
Algorithms

Coping with NP-Hardness

Strategies to deal with hard problems

Algorithms for Special Cases

Fixed Parameter Tractability

Intelligent Exhaustive Search

Backtracking
Branch and Bound

Dynamic Programming based pseudo polynomial algorithm tsp

Imdad ullah Khan

Imdad ullah Khan (LUMS) Coping with NP-Hardness 1 / 1



Intractable Problems in Practice
Try to solve a problem through some design paradigm
If fruitless, try to prove that your problem is NP-Hard
Good theoretical exercise, but the problem doesn’t go away

source: slideplayer.com via Google images

In this lecture we briefly explore what to do in this case

NP-Completeness is not a death certificate, it is the beginning of a
fascinating adventure

Imdad ullah Khan (LUMS) Coping with NP-Hardness 2 / 1



NP-Hardness

When you prove a problem X to be NP-Hard, then as per the almost
consensus opinion of P ̸= NP, it essentially means

1 There is no polynomial time

2 deterministic algorithm

3 to exactly/optimally solve the problem X

4 for all possible input instances

What are the option? Things to consider when your problem is NP-Hard

Imdad ullah Khan (LUMS) Coping with NP-Hardness 3 / 1



Coping with NP-Hardness
Do I need to solve the problem for all valid input instances?

Sometimes just need to solve a restricted version of the problem -
▷ (special cases) that include realistic instances

Is exponential-time OK for my instances?
Exponential-time algorithms are “not slow” ▷ they don’t scale well
If relevant instances are small, then they may be acceptable
Can bring exponent/base of runtime down ▷ 2n → 2

√
n or 2n → 1.5n

Is non-optimality OK?
What if our algorithm is better than others ▷ faster than bruteforce

Imdad ullah Khan (LUMS) Coping with NP-Hardness 4 / 1



Coping with NP-Hardness
To cope with NP-Hardness, sacrifice one of these features

Poly-time Deterministic Exact/Opt
Solution

All cases/
Parameters Algorithmic Paradigm

✓ ✓ ✓ ✗
Special Cases Algorithms
Fixed Parameter Tractability

✓ ✓ ✗ ✓
Approximation Algorithms
Heuristic Algorithms

✗ ✓ ✓ ✓
Intelligent
Exhaustive Search

✓ ✗ E(✓) ✓
Mote Carlo
Randomized Algorithm

E(✓) ✗ ✓ ✓
Las Vegas
Randomized Algorithm

Special cases of input instances (based on structure of a range of parameter(s))
Approximation algorithms guarantee a bound on suboptimality
Heuristics algorithms do not have any guarantee
Randomized algorithms are generally used for problems in class P

Imdad ullah Khan (LUMS) Coping with NP-Hardness 5 / 1



Coping with NP-Hardness

Approaches to tackle hard problems

1 Special Cases: Relevant structure on which the problem is easy
Exact results in poly-time only for special cases or a range of parameters

2 Intelligent Exhaustive Search: Exponential time in worst case
The base and/or exponent are usually smaller
Could be efficient on typical more realistic instances
Backtracking, Brand-and-Bound

3 Nearly exact solutions: Output is ‘close’ to exact (optimal) solution
Approximation Algorithms: Solutions of guaranteed quality in poly-time
Heuristic: Solutions hopefully good in poly-time

4 Randomized Algorithms: Use coin flips for making decisions
Typically used for approximation, also used for problems in P

Imdad ullah Khan (LUMS) Coping with NP-Hardness 6 / 1


