
Algorithms

Coping with NP-Hardness

Strategies to deal with hard problems

Algorithms for Special Cases

Fixed Parameter Tractability

Intelligent Exhaustive Search

Backtracking
Branch and Bound

Dynamic Programming based pseudo polynomial algorithm tsp

Imdad ullah Khan

Imdad ullah Khan (LUMS) Coping with NP-Hardness 1 / 17



Coping with NP-Hardness
Approaches to tackle hard problems

1 Special Cases: Relevant structure on which the problem is easy
Exact results in poly-time only for special cases or a range of parameters

2 Intelligent Exhaustive Search: Exponential time in worst case
The base and/or exponent are usually smaller
could be efficient on typical more realistic instances
Backtracking, Brand-and-Bound

3 Nearly exact solutions: Output is ‘close’ to exact (optimal) solution
Approximation Algorithms: Solutions of guaranteed quality in poly-time
Heuristic Algorithms: Solutions hopefully good in poly-time

4 Randomized Algorithms: Use coin flips for making decisions
Typically used for approximation, also used for easy problems

Imdad ullah Khan (LUMS) Coping with NP-Hardness 2 / 17



Intelligent Exhaustive Search

Specific structure in instances is helpful sometimes
e.g. ind-set(G , k) for trees is easy
2-sat is easy

Sometime even a well-characterized special structure does not help
ind-set(G , k) is np-hard even for planar graphs
3-sat is np-hard

In many cases, we cannot neatly characterize the particular cases

Can still avoid exp-time exhaustively searching with clever methods

These algorithms are still exp time in the worst case
With the right ideas they are efficient on typical (likely) instances

Imdad ullah Khan (LUMS) Coping with NP-Hardness 3 / 17



Backtracking

Often solution to a problem can be made with a series of choices

Each choice represents a partial solution

These partial solutions form a tree (or DAG)

Backtracking refers to a brute force solution where only feasible
partial solutions are considered

Feasibility and in-feasibility of partial solutions are determined given
the specific problem in hand

The idea in backtracking: many partial solutions can be rejected
quickly without completing it

Imdad ullah Khan (LUMS) Coping with NP-Hardness 4 / 17



Backtracking

Finding path in a maze - backtrack when you reach a dead-end

Imdad ullah Khan (LUMS) Coping with NP-Hardness 5 / 17



Exhaustive Search for sat

Given a cnf formula f on n variables and m clauses

The brute force algorithm

Check all 2n possible assignments to the n variables

Determine in O(m + n) whether an assignment is satisfying

Running time is O(2n(n + m))

Visualize it as a complete full binary tree

Root of the tree correspond to variable x1

Left and right branches of root correspond to values of 1 and 0 for x1

Left and right subtrees are all possibilities for variables x2, . . . , xn

Imdad ullah Khan (LUMS) Coping with NP-Hardness 6 / 17



Intelligent Exhaustive Search for sat

Do not consider all 2n branches of the binary tree (solution space)

Carefully track each branch

Stop when “get” a dead branch (cannot be extended to a solution)

f = (· · · ) ∧ · · · ∧ (x6) ∧ · · · (· · · )

Reject all solutions (x1, . . . , xn) ∈ {0, 1}n with x6 = 0

Saves a lot- out of the 2n sized search space, we eliminated 2n−1

A more elaborate example follows

Imdad ullah Khan (LUMS) Coping with NP-Hardness 7 / 17



Intelligent Exhaustive Search for sat

Do not consider all 2n branches of the binary tree (solution space)

Carefully track each branch

Stop when “get” a dead branch (cannot be extended to a solution)

When a literal in a clause is 1, the clause is satisfied we remove it

When a literal in a clause is 0, the clause depends on other literals in
it we remove the variable from it

A partial assignment cannot satisfy the formula if there is an empty
clause (no literal is 1)

Imdad ullah Khan (LUMS) Coping with NP-Hardness 8 / 17



Intelligent Exhaustive Search for sat

x = 1

() ∧ (y ∨ z)

x = 0

(y ∨ z) ∧ (y) ∧ (y ∨ z)

z = 0

(x ∨ y) ∧ ()

z = 1

(x ∨ y) ∧ ()

w = 0

(x ∨ y ∨ z) ∧ (x) ∧ (x ∨ y) ∧ (y ∨ z)

w = 1

(x ∨ y) ∧ (y ∨ z) ∧ (z) ∧ (z)

y = 1

()

y = 0

(z) ∧ (z)

z = 1

()

z = 0

()

(w ∨ x ∨ y ∨ z) ∧ (w ∨ x) ∧ (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ w) ∧ (w ∨ z)

Imdad ullah Khan (LUMS) Coping with NP-Hardness 9 / 17



General Backtracking Procedure

A backtracking algorithm requires a test that looks at a subproblem and
quickly declares one of three outcomes:

failure: the subproblem has no solution

success: a solution to the subproblem is found

uncertainty: not yet clear if it is either - need to explore further

Imdad ullah Khan (LUMS) Coping with NP-Hardness 10 / 17



Backtracking algorithm for problem p

Algorithm Backtracking procedure for Problem p, Instance I0

S ← {I0}
while S ≠ ∅ do

Choose a subproblem instance I ∈ S
S ← S \ {I}
expand I into {I1, I2, . . . , Ik}
for each Ij do

if test(pj) = success then
return the current solution

else if test(pj) = failure then
return NF

else
S ← S ∪ {Ij}

return NF

Imdad ullah Khan (LUMS) Coping with NP-Hardness 11 / 17



Backtracking for 3-sat

Exhaustive search takes O(2n · (n + m)) for a 3-cnf formula f on n
variables and m clauses

The previous approach was more variable centric

Consider a more cluase centric approach

View a 3-cnf formula f as (ℓ1 ∨ ℓ2 ∨ ℓ3) ∧ (f ′) (unless f is empty)

f ′ too is a (possibly empty) 3-cnf formula

By the distributive law we get

f = (ℓ1 ∨ ℓ2 ∨ ℓ3) ∧ (f ′)

=⇒ f = (ℓ1 ∧ f ′) ∨ (ℓ2 ∧ f ′) ∨ (ℓ3 ∧ f ′)

Imdad ullah Khan (LUMS) Coping with NP-Hardness 12 / 17



Backtracking for 3-sat
f = (ℓ1 ∨ ℓ2 ∨ ℓ3) ∧ (f ′) =⇒ f = (ℓ1 ∧ f ′) ∨ (ℓ2 ∧ f ′) ∨ (ℓ3 ∧ f ′)

f [x = true] (f with the value of x plugged in as true)

Algorithm Backtracking for 3-sat
function check-sat(f )

if f is empty then
return true

else
Let f = (ℓ1 ∨ ℓ2 ∨ ℓ3) ∧ (f ′)
if check-sat(f ′[ℓ1 = true]) then ▷ implies l1 ∧ f ′ = true

return true
if check-sat(f ′[ℓ2 = true]) then

return true
if check-sat(f ′[ℓ3 = true]) then

return true
return false

Imdad ullah Khan (LUMS) Coping with NP-Hardness 13 / 17



Backtracking for 3-sat

T (n): runtime of this algorithm for a f on n variables with m clauses

T (n) =

3T (n − 1) + O(poly(n, m)) if n ≥ 1

1 otherwise

T (n) = O(3n · poly(n, m)) ▷ Simple recursion tree expansion

Even worse that the variable centric brute-force search

Observe the overlap in the subproblems - unnecessary repetitions

Imdad ullah Khan (LUMS) Coping with NP-Hardness 14 / 17



Backtracking for 3− sat

Need to make these subproblems mutually exclusive

Every satisfying assignment this algorithm finds (since it satisfies the
clause (ℓ1 ∨ ℓ2 ∨ ℓ3)) must be exactly one of the following types

ℓ1 = true

ℓ1 = false ∧ ℓ2 = true

ℓ1 = false ∧ ℓ2 = false ∧ ℓ3 = true

We can pinpoint any of of these three types of satisfying assignments
to three literals in exactly one of the recursive calls

Imdad ullah Khan (LUMS) Coping with NP-Hardness 15 / 17



Backtracking for 3− sat

Here is the clause centric algorithm based on this idea

Algorithm Backtracking for 3-sat
function check-sat(f )

if f is empty then
return true

else
Let f = (ℓ1 ∨ ℓ2 ∨ ℓ3) ∧ (f ′)
if check-sat(f ′[ℓ1 = true]) then

return true
if check-sat(f ′[ℓ1 = false ∧ ℓ2 = true]) then

return true
if check-sat(f ′[ℓ1 = false ∧ ℓ2 = false ∧ ℓ2 = true]) then

return true
return false

Imdad ullah Khan (LUMS) Coping with NP-Hardness 16 / 17



Intelligent Exhaustive Search for 3− sat

Fixing values of k literals reduced number of variables in f by k

T (n) =

T (n − 1) + T (n − 2) + T (n − 3) + O(poly(n, m)) n ≥ 1

1 else

Closed form of this recurrence is T (n) = O(1.84n)

This is substantially faster than the O(2n) algorithm

Even for n ∼ 100 this is more than 4180 times faster

Imdad ullah Khan (LUMS) Coping with NP-Hardness 17 / 17


