Algorithms

Coping with NP-HARDNESS

Strategies to deal with hard problems

Algorithms for Special Cases

m Fixed Parameter Tractability

Intelligent Exhaustive Search

m Backtracking

m Branch and Bound

m Dynamic Programming based pseudo polynomial algorithm TSP

IMDAD ULLAH KHAN

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS

1/9

Coping with NP-HARDNESS

Approaches to tackle hard problems

Special Cases: Relevant structure on which the problem is easy

m Exact results in poly-time only for special cases or a range of parameters

Intelligent Exhaustive Search: Exponential time in worst case
m The base and/or exponent are usually smaller
m could be efficient on typical more realistic instances

m Backtracking, Brand-and-Bound

Nearly exact solutions: Output is ‘close’ to exact (optimal) solution
m Approximation Algorithms: Solutions of guaranteed quality in poly-time

m Heuristic Algorithms: Solutions hopefully good in poly-time

Randomized Algorithms: Use coin flips for making decisions

m Typically used for approximation, also used for easy problems

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 2/9

FIXED-PARAMETER TRACTABILITY

m The solution with approximation guarantees may be too expensive

m Parameterized complexity is a measure of complexity with more than
1 input parameters

m We want algorithms with running time exponential in one parameter
but polynomial in the other parameter(s)

m We would like algorithms with runtimes 2kn2, k!'nlog n, etc.

m Acceptable runtimes when in realistic instance k is fixed (small)
m Such problems are called Fixed-Parameter Tractable

m Algorithms are called Fixed-Parameter Tractability (FPT) algorithms

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 3/9

Vertex Cover

An vertex cover in a graph is subset C of vertices such that each edge has
at least one endpoint in C J

O 8 o O 8 ®
o O O ® ® ®
O~0 O o
O O O O
A graph on 11 vertices A vertex cover of size 5
® g o O 8 o
o O O ® ® O
®=0 e
® ® O O
A vertex cover of size 6 A vertex cover of size 3
The VERTEX-COVER(G, k) problem: Is there a cover of size k in G7)

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS

VERTEX-COVER

Focus on SRCH-VERTEX-COVER(G, k)

Brute-Force Algorithm

m Is S a vertex cover?

For each possible k-subset S of V/, check if it is a vertex cover

m Traverse adj-list of each v € S, count edges in S and in [S, S]

m If this count = |E(G)|, then S is a vertex cover

Runtime is O((Z) kn) = O(knk+1)

> polynomial in n for fixed k

For larger k and large n, this is impractical

m For n = 10000, k = 20, this runitme is ~ 108

m We will design a FPT algorithm with runtime 2¥nk

m For n = 10000, k = 20, it is 22° x 10000 x 20 < 1082

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS

5/9

FPT for SRCH-VERTEX-COVER

m Take full advantage of k being small

m Enumerate all possibilities for some k edges

m Pick an edge (u, v)

m For any k-cover S (vertex cover of size k), either u € Sorv e S
mForxeV,G—{x} =(V\{x},E\{(a,b) € E:a=xVb=x})

m G — {x} : the graph after removing vertex x and edges incident on x

For any edge (u,v) € E,
G has a k-cover if and only if G — {u} or G — {v} has a k — 1-cover J

m=:lfues, then S\ {u}isa (k—1)-coverin G — {u}
m <: A (k—1)-cover " in G — {u} covers all edges except those
incident on u. S’ U{u} is a k-cover in G

We use this theorem in an algorithm by recursively trying both possibilities
IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 6/9

FPT for SRCH-VERTEX-COVER

Algorithm Algorithm to find vertex cover of size k
function VERTEX-COVER(G, k)

if k =0 then
if E(G) =0 then > O(n) time to check if all adj. lists are empty
return ()
else
return NF
else
e=(u,v) € E(G) > Pick an arbitrary edge in G

S, < VERTEX-COVER(G — {u}, k — 1)
S, < VERTEX-COVER(G — {v},k—1) > O(n) time to make G — {x}
if S, # NF then
return S, U {u}
else if S, # NF then
return S, U {v}
else
return NF

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 7/9

FPT for SRCH-VERTEX-COVER

function VERTEX-COVER(G, k)
if k = 0 then
if E(G) = 0 then > O(n) time to check if all adj. lists are empty
return ()
else
return NF
else
e=(u,v) € E(G) > Pick an arbitrary edge in G
Su ¢ VERTEX-COVER(G — {u}, k — 1)
Sy < VERTEX-COVER(G — {v}, k — 1) > O(n) time to make G — {x}
if S, # NF then
return S, U {u}
else if S, # NF then
return S, U {v}
else
return NF

T(n, k) : runtime of this algorithm on input G and k

O(n) if k=0
2T(n—1,k—1)+O(n) ifk>0

T(n k)=

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 8/9

FPT for SRCH-VERTEX-COVER

O(n) if k=0
2T(n—1,k—1)+0(n) ifk>0

T(n. k) = {

(n—2,k—2)| |(n—2‘k—2)| |(n—2,k—2)| |(n—2,k—2)

1

[o=k0)] [e-kO)] [(-k0O] [n=k0)]

m Recursion tree is a complete binary tree with height k
m 2K leaves and 2~ internal nodes (recursive invocation) T(

m Runtime of each recursive invocation is at most O(n)

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS

n, k) = O(2%n)

9/9

