
Algorithms

Coping with NP-Hardness

Strategies to deal with hard problems

Algorithms for Special Cases

Fixed Parameter Tractability

Intelligent Exhaustive Search

Backtracking

Branch and Bound

Dynamic Programming based pseudo polynomial algorithm tsp

Imdad ullah Khan

Imdad ullah Khan (LUMS) Coping with NP-Hardness 1 / 9

Coping with NP-Hardness

Approaches to tackle hard problems

1 Special Cases: Relevant structure on which the problem is easy

Exact results in poly-time only for special cases or a range of parameters

2 Intelligent Exhaustive Search: Exponential time in worst case

The base and/or exponent are usually smaller

could be efficient on typical more realistic instances

Backtracking, Brand-and-Bound

3 Nearly exact solutions: Output is ‘close’ to exact (optimal) solution

Approximation Algorithms: Solutions of guaranteed quality in poly-time

Heuristic Algorithms: Solutions hopefully good in poly-time

4 Randomized Algorithms: Use coin flips for making decisions

Typically used for approximation, also used for easy problems

Imdad ullah Khan (LUMS) Coping with NP-Hardness 2 / 9

Fixed-Parameter Tractability

The solution with approximation guarantees may be too expensive

Parameterized complexity is a measure of complexity with more than
1 input parameters

We want algorithms with running time exponential in one parameter
but polynomial in the other parameter(s)

We would like algorithms with runtimes 2kn2, k!n log n, etc.

Acceptable runtimes when in realistic instance k is fixed (small)

Such problems are called Fixed-Parameter Tractable

Algorithms are called Fixed-Parameter Tractability (FPT) algorithms

Imdad ullah Khan (LUMS) Coping with NP-Hardness 3 / 9

Vertex Cover

An vertex cover in a graph is subset C of vertices such that each edge has
at least one endpoint in C

A graph on 11 vertices A vertex cover of size 5

A vertex cover of size 6 A vertex cover of size 3

The vertex-cover(G , k) problem: Is there a cover of size k in G?

Imdad ullah Khan (LUMS) Coping with NP-Hardness 4 / 9

vertex-cover

Focus on srch-vertex-cover(G , k)

Brute-Force Algorithm

For each possible k-subset S of V , check if it is a vertex cover

Is S a vertex cover?

Traverse adj-list of each v ∈ S , count edges in S and in [S ,S]

If this count = |E (G)|, then S is a vertex cover

Runtime is O
((n

k

)
kn

)
= O

(
knk+1

)
▷ polynomial in n for fixed k

For larger k and large n, this is impractical

For n = 10000, k = 20, this runitme is ∼ 1082

We will design a FPT algorithm with runtime 2knk

For n = 10000, k = 20, it is 220 × 10000× 20≪ 1082

Imdad ullah Khan (LUMS) Coping with NP-Hardness 5 / 9

FPT for srch-vertex-cover

Take full advantage of k being small

Enumerate all possibilities for some k edges

Pick an edge (u, v)

For any k-cover S (vertex cover of size k), either u ∈ S or v ∈ S

For x ∈ V , G − {x} := (V \ {x},E \ {(a, b) ∈ E : a = x ∨ b = x})
G − {x} : the graph after removing vertex x and edges incident on x

For any edge (u, v) ∈ E ,

G has a k-cover if and only if G − {u} or G − {v} has a k − 1-cover

⇒: If u ∈ S , then S \ {u} is a (k − 1)-cover in G − {u}
⇐: A (k − 1)-cover S ′ in G − {u} covers all edges except those
incident on u. S ′ ∪ {u} is a k-cover in G

We use this theorem in an algorithm by recursively trying both possibilities
Imdad ullah Khan (LUMS) Coping with NP-Hardness 6 / 9

FPT for srch-vertex-cover

Algorithm Algorithm to find vertex cover of size k

function vertex-cover(G , k)
if k = 0 then

if E (G) = ∅ then ▷ O(n) time to check if all adj. lists are empty
return ∅

else
return NF

else
e = (u, v) ∈ E (G) ▷ Pick an arbitrary edge in G

Su ← vertex-cover(G − {u}, k − 1)

Sv ← vertex-cover(G − {v}, k − 1) ▷ O(n) time to make G − {x}
if Su ̸= NF then

return Su ∪ {u}
else if Sv ̸= NF then

return Sv ∪ {v}
else
return NF

Imdad ullah Khan (LUMS) Coping with NP-Hardness 7 / 9

FPT for srch-vertex-cover

function vertex-cover(G , k)
if k = 0 then

if E(G) = ∅ then ▷ O(n) time to check if all adj. lists are empty
return ∅

else
return NF

else
e = (u, v) ∈ E(G) ▷ Pick an arbitrary edge in G
Su ← vertex-cover(G − {u}, k − 1)
Sv ← vertex-cover(G − {v}, k − 1) ▷ O(n) time to make G − {x}
if Su ̸= NF then

return Su ∪ {u}
else if Sv ̸= NF then

return Sv ∪ {v}
else

return NF

T (n, k) : runtime of this algorithm on input G and k

T (n, k) =

{
O(n) if k = 0

2T (n − 1, k − 1) + O(n) if k > 0

Imdad ullah Khan (LUMS) Coping with NP-Hardness 8 / 9

FPT for srch-vertex-cover

(n, k)

(n− 1, k − 1) (n− 1, k − 1)

(n− 2, k − 2)

(n− k, 0)

(n− 2, k − 2) (n− 2, k − 2) (n− 2, k − 2)

(n− k, 0) (n− k, 0) (n− k, 0) (n− k, 0) (n− k, 0)

...

...

...

...

k

T (n, k) =

{
O(n) if k = 0

2T (n− 1, k − 1) +O(n) if k > 0

Recursion tree is a complete binary tree with height k

2k leaves and 2k−1 internal nodes (recursive invocation)

Runtime of each recursive invocation is at most O(n)

T (n, k) = O(2kn)

Imdad ullah Khan (LUMS) Coping with NP-Hardness 9 / 9

