
Algorithms

Coping with NP-Hardness

Strategies to deal with hard problems

Algorithms for Special Cases

Fixed Parameter Tractability

Intelligent Exhaustive Search

Backtracking

Branch and Bound

Dynamic Programming based pseudo polynomial algorithm tsp

Imdad ullah Khan

Imdad ullah Khan (LUMS) Coping with NP-Hardness 1 / 18



Coping with NP-Hardness

Approaches to tackle hard problems

1 Special Cases: Relevant structure on which the problem is easy

Exact results in poly-time only for special cases or a range of parameters

2 Intelligent Exhaustive Search: Exponential time in worst case

The base and/or exponent are usually smaller

Could be efficient on typical more realistic instances

Backtracking, Brand-and-Bound

3 Nearly exact solutions: Output is ‘close’ to exact (optimal) solution

Approximation Algorithms: Solutions of guaranteed quality in poly-time

Heuristic: Solutions hopefully good in poly-time

4 Randomized Algorithms: Use coin flips for making decisions

Typically used for approximation, also used problems in P

Imdad ullah Khan (LUMS) Coping with NP-Hardness 2 / 18



Coping with np-hardness: Special Cases

3d −matching is np-hard

The “2d” special case, is just graph matching problem

vertex-cover(G , k) is np-hard

When G is bipartite, it is the dual of bipartite-matching

sat(f ) is np-hard

The special case of 2− sat(f ) is easy

weighted-independent-Set(G ) is np-hard

When G is a path, it can be solved easily with dynamic programming

independent-set(G ) is np-hard

When G is a tree, the problem can be solved in polynomial time

Imdad ullah Khan (LUMS) Coping with NP-Hardness 3 / 18



The 2-sat Search Problem

Given n Boolean variables x1, . . . , xn ▷ taking value of 0/1

A literal is a variable appearing in some formula as xi or x̄i

A clause of size 2 is an or of two literals

A 2-cnf formula is and of one or more clauses of size ≤ 2

A formula is satisfiable if there is an assignment of 0/1 values to the
variables such that the formula evaluates to 1 (or true)

2-sat(f ) search problem: Find a satisfying assignment for f if one exists?

(x ∨ y) ∧ (x ∨ z) ∧ (z) is satisfied with x = 0, y = 1, z = 0

(x ∨ y) ∧ (y) ∧ (x ∨ z) ∧ (y) is not satisfiable

Imdad ullah Khan (LUMS) Coping with NP-Hardness 4 / 18



The 2-sat Search Problem

Meaning of a clause in 2-cnf formula

A clause (ℓ1) means ℓ1 must be true or it cannot be false

A clause (ℓ1 ∨ ℓ2) means one of ℓ1 & ℓ2 must be true (both can’t be false)

i.e. if ℓ1 = 0, then ℓ2 = 1 and if ℓ2 = 0, then ℓ1 = 1

In other words, if ℓ1 = 1, then ℓ2 = 1 and if ℓ2 = 1, then ℓ1 = 1

A 2-cnf formula is a series of implications of the above form

Implications are transitive
[
(a→ b) and (b → c)

]
−→ (a→ c)

From (x ∨ y) ∧ (y ∨ z) we get implications[
(x = 1→ y = 1) and (y = 1→ z = 1)

]
−→ (x = 1→ z = 1)

Imdad ullah Khan (LUMS) Coping with NP-Hardness 5 / 18



The 2-sat Search Problem

The Implication Graph for a 2-cnf formula f is a digraph G = (V ,E )

V are variables of f and their negations (all literals)

E correspond to the two implications from each clause

(x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) (x ∨ y) ∧ (x ∨ z) ∧ (x ∨ z) ∧ (x ∨ y)

x z

y

zy

x

x z

y

zy

x

The left formula has a satisfying solution and the right one has none

How is this fact depicted in the graph?

Imdad ullah Khan (LUMS) Coping with NP-Hardness 6 / 18



The 2-sat Search Problem

The Implication Graph for a 2-cnf formula f is a digraph G = (V ,E )

V are variables of f and their negations (all literals)

E correspond to the two implications from each clause

(x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) (x ∨ y) ∧ (x ∨ z) ∧ (x ∨ z) ∧ (x ∨ y)

x z

y

zy

x

x z

y

zy

x

All clauses are satisfied ≡ all implications (now edges) are true

An implication x → y is true always except for x = 1 and y = 0

All edges satisfied, meaning there is no edge (x , y), with the vertex
(literal) x has value 1 and the vertex (literal) y has value 0

We want an assignment to variables so there is no edge from 1 to 0

Imdad ullah Khan (LUMS) Coping with NP-Hardness 7 / 18



The 2-sat Search Problem

(x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z)

x = 0, y = 1, z = 1 x = 0, y = 1, z = 0 x = 0, y = 0, z = 1

1

1

00

1

0 0

1

10

1

0 1

0

01

1

0x z

y

zy

x

x z

y

zy

x

x z

y

zy

x

For the above
formula

(implication graph)

(x , y , z) = (0, 1, 1) satisfy all edges

(x , y , z) = (0, 1, 0) satisfy all edges

(x , y , z) = (0, 0, 1) does not satisfy the red edges

We try to satisfy all the edges of the corresponding implication graph

Imdad ullah Khan (LUMS) Coping with NP-Hardness 8 / 18



The 2-sat Search Problem

(x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z)

x = 0, y = 1, z = 1 x = 0, y = 1, z = 0 x = 0, y = 0, z = 1

1

1

00

1

0 0

1

10

1

0 1

0

01

1

0x z

y

zy

x

x z

y

zy

x

x z

y

zy

x

1) Make an implication graph from the formula and 2) find an assignment

to vertices that is not-conflicting (ℓ ̸= ℓ) and all edges are satisfied

In any assignment that satisfies all edges, there cannot be a 1 to 0 edge

In any assignment that satisfies all edges, there cannot be a 1 to 0 path

1
. . .. . .

0
x y

This is the transitive property of implications
Imdad ullah Khan (LUMS) Coping with NP-Hardness 9 / 18



The 2-sat Search Problem

(x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z)

x = 0, y = 1, z = 1 x = 0, y = 1, z = 0 x = 0, y = 0, z = 1

1

1

00

1

0 0

1

10

1

0 1

0

01

1

0x z

y

zy

x

x z

y

zy

x

x z

y

zy

x

1) Make an implication graph from the formula and 2) find an assignment

to vertices that is not-conflicting (ℓ ̸= ℓ) and all edges are satisfied

In any assignment that satisfies all edges, there cannot be a 1 to 0 edge

In any assignment that satisfies all edges, there cannot be a 1 to 0 path

1
. . .. . .

0
x y

1 0

This is the transitive property of implications
Imdad ullah Khan (LUMS) Coping with NP-Hardness 10 / 18



The 2-sat Search Problem

1) Make an implication graph from the formula and 2) find an assignment

to vertices that is not-conflicting (ℓ ̸= ℓ) and all edges are satisfied

In any assignment that satisfies all edges, there cannot be a 1 to 0 path

If there is a path from u to v , we should not make u = 1 and v = 0

▷ Can we check all paths? what if there are bidirectional paths?

Whenever there is a path from u to v and a path from v to u, then u
and v must be assigned the same value

All literals lying in the same strongly connected components, must be
assigned the same value

If a literal and its negation are in the same strongly connected
components, the formula is not satisfiable

▷ Indeed, that is the only way a formula would not be satisfiable

Imdad ullah Khan (LUMS) Coping with NP-Hardness 11 / 18



The 2-sat Search Problem

1) Make an implication graph from the formula and 2) find an assignment

to vertices that is not-conflicting (ℓ ̸= ℓ) and all edges are satisfied

In any assignment that satisfies all edges, there cannot be a 1 to 0 path

1 Find strongly connected components of the implication graphs

2 Give each component the same value

▷ Need to make sure that there is no path from 1 to 0

▷ Which component should get 1 which should get 0?

The component graph is a DAG

3 Traverse vertices in reverse topological ordering of their SCC’s

4 If literals in current SCC are not assigned

Set all of them to 1 Set their negations to 0

Imdad ullah Khan (LUMS) Coping with NP-Hardness 12 / 18



The 2-SAT Search Problem

If no literal and its negation are in the same components, then the above
algorithm produce a valid and satisfying assignment

If a literal is set to 1, then all the literals reachable from it have
already been set to 1, because we are processing literals in reverse
topological order

If a literal is set to 0, then all the literals reachable from it have
already been set to 0, because the above statement is true about the
corresponding edges (skew symmetry)

Imdad ullah Khan (LUMS) Coping with NP-Hardness 13 / 18



Max-Independent-Set in Trees

max-independent-set(G ) is np-hard (reduction form decision
version)

Can be solved efficiently when G is a tree or forest (acyclic)

Imdad ullah Khan (LUMS) Coping with NP-Hardness 14 / 18



Max-Independent-Set in Trees

A tree on 11 vertices An Independent set of size 5

An Independent set of size 6 Max Independent set of size 7

Imdad ullah Khan (LUMS) Coping with NP-Hardness 15 / 18



Max-Independent-Set in Trees

Any tree has at least one leaf (actually two)

For any leaf u in T , there is a max independent set containing u

Let S be a max independent set, S ̸∋ u

Let v be the only neighbor of u ▷ u has degree 1

v ∈ S , otherwise u can be in S contradicting maximality of S

Exchange u for v

u

v

u

v

Imdad ullah Khan (LUMS) Coping with NP-Hardness 16 / 18



Max-Independent-Set in Trees

Any tree has at least one leaf (actually two)

For any leaf u in T , there is a max independent set containing u

For any leaf u in T , a max independent set is {u} union a max
independent set in T \ {u}

Imdad ullah Khan (LUMS) Coping with NP-Hardness 17 / 18



Max-Independent-Set in Trees

Any tree has at least one leaf (actually two)

For any leaf u in T , there is a max independent set containing u

For any leaf u in T , a max independent set is u union a max independent
set in T \ {u}

Algorithm Max Independent set in Forest F

S ← ∅
while E (F ) ̸= ∅ do

Let u be a leaf and v be its neighbor

S ← S ∪ {u}
Remove u, v from V (F ) and all edges incident to u and v from E (F )

Runtime is O(n +m)

Imdad ullah Khan (LUMS) Coping with NP-Hardness 18 / 18


