Coping with $\operatorname{NP-HARDNESS}$

- Strategies to deal with hard problems
- Algorithms for Special Cases
- Fixed Parameter Tractability
- Intelligent Exhaustive Search
 - Backtracking
 - Branch and Bound

Dynamic Programming based pseudo polynomial algorithm TSP

Imdad ullah Khan

Dynamic Programming: Review

- More general and powerful than divide and conquer
- Break up a problem into (in)(dependent) sub-problems
- Generally there is a sequence of problems
- Identify the optimal substructure: when optimal solution to a problem is made up of optimal solution to smaller subproblems
- Build up solution to larger and larger subproblems
- Identify redundancy and repetitions
- Use memoization or build up memo on the run

Traveling Salesman Problem TSP(G) Given a complete graph G on n vertices with edge weights, find a minimum cost Hamiltonian cycle in G

Need ordering of subproblems \triangleright Bellman (1962) and Held&Karp (1962) Let the vertex set of G be $V = \{v_0, v_1, \cdots, v_{n-1}\}$ WLOG assume the "start vertex" of the cycle is always v_0

Begin by constructing some sub path of a cycle starting form v_0

For $S \subset V$,

 $C(v_i, S)$: the min cost path from $v_0 \in S$ to $v_i \in S$ that visits all and only vertices in S once

For some $v_i \neq v_0$, $C(v_i, V)$ is a Hamiltonian path in G

 \triangleright A lightest Hamiltonian path among those with v_0 as an endpoint

Adding the edge (v_i, v_0) to $C(v_i, V)$ gives a Hamiltonian cycle in G

1 Initially, $S = \{v_0\}$ and $C(v_0, S)$ is the empty path with cost 0

2 Gradually increase S to get a Ham path in G

 \triangleright Note: for $S = \{v_0\}$ and i > 0, $C(v_i, S)$ is not defined

3 Analyze the structure of the path $C(v_i, S)$ \triangleright without knowing it

Dynamic Programming Formulation for $\ensuremath{\mathrm{TSP}}$

For $S \subset V$,

 $C(v_i, S)$: the min cost path from $v_0 \in S$ to $v_i \in S$ that visits all and only vertices in S once

▷ without knowing it

Let $v_j \in S$ be the second to last vertex in $C(v_i, S)$

 $C(v_j, S \setminus \{v_i\}) = C(v_i, S) \setminus \{(v_j, v_i)\}$

Analyze the structure of the path $C(v_i, S)$

 \triangleright min cost path from v_0 to v_j must be this subpath

because otherwise $C(v_i, S)$ would not be optimal

 $C(v_j, S \setminus \{v_i\}) \cup \{(v_j, v_i)\}$ cannot be shorter than $C(v_i, S)$

Dynamic Programming Formulation for TSP: Example

Let $c(v_i, S)$ be the weight of $C(v_i, S)$

Recurrence Relation for $c(v_i, S)$

$$c(v_i, S) = \begin{cases} 0 & \text{if } S = \{v_0\} \\ +\infty & \text{else if } v_i \notin S \lor i = 0 \\ \min_{v_j \neq i \in S} \{c(v_j, S \setminus \{v_i\}) + w(v_j, v_i)\} & \text{else} \end{cases}$$

VALUE-TSP(G) =
$$\min_{v_i \in V} \left\{ c(v_i, V) + w(v_i, v_0) \right\}$$

VALUE-TSP(G) =
$$\min_{v_i \in V} \left\{ c(v_i, V) + w(v_i, v_0) \right\}$$

• $2^n - 1$ possible $S \subset V$ and up to n - 1 options for the end-vertex v_i

- Each of the $n \times 2^n$ sub-problems can be solved in $\mathcal{O}(n)$
- Runtime of DP solution $\mathcal{O}(n^2 2^n)$ i.e. $< \mathcal{O}(n!)$ of brute force solution
- What about space complexity? $\mathcal{O}(n2^n)$ i.e. $> \mathcal{O}(n^2)$ of brute force
- Actual Hamiltonian cycle can be found by backtracking in $\mathcal{O}(n^2)$
- If previous vertex in subpath (selected v_j with min cost) is stored for each step in DP, then backtracking can be done in O(n)

VALUE-TSP(G) =
$$\min_{v_i \in V} \left\{ c(v_i, V) + w(v_i, v_0) \right\}$$

Runtime of DP solution $\mathcal{O}(n^2 2^n)$ i.e. $< \mathcal{O}(n!)$ of brute force solution

