Algorithms

Coping with NP-HARDNESS

■ Strategies to deal with hard problems

- Algorithms for Special Cases

■ Fixed Parameter Tractability

- Intelligent Exhaustive Search
- Backtracking
- Branch and Bound

■ Dynamic Programming based pseudo polynomial algorithm TSP

Imdad ullah Khan

Coping with NP-Hardness

Approaches to tackle hard problems
1 Special Cases: Relevant structure on which the problem is easy

- Exact results in poly-time only for special cases or a range of parameters

2 Intelligent Exhaustive Search: Exponential time in worst case

- The base and/or exponent are usually smaller
- could be efficient on typical more realistic instances
- Backtracking, Brand-and-Bound

3 Nearly exact solutions: Output is 'close' to exact (optimal) solution
■ Approximation Algorithms: Solutions of guaranteed quality in poly-time
■ Heuristic Algorithms: Solutions hopefully good in poly-time
4 Randomized Algorithms: Use coin flips for making decisions

- Typically used for approximation, also used for easy problems

Fixed-Parameter Tractability

- The solution with approximation guarantees may be too expensive
- Parameterized complexity is a measure of complexity with more than 1 input parameters

■ We want algorithms with running time exponential in one parameter but polynomial in the other parameter(s)

- We would like algorithms with runtimes $2^{k} n^{2}, k!n \log n$, etc.
- Acceptable runtimes when in realistic instance k is fixed (small)
- Such problems are called Fixed-Parameter Tractable

■ Algorithms are called Fixed-Parameter Tractability (FPT) algorithms

Vertex Cover

An vertex cover in a graph is subset C of vertices such that each edge has at least one endpoint in C

A graph on 11 vertices

A vertex cover of size 6

A vertex cover of size 5

A vertex cover of size 3

The vertex-Cover (G, k) problem: Is there a cover of size k in G ?

- Focus on SRCH-VERTEX-COVER (G, k)

Brute-Force Algorithm

■ For each possible k-subset S of V, check if it is a vertex cover

- Is S a vertex cover?
- Traverse adj-list of each $v \in S$, count edges in S and in $[S, \bar{S}]$
- If this count $=|E(G)|$, then S is a vertex cover

■ Runtime is $\left.O\binom{n}{k} k n\right)=O\left(k n^{k+1}\right) \quad \triangleright$ polynomial in n for fixed k

- For larger k and large n, this is impractical
- For $n=10000, k=20$, this runitme is $\sim 10^{82}$

■ We will design a FPT algorithm with runtime $2^{k} n k$

- For $n=10000, k=20$, it is $2^{20} \times 10000 \times 20 \ll 10^{82}$

FPT for SRCH-VERTEX-COVER

- Take full advantage of k being small
- Enumerate all possibilities for some k edges
- Pick an edge (u, v)

■ For any k-cover S (vertex cover of size k), either $u \in S$ or $v \in S$
■ For $x \in V, G-\{x\}:=(V \backslash\{x\}, E \backslash\{(a, b) \in E: a=x \vee b=x\})$

- $G-\{x\}$: the graph after removing vertex x and edges incident on x

For any edge $(u, v) \in E$,
G has a k-cover if and only if $G-\{u\}$ or $G-\{v\}$ has a $k-1$-cover
$■ \Rightarrow$: If $u \in S$, then $S \backslash\{u\}$ is a $(k-1)$-cover in $G-\{u\}$
$■ \Leftarrow$ A $(k-1)$-cover S^{\prime} in $G-\{u\}$ covers all edges except those incident on $u . S^{\prime} \cup\{u\}$ is a k-cover in G

We use this theorem in an algorithm by recursively trying both possibilities

FPT for SRCH-VERTEX-COVER

Algorithm Algorithm to find vertex cover of size k
function $\operatorname{VERTEX}-\operatorname{COVER}(G, k)$
if $k=0$ then
if $E(G)=\emptyset$ then $\quad \triangleright O(n)$ time to check if all adj. lists are empty return \emptyset
else

return NF

else
$e=(u, v) \in E(G) \quad \triangleright$ Pick an arbitrary edge in G
$S_{u} \leftarrow \operatorname{VERTEX}-\operatorname{cover}(G-\{u\}, k-1)$
$S_{v} \leftarrow \operatorname{Vertex}-\operatorname{Cover}(G-\{v\}, k-1) \quad \triangleright O(n)$ time to make $G-\{x\}$
if $S_{u} \neq \mathbf{N F}$ then
return $S_{u} \cup\{u\}$
else if $S_{v} \neq$ NF then
return $S_{v} \cup\{v\}$
else
return NF

FPT for SRCH-VERTEX-COVER

```
function VERTEX-COVER(G,k)
    if }k=0\mathrm{ then
        return \emptyset
        else
            return NF
    else
        Su}\leftarrow\operatorname{VERTEX-Cover}(G-{u},k-1
        Sv}\leftarrow\operatorname{VERTEX-COVER}(G-{v},k-1
        if }\mp@subsup{S}{u}{}\not=\textrm{NF}\mathrm{ then
        return }\mp@subsup{S}{u}{}\cup{u
        else if S
        return }\mp@subsup{S}{v}{}\cup{v
        else
            return NF
```

 if \(E(G)=\emptyset\) then \(\quad \triangleright O(n)\) time to check if all adj. lists are empty
 \(e=(u, v) \in E(G) \quad \triangleright\) Pick an arbitrary edge in \(G\)
 $T(n, k)$: runtime of this algorithm on input G and k

$$
T(n, k)= \begin{cases}O(n) & \text { if } k=0 \\ 2 T(n-1, k-1)+O(n) & \text { if } k>0\end{cases}
$$

FPT for SRCH-VERTEX-COVER

- Recursion tree is a complete binary tree with height k
- 2^{k} leaves and 2^{k-1} internal nodes (recursive invocation) $T(n, k)=O\left(2^{k} n\right)$
- Runtime of each recursive invocation is at most $O(n)$

