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Coping with NP-Hardness
Approaches to tackle hard problems

1 Special Cases: Relevant structure on which the problem is easy
Exact results in poly-time only for special cases or a range of parameters

2 Intelligent Exhaustive Search: Exponential time in worst case
The base and/or exponent are usually smaller
could be efficient on typical more realistic instances
Backtracking, Brand-and-Bound

3 Nearly exact solutions: Output is ‘close’ to exact (optimal) solution
Approximation Algorithms: Solutions of guaranteed quality in poly-time
Heuristic Algorithms: Solutions hopefully good in poly-time

4 Randomized Algorithms: Use coin flips for making decisions
Typically used for approximation, also used for easy problems
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Intelligent Exhaustive Search

Specific structure in instances is helpful sometimes
e.g. ind-set(G , k) for trees is easy
2-sat is easy

Sometime even a well-characterized special structure does not help
ind-set(G , k) is np-hard even for planar graphs
3-sat is np-hard

In many cases, we cannot neatly characterize the particular cases

Can still avoid exp-time exhaustively searching with clever methods

These algorithms are still exp time in the worst case
With the right ideas they are efficient on typical (likely) instances
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Backtracking

Often solution to a problem can be made with a series of choices

Each choice represents a partial solution

These partial solutions form a tree (or DAG)

Backtracking refers to a brute force solution where only feasible
partial solutions are considered

Feasibility and in-feasibility of partial solutions are determined given
the specific problem in hand

The idea in backtracking: many partial solutions can be rejected
quickly without completing it
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Backtracking

Finding path in a maze - backtrack when you reach a dead-end
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Exhaustive Search for sat

Given a cnf formula f on n variables and m clauses

The brute force algorithm

Check all 2n possible assignments to the n variables

Determine in O(m + n) whether an assignment is satisfying

Running time is O(2n(n + m))

Visualize it as a complete full binary tree

Root of the tree correspond to variable x1

Left and right branches of root correspond to values of 1 and 0 for x1

Left and right subtrees are all possibilities for variables x2, . . . , xn
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Intelligent Exhaustive Search for sat

Do not consider all 2n branches of the binary tree (solution space)

Carefully track each branch

Stop when “get” a dead branch (cannot be extended to a solution)

f = (· · · ) ∧ · · · ∧ (x6) ∧ · · · (· · · )

Reject all solutions (x1, . . . , xn) ∈ {0, 1}n with x6 = 0

Saves a lot- out of the 2n sized search space, we eliminated 2n−1

A more elaborate example follows
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Intelligent Exhaustive Search for sat

Do not consider all 2n branches of the binary tree (solution space)

Carefully track each branch

Stop when “get” a dead branch (cannot be extended to a solution)

When a literal in a clause is 1, the clause is satisfied we remove it

When a literal in a clause is 0, the clause depends on other literals in
it we remove the variable from it

A partial assignment cannot satisfy the formula if there is an empty
clause (no literal is 1)
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Intelligent Exhaustive Search for sat

x = 1

() ∧ (y ∨ z)

x = 0

(y ∨ z) ∧ (y) ∧ (y ∨ z)

z = 0

(x ∨ y) ∧ ()

z = 1

(x ∨ y) ∧ ()

w = 0

(x ∨ y ∨ z) ∧ (x) ∧ (x ∨ y) ∧ (y ∨ z)

w = 1

(x ∨ y) ∧ (y ∨ z) ∧ (z) ∧ (z)

y = 1

()

y = 0

(z) ∧ (z)

z = 1

()

z = 0

()

(w ∨ x ∨ y ∨ z) ∧ (w ∨ x) ∧ (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ w) ∧ (w ∨ z)
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General Backtracking Procedure

A backtracking algorithm requires a test that looks at a subproblem and
quickly declares one of three outcomes:

failure: the subproblem has no solution

success: a solution to the subproblem is found

uncertainty: not yet clear if it is either - need to explore further
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Backtracking algorithm for problem p

Algorithm Backtracking procedure for Problem p, Instance I0

S ← {I0}
while S ≠ ∅ do

Choose a subproblem instance I ∈ S
S ← S \ {I}
expand I into {I1, I2, . . . , Ik}
for each Ij do

if test(pj) = success then
return the current solution

else if test(pj) = failure then
return NF

else
S ← S ∪ {Ij}

return NF
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Backtracking for 3-sat

Exhaustive search takes O(2n · (n + m)) for a 3-cnf formula f on n
variables and m clauses

The previous approach was more variable centric

Consider a more cluase centric approach

View a 3-cnf formula f as (ℓ1 ∨ ℓ2 ∨ ℓ3) ∧ (f ′) (unless f is empty)

f ′ too is a (possibly empty) 3-cnf formula

By the distributive law we get

f = (ℓ1 ∨ ℓ2 ∨ ℓ3) ∧ (f ′)

=⇒ f = (ℓ1 ∧ f ′) ∨ (ℓ2 ∧ f ′) ∨ (ℓ3 ∧ f ′)
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Backtracking for 3-sat
f = (ℓ1 ∨ ℓ2 ∨ ℓ3) ∧ (f ′) =⇒ f = (ℓ1 ∧ f ′) ∨ (ℓ2 ∧ f ′) ∨ (ℓ3 ∧ f ′)

f [x = true] (f with the value of x plugged in as true)

Algorithm Backtracking for 3-sat
function check-sat(f )

if f is empty then
return true

else
Let f = (ℓ1 ∨ ℓ2 ∨ ℓ3) ∧ (f ′)
if check-sat(f ′[ℓ1 = true]) then ▷ implies l1 ∧ f ′ = true

return true
if check-sat(f ′[ℓ2 = true]) then

return true
if check-sat(f ′[ℓ3 = true]) then

return true
return false
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Backtracking for 3-sat

T (n): runtime of this algorithm for a f on n variables with m clauses

T (n) =

3T (n − 1) + O(poly(n, m)) if n ≥ 1

1 otherwise

T (n) = O(3n · poly(n, m)) ▷ Simple recursion tree expansion

Even worse that the variable centric brute-force search

Observe the overlap in the subproblems - unnecessary repetitions

Imdad ullah Khan (LUMS) Coping with NP-Hardness 14 / 17



Backtracking for 3− sat

Need to make these subproblems mutually exclusive

Every satisfying assignment this algorithm finds (since it satisfies the
clause (ℓ1 ∨ ℓ2 ∨ ℓ3)) must be exactly one of the following types

ℓ1 = true

ℓ1 = false ∧ ℓ2 = true

ℓ1 = false ∧ ℓ2 = false ∧ ℓ3 = true

We can pinpoint any of of these three types of satisfying assignments
to three literals in exactly one of the recursive calls
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Backtracking for 3− sat

Here is the clause centric algorithm based on this idea

Algorithm Backtracking for 3-sat
function check-sat(f )

if f is empty then
return true

else
Let f = (ℓ1 ∨ ℓ2 ∨ ℓ3) ∧ (f ′)
if check-sat(f ′[ℓ1 = true]) then

return true
if check-sat(f ′[ℓ1 = false ∧ ℓ2 = true]) then

return true
if check-sat(f ′[ℓ1 = false ∧ ℓ2 = false ∧ ℓ2 = true]) then

return true
return false
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Intelligent Exhaustive Search for 3− sat

Fixing values of k literals reduced number of variables in f by k

T (n) =

T (n − 1) + T (n − 2) + T (n − 3) + O(poly(n, m)) n ≥ 1

1 else

Closed form of this recurrence is T (n) = O(1.84n)

This is substantially faster than the O(2n) algorithm

Even for n ∼ 100 this is more than 4180 times faster
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