Coping with $\operatorname{NP-HARDNESS}$

- Strategies to deal with hard problems
- Algorithms for Special Cases
- Fixed Parameter Tractability
- Intelligent Exhaustive Search
 - Backtracking
 - Branch and Bound
- Dynamic Programming based pseudo polynomial algorithm TSP

Imdad ullah Khan

Approaches to tackle hard problems

1 Special Cases: Relevant structure on which the problem is easy

- Exact results in poly-time only for special cases or a range of parameters
- 2 Intelligent Exhaustive Search: Exponential time in worst case
 - The base and/or exponent are usually smaller
 - could be efficient on typical more realistic instances
 - Backtracking, Brand-and-Bound
- **3** Nearly exact solutions: Output is 'close' to exact (optimal) solution
 - Approximation Algorithms: Solutions of guaranteed quality in poly-time
 - Heuristic Algorithms: Solutions hopefully good in poly-time
- 4 Randomized Algorithms: Use coin flips for making decisions
 - Typically used for approximation, also used for easy problems

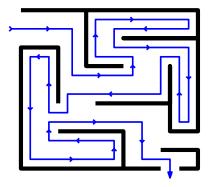
- Specific structure in instances is helpful sometimes
 - e.g. IND-SET(G, k) for trees is easy
 - 2-SAT is easy
- Sometime even a well-characterized special structure does not help
 - IND-SET(*G*, *k*) is NP-HARD even for planar graphs
 - 3-SAT is NP-HARD
- In many cases, we cannot neatly characterize the particular cases
- Can still avoid exp-time exhaustively searching with clever methods
- These algorithms are still exp time in the worst case
 - With the right ideas they are efficient on typical (likely) instances

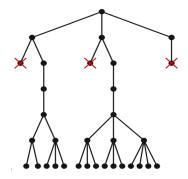
Backtracking

- Often solution to a problem can be made with a series of choices
- Each choice represents a partial solution
- These partial solutions form a tree (or DAG)
- Backtracking refers to a brute force solution where only feasible partial solutions are considered
- Feasibility and in-feasibility of partial solutions are determined given the specific problem in hand
- The idea in backtracking: many partial solutions can be rejected quickly without completing it

Backtracking

Finding path in a maze - backtrack when you reach a dead-end





Exhaustive Search for ${\rm SAT}$

• Given a CNF formula f on n variables and m clauses

The brute force algorithm

- Check all 2ⁿ possible assignments to the *n* variables
- Determine in O(m + n) whether an assignment is satisfying
- Running time is $O(2^n(n+m))$
- Visualize it as a complete full binary tree
 - Root of the tree correspond to variable x₁
 - Left and right branches of root correspond to values of 1 and 0 for x_1
 - Left and right subtrees are all possibilities for variables x_2, \ldots, x_n

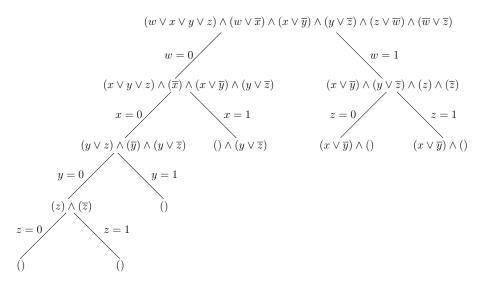
Intelligent Exhaustive Search for SAT

- Do not consider all 2ⁿ branches of the binary tree (solution space)
- Carefully track each branch
- Stop when "get" a dead branch (cannot be extended to a solution)
 - $f = (\cdots) \land \cdots \land (x_6) \land \cdots (\cdots)$
 - Reject all solutions $(x_1, \ldots, x_n) \in \{0, 1\}^n$ with $x_6 = 0$
 - Saves a lot- out of the 2^n sized search space, we eliminated 2^{n-1}
- A more elaborate example follows

Intelligent Exhaustive Search for SAT

- Do not consider all 2ⁿ branches of the binary tree (solution space)
- Carefully track each branch
- Stop when "get" a dead branch (cannot be extended to a solution)
- When a literal in a clause is 1, the clause is satisfied we remove it
- When a literal in a clause is 0, the clause depends on other literals in it we remove the variable from it
- A partial assignment cannot satisfy the formula if there is an empty clause (no literal is 1)

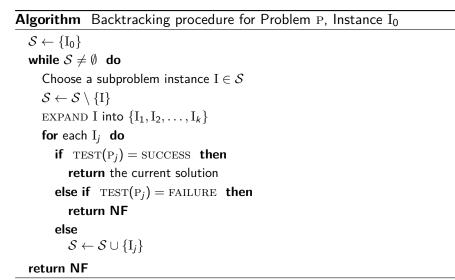
Intelligent Exhaustive Search for SAT



A backtracking algorithm requires a test that looks at a subproblem and quickly declares one of three outcomes:

- FAILURE: the subproblem has no solution
- **SUCCESS:** a solution to the subproblem is found
- UNCERTAINTY: not yet clear if it is either need to explore further

Backtracking algorithm for problem P



Backtracking for $\operatorname{3-SAT}$

- Exhaustive search takes $O(2^n \cdot (n+m))$ for a 3-CNF formula f on n variables and m clauses
- The previous approach was more variable centric
- Consider a more cluase centric approach
- View a 3-CNF formula f as $(\ell_1 \lor \ell_2 \lor \ell_3) \land (f')$ (unless f is empty)
- f' too is a (possibly empty) 3-CNF formula
- By the distributive law we get

$$f = (\ell_1 \vee \ell_2 \vee \ell_3) \land (f')$$

$$\implies f = (\ell_1 \land f') \lor (\ell_2 \land f') \lor (\ell_3 \land f')$$

Backtracking for $3\text{-}\mathrm{SAT}$

 $f = (\ell_1 \lor \ell_2 \lor \ell_3) \land (f') \implies f = (\ell_1 \land f') \lor (\ell_2 \land f') \lor (\ell_3 \land f')$

• f[x = true] (f with the value of x plugged in as true)

Algorithm Backtracking for 3-SAT

```
function CHECK-SAT(f)
```

if f is empty then

return true

else

Let $f = (\ell_1 \lor \ell_2 \lor \ell_3) \land (f')$ if CHECK-SAT $(f'[\ell_1 = true])$ then

 \triangleright implies $l_1 \wedge f' =$ true

return true

```
if CHECK-SAT(f'[\ell_2 = true]) then
```

return true

if CHECK-SAT
$$(f'[\ell_3 = true])$$
 then

return true

return false

Backtracking for $3\text{-}\mathrm{SAT}$

T(n): runtime of this algorithm for a f on n variables with m clauses

$$T(n) = egin{cases} 3T(n-1) + O(poly(n,m)) & ext{if } n \geq 1 \ 1 & ext{otherwise} \end{cases}$$

 $T(n) = O(3^n \cdot poly(n, m))$ \triangleright Simple recursion tree expansion

• Even worse that the variable centric brute-force search

Observe the overlap in the subproblems - unnecessary repetitions

Backtracking for 3 - SAT

- Need to make these subproblems mutually exclusive
- Every satisfying assignment this algorithm finds (since it satisfies the clause (ℓ₁ ∨ ℓ₂ ∨ ℓ₃)) must be exactly one of the following types

 $\bullet \ \ell_1 = true$

• $\ell_1 = false \land \ell_2 = true$

• $\ell_1 = \text{false} \land \ell_2 = \text{false} \land \ell_3 = \text{true}$

 We can pinpoint any of of these three types of satisfying assignments to three literals in exactly one of the recursive calls

Here is the clause centric algorithm based on this idea

Algorithm Backtracking for 3-SAT

function CHECK-SAT(f)

if f is empty then

return true

else

Let
$$f = (\ell_1 \lor \ell_2 \lor \ell_3) \land (f')$$

if CHECK-SAT $(f'[\ell_1 = \text{true}])$ then

return true

if CHECK-SAT($f'[\ell_1 = \mathsf{false} \land \ell_2 = \mathsf{true}]$) then return true

if CHECK-SAT($f'[\ell_1 = false \land \ell_2 = false \land \ell_2 = true]$) then

return true

return false

Intelligent Exhaustive Search for 3 - SAT

Fixing values of k literals reduced number of variables in f by k

$$T(n) = \begin{cases} T(n-1) + T(n-2) + T(n-3) + O(poly(n,m)) & n \ge 1\\ 1 & \text{else} \end{cases}$$

Closed form of this recurrence is $T(n) = O(1.84^n)$

- This is substantially faster than the $O(2^n)$ algorithm
- Even for $n \sim 100$ this is more than 4180 times faster