the almost
consensus opinion of P ̸= NP, it essentially means

1 There is no polynomial time

2 deterministic algorithm

3 to exactly/optimally solve the problem X

4 for all possible input instances

What are the option? Things to consider when your problem is NP-Hard

Imdad ullah Khan (LUMS) Approximation Algorithms 2 / 15

Coping with NP-Hardness

Do I need to solve the problem for all valid input instances?
Sometimes just need to solve a restricted version of the problem -

▷ (special cases) that include realistic instances

Is exponential-time OK for my instances?
Exponential-time algorithms are “not slow” ▷ they don’t scale well
If relevant instances are small, then they may be acceptable
Can bring exponent/base of runtime down ▷ 2n → 2

√
n or 2n → 1.5n

Is non-optimality OK?
What if our algorithm is better than others ▷ faster than bruteforce

Imdad ullah Khan (LUMS) Approximation Algorithms 3 / 15

Coping with NP-Hardness

Approaches to tackle hard problems

1 Special Cases: Relevant structure on which the problem is easy
Exact results in poly-time only for special cases or a range of parameters

2 Intelligent Exhaustive Search: Exponential time in worst case
The base and/or exponent are usually smaller
Could be efficient on typical more realistic instances
Backtracking, Brand-and-Bound

3 Nearly exact solutions: Output is ‘close’ to exact (optimal) solution
Approximation Algorithms: Solutions of guaranteed quality in poly-time
Heuristic: Solutions hopefully good in poly-time

4 Randomized Algorithms: Use coin flips for making decisions
Typically used for approximation, also used for problems in P

Imdad ullah Khan (LUMS) Approximation Algorithms 4 / 15

Coping with NP-Hardness
To cope with NP-Hardness, sacrifice one of these features

Poly-time Deterministic Exact/Opt
Solution

All cases/
Parameters Algorithmic Paradigm

✓ ✓ ✓ ✗
Special Cases Algorithms
Fixed Parameter Tractability

✓ ✓ ✗ ✓
Approximation Algorithms
Heuristic Algorithms

✗ ✓ ✓ ✓
Intelligent
Exhaustive Search

✓ ✗ E(✓) ✓
Mote Carlo
Randomized Algorithm

E(✓) ✗ ✓ ✓
Las Vegas
Randomized Algorithm

Special cases of input instances (based on structure of a range of parameter(s))
Approximation algorithms guarantee a bound on suboptimality
Heuristics algorithms do not have any guarantee
Randomized algorithms are generally used for problems in class P

Imdad ullah Khan (LUMS) Approximation Algorithms 5 / 15

Optimization Problems

An optimization problem P is characterized by three things

I: set of (valid) input instances
S(I): solution space, set of feasible solutions for an instance I ∈ I
f : S(I) → R: function giving value to each feasible solution

Optimization Problem can be

A maximization problem: Given I ∈ I, the objective is to find a
solution s∗ ∈ S(I) such that f (s∗) is maximum, i.e.

∀s ∈ S(I), f (s∗) ≥ f (s)
A minimization problem is defined analogously

Note that optimal solution (s∗) need not be unique

Imdad ullah Khan (LUMS) Approximation Algorithms 6 / 15

Optimization Problems

An optimization problem P is characterized by three things

I: set of (valid) input instances
S(I): solution space, set of feasible solutions for an instance I ∈ I
f : S(I) → R: function giving value to each feasible solution

Optimization Problem can be

A maximization problem: Given I ∈ I, the objective is to find a
solution s∗ ∈ S(I) such that f (s∗) is maximum, i.e.

∀s ∈ S(I), f (s∗) ≥ f (s)
A minimization problem is defined analogously

Note that optimal solution (s∗) need not be unique

Imdad ullah Khan (LUMS) Approximation Algorithms 6 / 15

Optimization Problems

An optimization problem P is characterized by three things

I: set of (valid) input instances
S(I): solution space, set of feasible solutions for an instance I ∈ I
f : S(I) → R: function giving value to each feasible solution

Optimization Problem can be

A maximization problem: Given I ∈ I, the objective is to find a
solution s∗ ∈ S(I) such that f (s∗) is maximum, i.e.

∀s ∈ S(I), f (s∗) ≥ f (s)
A minimization problem is defined analogously

Note that optimal solution (s∗) need not be unique

Imdad ullah Khan (LUMS) Approximation Algorithms 6 / 15

Approximation Algorithms

Relax the requirement that algorithm always outputs optimal solution

Instead look for a feasible solution s ′, whose value f (s ′) is close to the
value of optimal solution s∗

An approximation algorithm A for an optimization problem P, is a
polynomial time algorithm that on input instance I ∈ I outputs a
solution s ∈ S(I) such that f (s) is close to f (s∗)

A(I): the solution output by A

opt(I): an optimal solution

We seek worst case closeness guarantees on values of outputs of A

i.e. we try to bound max
I∈I

∣∣f (A(I)) − f (opt(I))
∣∣

Imdad ullah Khan (LUMS) Approximation Algorithms 7 / 15

Quality of Approximation: Types

Absolute Approximation Algorithms

Given an optimization problem P with value function f on solution space

An algorithm A is called absolute approximation algorithm if there is a
constant k such that for any instance I∣∣f (

A(I)
)

− f
(
opt(I)

)∣∣ ≤ k

For a minimization problem this means f (A(I)) ≤ f (opt(I)) + k

For a maximization problem this means f (A(I)) ≥ f (opt(I)) − k

Imdad ullah Khan (LUMS) Approximation Algorithms 8 / 15

Quality of Approximation: Types

Approximation Factor/Ratio

Given an optimization problem P with value function f on solution space

The approximation ratio or approximation factor of an algorithm A is
defined as the ratio ‘between’ value of output of A and value of opt

For minimization problem it is f
(

A(I)
)
/f

(
opt(I)

)
For maximization problem it is f

(
opt(I)

)
/f

(
A(I)

)
▷ Note: approximation factor is always bigger than 1

Generally, approximation factor is defined as max
{

f
(

A(I)
)

f
(

opt(I)
) ,

f
(

opt(I)
)

f
(

A(I)
) }

Imdad ullah Khan (LUMS) Approximation Algorithms 9 / 15

Quality of Approximation: Types

Relative Approximation Algorithm

Given an optimization problem P with value function f on solution space

An algorithm A is called a α(n)-approximate algorithm, if for any
instance I of size n, A achieves an approximation ratio α(n)

For a minimization problem this means f
(
A(I)

)
≤ α(n) · f

(
opt(I)

)
For a maximization problem this means f

(
A(I)

)
≥ 1/α(n) · f

(
opt(I)

)

Imdad ullah Khan (LUMS) Approximation Algorithms 10 / 15

Quality of Approximation: Types

Constant Factor (relative) Approximation Algorithm

Given an optimization problem P with value function f on solution space

An algorithm A is called an α-approximate algorithm, if for any instance
I, A achieves an approximation ratio α

For a minimization problem this means f
(
A(I)

)
≤ α · f

(
opt(I)

)
For a maximization problem this means f

(
A(I)

)
≥ 1/α · f

(
opt(I)

)

Imdad ullah Khan (LUMS) Approximation Algorithms 11 / 15

Quality of Approximation: Types

Approximation Error

Given an optimization problem P with value function f on solution space

The approximation error of A is its approximation factor minus 1

For a minimization problem it is
f
(

A(I)
)
/f

(
opt(I)

)
− 1 = f

(
A(I)

)
−f

(
opt(I)

)
/f

(
opt(I)

)
For a maximization problem it is
f
(

opt(I)
)
/f

(
A(I)

)
− 1 = f

(
opt(I)

)
−f

(
A(I)

)
/f

(
A(I)

)
▷ Useful when approximation ratio is close to 1

Also called relative approximation error

Imdad ullah Khan (LUMS) Approximation Algorithms 12 / 15

Quality of Approximation: Types

Polynomial Time Approximation Scheme (PTAS)

Given an optimization problem P with value function f on solution space

A family of algorithms A(ϵ) is called a polynomial time approximation
scheme if for a given parameter ϵ, on any instance I, A(ϵ) achieves an
approximation error ϵ and runtime of A is polynomial in |I| = n

For a minimization problem this means f
(
A(I)

)
≤ (1 + ϵ) · f

(
opt(I)

)
For a maximization problem this means f

(
A(I)

)
≥ (1 − ϵ) · f

(
opt(I)

)
Runtime of A could be exponential in 1/ϵ ▷ e.g. O(n1/ϵ)

Imdad ullah Khan (LUMS) Approximation Algorithms 13 / 15

Quality of Approximation: Types

Fully Polynomial Time Approximation Scheme (FPTAS)

Given an optimization problem P with value function f on solution space

A family of algorithms A(ϵ) is called a fully polynomial time
approximation scheme if for a given ϵ, on any instance I, A(ϵ) achieves
an approximation error ϵ and runtime of A is polynomial in |I| = n and 1/ϵ

For a minimization problem this means f
(
A(I)

)
≤ (1 + ϵ) · f

(
opt(I)

)
For a maximization problem this means f

(
A(I)

)
≥ (1 − ϵ) · f

(
opt(I)

)
Runtime of A cannot be exponential in 1/ϵ ▷ e.g. O(1/ϵ2n3)

Constant factor decrease in ϵ increases runtime by a constant factor

Imdad ullah Khan (LUMS) Approximation Algorithms 14 / 15

Quality of Approximation: Types

Some simple exercises to clarify the definitions

What does an k-absolute approximate algorithm mean for k = 0?

What does an α-approximate algorithm mean for α = 1?

What is the error of 2-approximate algorithm?

What is the approx. factor of an algor with 1% approx. error?

Is α-approximate algorithm the same α = (1 + ϵ)-PTAS ?

An absolute approximate algorithm is the most desirable, why?

Absolute approximate algorithms are rare, fptas is the next desirable
▷ Not known for many problem, but when available they are almost

as good as an optimal algorithm

Imdad ullah Khan (LUMS) Approximation Algorithms 15 / 15

