
Algorithms

Coping with NP-Hardness

Strategies to deal with hard problems

Algorithms for Special Cases

Fixed Parameter Tractability

Intelligent Exhaustive Search

Backtracking

Branch and Bound

Dynamic Programming based pseudo polynomial algorithm tsp

Imdad ullah Khan

Imdad ullah Khan (LUMS) Coping with NP-Hardness 1 / 9



Dynamic Programming: Review

More general and powerful than divide and conquer

Break up a problem into (in)(dependent) sub-problems

Generally there is a sequence of problems

Identify the optimal substructure: when optimal solution to a problem
is made up of optimal solution to smaller subproblems

Build up solution to larger and larger subproblems

Identify redundancy and repetitions

Use memoization or build up memo on the run

Imdad ullah Khan (LUMS) Coping with NP-Hardness 2 / 9



Dynamic Programming Formulation for tsp

Traveling Salesman Problem tsp(G ) Given a complete graph G on n
vertices with edge weights, find a minimum cost Hamiltonian cycle in G

Need ordering of subproblems ▷ Bellman (1962) and Held&Karp (1962)

Let the vertex set of G be V = {v0, v1, · · · , vn−1}

wlog assume the “start vertex” of the cycle is always v0

Begin by constructing some sub path of a cycle starting form v0

For S ⊂ V ,

C (vi , S) : the min cost path from v0 ∈ S to
vi ∈ S that visits all and only vertices in S once

C(vi, S)

v0
vi

S S

Imdad ullah Khan (LUMS) Coping with NP-Hardness 3 / 9



Dynamic Programming Formulation for tsp

For some vi ̸= v0, C (vi ,V ) is a Hamiltonian path in G

▷ A lightest Hamiltonian path among those with v0 as an endpoint

Adding the edge (vi , v0) to C (vi ,V ) gives a Hamiltonian cycle in G

v0 vi

︸ ︷︷ ︸
n vertices

1 Initially, S = {v0} and C (v0, S) is the empty path with cost 0

2 Gradually increase S to get a Ham path in G

▷ Note: for S = {v0} and i > 0, C (vi ,S) is not defined

3 Analyze the structure of the path C (vi , S) ▷ without knowing it

Imdad ullah Khan (LUMS) Coping with NP-Hardness 4 / 9



Dynamic Programming Formulation for tsp

For S ⊂ V ,

C (vi , S) : the min cost path from v0 ∈ S to
vi ∈ S that visits all and only vertices in S once

C(vi, S)

v0
vi

S S

Analyze the structure of the path C (vi ,S) ▷ without knowing it

Let vj ∈ S be the second to last vertex in C (vi ,S)

C (vj ,S \ {vi}) = C (vi ,S) \ {(vj , vi )}
▷ min cost path from v0 to vj must be this subpath

because otherwise C (vi , S) would not be optimal

v0
vj viS \ {vi}

C(vj, S \ {vi}) ∪ {(vj, vi)} cannot be shorter than C(vi, S)

Imdad ullah Khan (LUMS) Coping with NP-Hardness 5 / 9



Dynamic Programming Formulation for tsp: Example

a b

cd

4

5

23

1

1

d c

c d

b

C(d, S) = 11 C(c, S) = 10

C(c, S) = 6 C(d, S) = 5

S = {a, b, c, d} S = {a, b, c, d}

S = {a, b, c} S = {a, b, d}

C(b, S) = 4
S = {a, b}

5 5

2 1

d b

b d

c

C(d, S) = 4 C(b, S) = 7

C(b, S) = 3 C(d, S) = 6

S = {a, b, c, d} S = {a, b, c, d}

S = {a, b, c} S = {a, c, d}

C(c, S) = 1
S = {a, c}

1 1

2 5

c b

b c

d

C(c, S) = 6 C(b, S) = 10

C(b, S) = 4 C(c, S) = 8

S = {a, b, c, d} S = {a, b, c, d}

S = {a, b, d} S = {a, c, d}

C(d, S) = 3
S = {a, d}

2 2

1 5

a

4 1 3

S = {a} C(a, S) = 0

a a a a a a

3 1 3 4 1 4

14 11 7 11 7 14

Imdad ullah Khan (LUMS) Coping with NP-Hardness 6 / 9



Dynamic Programming Formulation for tsp

Let c(vi , S) be the weight of C (vi , S)

Recurrence Relation for c(vi , S)

c(vi ,S) =


0 if S = {v0}

+∞ else if vi /∈ S ∨ i = 0

min
vj ̸=i∈S

{c(vj ,S \ {vi}) + w(vj , vi )} else

value-tsp(G ) = min
vi∈V

{
c(vi ,V ) + w(vi , v0)

}

Imdad ullah Khan (LUMS) Coping with NP-Hardness 7 / 9



Dynamic Programming Formulation for TSP

value-tsp(G ) = min
vi∈V

{
c(vi ,V ) + w(vi , v0)

}
2n − 1 possible S ⊂ V and up to n − 1 options for the end-vertex vi

Each of the n × 2n sub-problems can be solved in O(n)

Runtime of DP solution O(n22n) i.e. < O(n!) of brute force solution

What about space complexity? O(n2n) i.e. > O(n2) of brute force

Actual Hamiltonian cycle can be found by backtracking in O(n2)

If previous vertex in subpath (selected vj with min cost) is stored for
each step in DP, then backtracking can be done in O(n)

Imdad ullah Khan (LUMS) Coping with NP-Hardness 8 / 9



Dynamic Programming Formulation for TSP

value-tsp(G ) = min
vi∈V

{
c(vi ,V ) + w(vi , v0)

}

Runtime of DP solution O(n22n) i.e. < O(n!) of brute force solution

Imdad ullah Khan (LUMS) Coping with NP-Hardness 9 / 9


