## Algorithms

## Coping with NP-HARDNESS

■ Strategies to deal with hard problems

- Algorithms for Special Cases

■ Fixed Parameter Tractability

- Intelligent Exhaustive Search
- Backtracking
- Branch and Bound

■ Dynamic Programming based pseudo polynomial algorithm TSP

Imdad ullah Khan

## Coping with NP-HARDNESS

## Approaches to tackle hard problems

1 Special Cases: Relevant structure on which the problem is easy

- Exact results in poly-time only for special cases or a range of parameters

2 Intelligent Exhaustive Search: Exponential time in worst case

- The base and/or exponent are usually smaller
- Could be efficient on typical more realistic instances
- Backtracking, Brand-and-Bound

3 Nearly exact solutions: Output is 'close' to exact (optimal) solution

- Approximation Algorithms: Solutions of guaranteed quality in poly-time

■ Heuristic: Solutions hopefully good in poly-time
4 Randomized Algorithms: Use coin flips for making decisions

- Typically used for approximation, also used problems in P


## Coping with np-HARDNESS: Special Cases

■ 3d - MATCHING is NP-HARD
■ The " 2 d " special case, is just graph matching problem

- VERTEX-COVER $(G, k)$ is NP-HARD
- When $G$ is bipartite, it is the dual of bipartite-matching
- $\operatorname{SAT}(f)$ is NP-HARD
- The special case of $2-\operatorname{sAT}(f)$ is easy
- WEIGHTED-INDEPENDENT-SET $(G)$ is NP-HARD
- When $G$ is a path, it can be solved easily with dynamic programming
- INDEPENDENT-SET( $G$ ) is NP-HARD
- When $G$ is a tree, the problem can be solved in polynomial time


## The 2-sat Search Problem

- Given $n$ Boolean variables $x_{1}, \ldots, x_{n}$ $\triangleright$ taking value of $0 / 1$
- A literal is a variable appearing in some formula as $x_{i}$ or $\bar{x}_{i}$
- A clause of size 2 is an OR of two literals
- A 2-CNF formula is AND of one or more clauses of size $\leq 2$
- A formula is satisfiable if there is an assignment of $0 / 1$ values to the variables such that the formula evaluates to 1 (or true)

2-SAT $(f)$ search problem: Find a satisfying assignment for $f$ if one exists?
$(x \vee y) \wedge(\bar{x} \vee z) \wedge(\bar{z})$ is satisfied with $\quad x=0, y=1, z=0$
$(x \vee y) \wedge(y) \wedge(\bar{x} \vee z) \wedge(\bar{y})$ is not satisfiable

## The 2-sat Search Problem

Meaning of a clause in 2-CNF formula
A clause $\left(\ell_{1}\right)$ means $\ell_{1}$ must be true or it cannot be false
A clause $\left(\ell_{1} \vee \ell_{2}\right)$ means one of $\ell_{1} \& \ell_{2}$ must be true (both can't be false)
■ i.e. if $\ell_{1}=0$, then $\ell_{2}=1$ and if $\ell_{2}=0$, then $\ell_{1}=1$

- In other words, if $\overline{\ell_{1}}=1$, then $\ell_{2}=1$ and if $\overline{\ell_{2}}=1$, then $\ell_{1}=1$

A 2-cnf formula is a series of implications of the above form
Implications are transitive $\quad[(a \rightarrow b)$ AND $(b \rightarrow c)] \longrightarrow(a \rightarrow c)$
From $(\bar{x} \vee y) \wedge(\bar{y} \vee z)$ we get implications

$$
[(x=1 \rightarrow y=1) \text { AND }(y=1 \rightarrow z=1)] \longrightarrow(x=1 \rightarrow z=1)
$$

## The 2-sat Search Problem

The Implication Graph for a 2 -CNF formula $f$ is a digraph $G=(V, E)$

- $V$ are variables of $f$ and their negations (all literals)
- E correspond to the two implications from each clause

$$
(\mathbf{x} \vee \mathbf{y}) \wedge(\overline{\mathbf{x}} \vee \mathrm{z}) \wedge(\mathbf{y} \vee \overline{\mathbf{z}}) \quad(\mathbf{x} \vee \mathbf{y}) \wedge(\overline{\mathbf{x}} \vee \mathrm{z}) \wedge(\overline{\mathbf{x}} \vee \overline{\mathbf{z}}) \wedge(\mathbf{x} \vee \overline{\mathbf{y}})
$$



The left formula has a satisfying solution and the right one has none How is this fact depicted in the graph?

## The 2-sat Search Problem

The Implication Graph for a 2-CNF formula $f$ is a digraph $G=(V, E)$

- $V$ are variables of $f$ and their negations (all literals)
- E correspond to the two implications from each clause

- All clauses are satisfied $\equiv$ all implications (now edges) are true
- An implication $x \rightarrow y$ is true always except for $x=1$ and $y=0$
- All edges satisfied, meaning there is no edge $(x, y)$, with the vertex (literal) $x$ has value 1 and the vertex (literal) $y$ has value 0

We want an assignment to variables so there is no edge from 1 to 0

## The 2-Sat Search Problem

$(\mathbf{x} \vee \mathbf{y}) \wedge(\overline{\mathbf{x}} \vee \mathbf{z}) \wedge(\mathbf{y} \vee \overline{\mathbf{z}})$


For the above formula (implication graph)

■ $(x, y, z)=(0,1,1)$ satisfy all edges
$■(x, y, z)=(0,1,0)$ satisfy all edges
$\square(x, y, z)=(0,0,1)$ does not satisfy the red edges
We try to satisfy all the edges of the corresponding implication graph

## The 2-Sat Search Problem


$(\mathbf{x} \vee \mathbf{y}) \wedge(\overline{\mathbf{x}} \vee \mathbf{z}) \wedge(\mathbf{y} \vee \overline{\mathbf{z}})$



1) Make an implication graph from the formula and 2) find an assignment to vertices that is not-conflicting $(\ell \neq \bar{\ell})$ and all edges are satisfied

In any assignment that satisfies all edges, there cannot be a 1 to 0 edge

In any assignment that satisfies all edges, there cannot be a 1 to 0 path


## The 2-Sat Search Problem


$(\mathbf{x} \vee \mathbf{y}) \wedge(\overline{\mathbf{x}} \vee \mathbf{z}) \wedge(\mathbf{y} \vee \overline{\mathbf{z}})$



1) Make an implication graph from the formula and 2) find an assignment to vertices that is not-conflicting $(\ell \neq \bar{\ell})$ and all edges are satisfied

In any assignment that satisfies all edges, there cannot be a 1 to 0 edge

In any assignment that satisfies all edges, there cannot be a 1 to 0 path


This is the transitive property of implications

## The 2-SAT Search Problem

1) Make an implication graph from the formula and 2) find an assignment to vertices that is not-conflicting $(\ell \neq \bar{\ell})$ and all edges are satisfied

In any assignment that satisfies all edges, there cannot be a 1 to 0 path
■ If there is a path from $u$ to $v$, we should not make $u=1$ and $v=0$
$\triangleright$ Can we check all paths? what if there are bidirectional paths?

- Whenever there is a path from $u$ to $v$ and a path from $v$ to $u$, then $u$ and $v$ must be assigned the same value
- All literals lying in the same strongly connected components, must be assigned the same value
- If a literal and its negation are in the same strongly connected components, the formula is not satisfiable
$\triangleright$ Indeed, that is the only way a formula would not be satisfiable


## The 2-sat Search Problem

1) Make an implication graph from the formula and 2) find an assignment to vertices that is not-conflicting $(\ell \neq \bar{\ell})$ and all edges are satisfied

In any assignment that satisfies all edges, there cannot be a 1 to 0 path

1 Find strongly connected components of the implication graphs
2 Give each component the same value
$\triangleright$ Need to make sure that there is no path from 1 to 0
$\triangleright$ Which component should get 1 which should get 0 ?
The component graph is a DAG
3 Traverse vertices in reverse topological ordering of their SCC's
4 If literals in current SCC are not assigned

- Set all of them to 1 Set their negations to 0


## The 2-SAT Search Problem

If no literal and its negation are in the same components, then the above algorithm produce a valid and satisfying assignment

■ If a literal is set to 1 , then all the literals reachable from it have already been set to 1 , because we are processing literals in reverse topological order

■ If a literal is set to 0 , then all the literals reachable from it have already been set to 0 , because the above statement is true about the corresponding edges (skew symmetry)

## Max-Independent-Set in Trees

- MAX-INDEPENDENT-SET $(G)$ is NP-HARD (reduction form decision version)
- Can be solved efficiently when $G$ is a tree or forest (acyclic)


## Max-Independent-Set in Trees



A tree on 11 vertices


An Independent set of size 6


An Independent set of size 5


Max Independent set of size 7

## Max-Independent-Set in Trees

Any tree has at least one leaf (actually two)

For any leaf $u$ in $T$, there is a max independent set containing $u$
■ Let $S$ be a max independent set, $S \not \supset u$

- Let $v$ be the only neighbor of $u$
$\triangleright u$ has degree 1
■ $v \in S$, otherwise $u$ can be in $S$ contradicting maximality of $S$
- Exchange $u$ for $v$



## Max-Independent-Set in Trees

Any tree has at least one leaf (actually two)

For any leaf $u$ in $T$, there is a max independent set containing $u$

For any leaf $u$ in $T$, a max independent set is $\{u\}$ union a max independent set in $T \backslash\{u\}$

## Max-Independent-Set in Trees

Any tree has at least one leaf (actually two)

For any leaf $u$ in $T$, there is a max independent set containing $u$

For any leaf $u$ in $T$, a max independent set is $u$ union a max independent set in $T \backslash\{u\}$

Algorithm Max Independent set in Forest $F$
$S \leftarrow \emptyset$
while $E(F) \neq \emptyset$ do
Let $u$ be a leaf and $v$ be its neighbor
$S \leftarrow S \cup\{u\}$
Remove $u, v$ from $V(F)$ and all edges incident to $u$ and $v$ from $E(F)$
Runtime is $O(n+m)$

