Algorithms

Coping with NP-HARDNESS

Strategies to deal with hard problems

Algorithms for Special Cases

m Fixed Parameter Tractability

Intelligent Exhaustive Search

m Backtracking

m Branch and Bound

m Dynamic Programming based pseudo polynomial algorithm TSP

IMDAD ULLAH KHAN

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS

1/1

INTRACTABLE PROBLEMS IN PRACTICE

Try to solve a problem through some design paradigm
If fruitless, try to prove that your problem is NP-HARD

Good theoretical exercise, but the problem doesn’t go away

Dealing with Hard Problems Dealing with Hard Problems Dealing with Hard Problems
* What to do when we find a problem that * Sometimes we can prove a strong lower * NP-completeness let’s us show collectively
looks hard... bound... (but not usually) that a problem is hard.

e

I couldn't nnd a Do!ynomlal ume algemmn lmuldn t ﬂnd a polynomial-time algorithm, 1 couldn't find a polynomial-time aigorithm,
1 guess I'm too dumt 1o such algorithm exists! but neither could all these other smart people.

source: Slld@pl’i}?l com via Google images
In this lecture we briefly explore what to do in this case

NP-COMPLETENESS is not a death certificate, it is the beginning of a
fascinating adventure

2/1

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS

NP-HARDNESS

When you prove a problem X to be NP-HARD, then as per the almost
consensus opinion of P # NP, it essentially means

There is no polynomial time
deterministic algorithm
to exactly/optimally solve the problem X

for all possible input instances

What are the option? Things to consider when your problem is NP-HARD

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 3/1

Coping with NP-HARDNESS

m Do | need to solve the problem for all valid input instances?
m Sometimes just need to solve a restricted version of the problem -
> (special cases) that include realistic instances

m Is exponential-time OK for my instances?
m Exponential-time algorithms are “not slow” > they don't scale well
m If relevant instances are small, then they may be acceptable
m Can bring exponent/base of runtime down > 2" — 2V7 or 27 — 1.5"

m Is non-optimality OK?

m What if our algorithm is better than others > faster than bruteforce
We can't True, l:\d I
hisbeeel o

»

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 4/1

Coping with NP-HARDNESS

To cope with NP-HARDNESS, sacrifice one of these features

Exact/Opt All cases/

Poly-time Deterministic Algorithmic Paradigm

Solution Parameters
v v / X Pt Paremeter Tactasity
v v x L Dewaie Mgt
X v v v :Erisgljgsi?\fe Search
v/ X E(‘/) v ll\?/laor:joiﬁairzlzd Algorithm
E() X v v Las Vegas

Randomized Algorithm

m Special cases of input instances (based on structure of a range of parameter(s))
m Approximation algorithms guarantee a bound on suboptimality
m Heuristics algorithms do not have any guarantee

m Randomized algorithms are generally used for problems in class P

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 5/1

Coping with NP-HARDNESS

Approaches to tackle hard problems)

Special Cases: Relevant structure on which the problem is easy

m Exact results in poly-time only for special cases or a range of parameters

Intelligent Exhaustive Search: Exponential time in worst case
m The base and/or exponent are usually smaller
m Could be efficient on typical more realistic instances

m Backtracking, Brand-and-Bound

Nearly exact solutions: Output is ‘close’ to exact (optimal) solution
m Approximation Algorithms: Solutions of guaranteed quality in poly-time
m Heuristic: Solutions hopefully good in poly-time

Randomized Algorithms: Use coin flips for making decisions
m Typically used for approximation, also used for problems in P

IMDAD ULLAH KHAN (LUMS) Coping with NP-HARDNESS 6/1

