Algorithms

Coping with NP-HARDNESS

Strategies to deal with hard problems

Algorithms for Special Cases

m Fixed Parameter Tractability

Intelligent Exhaustive Search

m Backtracking

m Branch and Bound

m Dynamic Programming based pseudo polynomial algorithm TSP

IMDAD ULLAH KHAN

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 1/17



Coping with NP-HARDNESS

Approaches to tackle hard problems

Special Cases: Relevant structure on which the problem is easy

m Exact results in poly-time only for special cases or a range of parameters

Intelligent Exhaustive Search: Exponential time in worst case
m The base and/or exponent are usually smaller
m could be efficient on typical more realistic instances

m Backtracking, Brand-and-Bound

Nearly exact solutions: Output is ‘close’ to exact (optimal) solution
m Approximation Algorithms: Solutions of guaranteed quality in poly-time

m Heuristic Algorithms: Solutions hopefully good in poly-time

Randomized Algorithms: Use coin flips for making decisions

m Typically used for approximation, also used for easy problems

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 2/17



Intelligent Exhaustive Search

m Specific structure in instances is helpful sometimes

m e.g. IND-SET(G, k) for trees is easy

B 2-SAT is easy

m Sometime even a well-characterized special structure does not help

m IND-SET(G, k) is NP-HARD even for planar graphs
®m 3-SAT is NP-HARD

® In many cases, we cannot neatly characterize the particular cases
m Can still avoid exp-time exhaustively searching with clever methods

m These algorithms are still exp time in the worst case

m With the right ideas they are efficient on typical (likely) instances

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 3/17



Backtracking

m Often solution to a problem can be made with a series of choices
m Each choice represents a partial solution
m These partial solutions form a tree (or DAG)

m Backtracking refers to a brute force solution where only feasible
partial solutions are considered

m Feasibility and in-feasibility of partial solutions are determined given
the specific problem in hand

m The idea in backtracking: many partial solutions can be rejected
quickly without completing it

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 4/17



Finding path in a maze - backtrack when you reach a dead-end

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 5/17



Exhaustive Search for SAT

m Given a CNF formula f on n variables and m clauses

m The brute force algorithm
m Check all 2" possible assignments to the n variables

m Determine in O(m + n) whether an assignment is satisfying

m Running time is O(2"(n + m))

m Visualize it as a complete full binary tree

m Root of the tree correspond to variable x;

m Left and right branches of root correspond to values of 1 and 0 for x;

m Left and right subtrees are all possibilities for variables x, ..., x,

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 6/17



Intelligent Exhaustive Search for SAT

m Do not consider all 2" branches of the binary tree (solution space)
m Carefully track each branch

m Stop when “get” a dead branch (cannot be extended to a solution)
n f:(...)/\.../\(Xﬁ)/\...(...)
m Reject all solutions (xq,...,x,) € {0,1}" with x¢ =0

m Saves a lot- out of the 2" sized search space, we eliminated 27!

m A more elaborate example follows

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 7/17



Intelligent Exhaustive Search for SAT

m Do not consider all 2" branches of the binary tree (solution space)

m Carefully track each branch

m Stop when “get” a dead branch (cannot be extended to a solution)
m When a literal in a clause is 1, the clause is satisfied we remove it

m When a literal in a clause is 0, the clause depends on other literals in
it we remove the variable from it

m A partial assignment cannot satisfy the formula if there is an empty
clause (no literal is 1)

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 8/17



Intelligent Exhaustive Search for SAT

(wVaVyV)AN(wVIE)A @V AYVE)A(zVO)A(WVZ)

w=70 w=1
(@VyVz)A@) A (V) Ay V3) @VY) A VE)A()A(Z)
rz=0 r=1 z=0 z=1
(yV2) NG A(YyVE) 0NV (zVvy)A() (xVy)A()
y=0 y=1
(2) A () 0

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS



General Backtracking Procedure

A backtracking algorithm requires a test that looks at a subproblem and
quickly declares one of three outcomes:

B FAILURE: the subproblem has no solution
m SUCCESS: a solution to the subproblem is found

B UNCERTAINTY: not yet clear if it is either - need to explore further

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 10/17



Backtracking algorithm for problem p

Algorithm Backtracking procedure for Problem P, Instance I

S« {lo}

while S # () do
Choose a subproblem instance I € S
S+ S\ {1}
EXPAND T into {Iy,I5,..., I}

for each I; do
if TEST(P;) = SUCCESS then
return the current solution
else if TEST(P;) = FAILURE then
return NF
else
S+ SuU{lj}

return NF

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 11/17



Backtracking for 3-SAT

m Exhaustive search takes O(2" - (n + m)) for a 3-CNF formula f on n
variables and m clauses

m The previous approach was more variable centric

m Consider a more cluase centric approach

m View a 3-ONF formula f as (¢1 V €2V £3) A (f') (unless f is empty)
m ' too is a (possibly empty) 3-CNF formula

m By the distributive law we get

f= (61 V b \/E3) VAN (f’)

= f=(UAf)YNVUAf)V(zAT)

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 12/17



Backtracking for 3-SAT

fF=0UVLVEBINT) = F=UN)YNV (LAY (3N

m f[x = true] (f with the value of x plugged in as true)

Algorithm Backtracking for 3-sAT

function CHECK-SAT(f)
if f is empty then
return true

else
Let f = (61 ViV 83) A (f/)
if CHECK-SAT(f'[¢1 = true]) then > implies h A f' = true

return true

if CHECK-SAT(f'[¢> = true]) then
return true

if CHECK-SAT(f'[¢3 = true]) then
return true

return false

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 13 /17



Backtracking for 3-SAT

T(n): runtime of this algorithm for a f on n variables with m clauses

3T(n—1)+ O(poly(n,m)) ifn>1
T(n) =
1 otherwise

T(n) = O(3" - poly(n, m)) > Simple recursion tree expansion

m Even worse that the variable centric brute-force search

m Observe the overlap in the subproblems - unnecessary repetitions

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 14 /17



Backtracking for 3 — SAT

m Need to make these subproblems mutually exclusive

m Every satisfying assignment this algorithm finds (since it satisfies the
clause (¢1 V ¢3 V £3)) must be exactly one of the following types

m {1 = true
m /; = false A /> = true
m /; = false A />, = false A {3 = true

m We can pinpoint any of of these three types of satisfying assignments
to three literals in exactly one of the recursive calls

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 15 /17



Backtracking for 3 — SAT

m Here is the clause centric algorithm based on this idea

Algorithm Backtracking for 3-sAT

function CHECK-SAT(f)
if f is empty then
return true
else
Let f = (61 VAV £3) A\ (f/)
if CHECK-SAT(f'[¢1 = true]) then
return true
if CHECK-SAT(f'[¢; = false A {5 = true]) then
return true
if CHECK-SAT(f'[¢; = false A ¢, = false A £, = true]) then
return true
return false

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 16 /17



Intelligent Exhaustive Search for 3 — SAT

Fixing values of k literals reduced number of variables in f by k

() = {T(n— 1)+ T(n—2) + T(n—3) + O(poly(n,m)) n>1

1 else

Closed form of this recurrence is T(n) = O(1.84")

m This is substantially faster than the O(2") algorithm

m Even for n ~ 100 this is more than 4180 times faster

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 17 /17



