
Algorithms

Coping with NP-Hardness

Strategies to deal with hard problems

Algorithms for Special Cases

Fixed Parameter Tractability

Intelligent Exhaustive Search

Backtracking

Branch and Bound

Dynamic Programming based pseudo polynomial algorithm tsp
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Coping with NP-Hardness

Approaches to tackle hard problems

1 Special Cases: Relevant structure on which the problem is easy

Exact results in poly-time only for special cases or a range of parameters

2 Intelligent Exhaustive Search: Exponential time in worst case

The base and/or exponent are usually smaller

Could be efficient on typical more realistic instances

Backtracking, Brand-and-Bound

3 Nearly exact solutions: Output is ‘close’ to exact (optimal) solution

Approximation Algorithms: Solutions of guaranteed quality in poly-time

Heuristic: Solutions hopefully good in poly-time

4 Randomized Algorithms: Use coin flips for making decisions

Typically used for approximation, also used problems in P
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Coping with np-hardness: Special Cases

3d −matching is np-hard

The “2d” special case, is just graph matching problem

vertex-cover(G , k) is np-hard

When G is bipartite, it is the dual of bipartite-matching

sat(f ) is np-hard

The special case of 2− sat(f ) is easy

weighted-independent-Set(G ) is np-hard

When G is a path, it can be solved easily with dynamic programming

independent-set(G ) is np-hard

When G is a tree, the problem can be solved in polynomial time
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The 2-sat Search Problem

Given n Boolean variables x1, . . . , xn ▷ taking value of 0/1

A literal is a variable appearing in some formula as xi or x̄i

A clause of size 2 is an or of two literals

A 2-cnf formula is and of one or more clauses of size ≤ 2

A formula is satisfiable if there is an assignment of 0/1 values to the
variables such that the formula evaluates to 1 (or true)

2-sat(f ) search problem: Find a satisfying assignment for f if one exists?

(x ∨ y) ∧ (x ∨ z) ∧ (z) is satisfied with x = 0, y = 1, z = 0

(x ∨ y) ∧ (y) ∧ (x ∨ z) ∧ (y) is not satisfiable
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The 2-sat Search Problem

Meaning of a clause in 2-cnf formula

A clause (ℓ1) means ℓ1 must be true or it cannot be false

A clause (ℓ1 ∨ ℓ2) means one of ℓ1 & ℓ2 must be true (both can’t be false)

i.e. if ℓ1 = 0, then ℓ2 = 1 and if ℓ2 = 0, then ℓ1 = 1

In other words, if ℓ1 = 1, then ℓ2 = 1 and if ℓ2 = 1, then ℓ1 = 1

A 2-cnf formula is a series of implications of the above form

Implications are transitive
[
(a→ b) and (b → c)

]
−→ (a→ c)

From (x ∨ y) ∧ (y ∨ z) we get implications[
(x = 1→ y = 1) and (y = 1→ z = 1)

]
−→ (x = 1→ z = 1)
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The 2-sat Search Problem

The Implication Graph for a 2-cnf formula f is a digraph G = (V ,E )

V are variables of f and their negations (all literals)

E correspond to the two implications from each clause

(x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) (x ∨ y) ∧ (x ∨ z) ∧ (x ∨ z) ∧ (x ∨ y)
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x z
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x

The left formula has a satisfying solution and the right one has none

How is this fact depicted in the graph?
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The 2-sat Search Problem

The Implication Graph for a 2-cnf formula f is a digraph G = (V ,E )

V are variables of f and their negations (all literals)

E correspond to the two implications from each clause

(x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) (x ∨ y) ∧ (x ∨ z) ∧ (x ∨ z) ∧ (x ∨ y)
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All clauses are satisfied ≡ all implications (now edges) are true

An implication x → y is true always except for x = 1 and y = 0

All edges satisfied, meaning there is no edge (x , y), with the vertex
(literal) x has value 1 and the vertex (literal) y has value 0

We want an assignment to variables so there is no edge from 1 to 0
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The 2-sat Search Problem

(x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z)

x = 0, y = 1, z = 1 x = 0, y = 1, z = 0 x = 0, y = 0, z = 1
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For the above
formula

(implication graph)

(x , y , z) = (0, 1, 1) satisfy all edges

(x , y , z) = (0, 1, 0) satisfy all edges

(x , y , z) = (0, 0, 1) does not satisfy the red edges

We try to satisfy all the edges of the corresponding implication graph
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The 2-sat Search Problem

(x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z)

x = 0, y = 1, z = 1 x = 0, y = 1, z = 0 x = 0, y = 0, z = 1
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1) Make an implication graph from the formula and 2) find an assignment

to vertices that is not-conflicting (ℓ ̸= ℓ) and all edges are satisfied

In any assignment that satisfies all edges, there cannot be a 1 to 0 edge

In any assignment that satisfies all edges, there cannot be a 1 to 0 path

1
. . .. . .

0
x y

This is the transitive property of implications
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The 2-sat Search Problem

(x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z)

x = 0, y = 1, z = 1 x = 0, y = 1, z = 0 x = 0, y = 0, z = 1
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1) Make an implication graph from the formula and 2) find an assignment

to vertices that is not-conflicting (ℓ ̸= ℓ) and all edges are satisfied

In any assignment that satisfies all edges, there cannot be a 1 to 0 edge

In any assignment that satisfies all edges, there cannot be a 1 to 0 path

1
. . .. . .

0
x y

1 0

This is the transitive property of implications
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The 2-sat Search Problem

1) Make an implication graph from the formula and 2) find an assignment

to vertices that is not-conflicting (ℓ ̸= ℓ) and all edges are satisfied

In any assignment that satisfies all edges, there cannot be a 1 to 0 path

If there is a path from u to v , we should not make u = 1 and v = 0

▷ Can we check all paths? what if there are bidirectional paths?

Whenever there is a path from u to v and a path from v to u, then u
and v must be assigned the same value

All literals lying in the same strongly connected components, must be
assigned the same value

If a literal and its negation are in the same strongly connected
components, the formula is not satisfiable

▷ Indeed, that is the only way a formula would not be satisfiable
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The 2-sat Search Problem

1) Make an implication graph from the formula and 2) find an assignment

to vertices that is not-conflicting (ℓ ̸= ℓ) and all edges are satisfied

In any assignment that satisfies all edges, there cannot be a 1 to 0 path

1 Find strongly connected components of the implication graphs

2 Give each component the same value

▷ Need to make sure that there is no path from 1 to 0

▷ Which component should get 1 which should get 0?

The component graph is a DAG

3 Traverse vertices in reverse topological ordering of their SCC’s

4 If literals in current SCC are not assigned

Set all of them to 1 Set their negations to 0
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The 2-SAT Search Problem

If no literal and its negation are in the same components, then the above
algorithm produce a valid and satisfying assignment

If a literal is set to 1, then all the literals reachable from it have
already been set to 1, because we are processing literals in reverse
topological order

If a literal is set to 0, then all the literals reachable from it have
already been set to 0, because the above statement is true about the
corresponding edges (skew symmetry)
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Max-Independent-Set in Trees

max-independent-set(G ) is np-hard (reduction form decision
version)

Can be solved efficiently when G is a tree or forest (acyclic)
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Max-Independent-Set in Trees

A tree on 11 vertices An Independent set of size 5

An Independent set of size 6 Max Independent set of size 7
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Max-Independent-Set in Trees

Any tree has at least one leaf (actually two)

For any leaf u in T , there is a max independent set containing u

Let S be a max independent set, S ̸∋ u

Let v be the only neighbor of u ▷ u has degree 1

v ∈ S , otherwise u can be in S contradicting maximality of S

Exchange u for v

u

v

u

v
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Max-Independent-Set in Trees

Any tree has at least one leaf (actually two)

For any leaf u in T , there is a max independent set containing u

For any leaf u in T , a max independent set is {u} union a max
independent set in T \ {u}
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Max-Independent-Set in Trees

Any tree has at least one leaf (actually two)

For any leaf u in T , there is a max independent set containing u

For any leaf u in T , a max independent set is u union a max independent
set in T \ {u}

Algorithm Max Independent set in Forest F

S ← ∅
while E (F ) ̸= ∅ do

Let u be a leaf and v be its neighbor

S ← S ∪ {u}
Remove u, v from V (F ) and all edges incident to u and v from E (F )

Runtime is O(n +m)
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