Coping with $\operatorname{NP-HARDNESS}$

- Strategies to deal with hard problems
- Algorithms for Special Cases
- Fixed Parameter Tractability
- Intelligent Exhaustive Search
 - Backtracking
 - Branch and Bound
- Dynamic Programming based pseudo polynomial algorithm TSP

Imdad ullah Khan

INTRACTABLE PROBLEMS IN PRACTICE

Try to solve a problem through some design paradigm If fruitless, try to prove that your problem is NP-HARD Good theoretical exercise, but the problem doesn't go away

Dealing with Hard Problems

 What to do when we find a problem that looks hard...

- **Dealing with Hard Problems**
- Sometimes we can prove a strong lower bound... (but not usually)

Dealing with Hard Problems

 NP-completeness let's us show collectively that a problem is hard.

In this lecture we briefly explore what to do in this case

 $\operatorname{NP-COMPLETENESS}$ is not a death certificate, it is the beginning of a fascinating adventure

When you prove a problem X to be NP-HARD, then as per the almost consensus opinion of $P \neq NP$, it essentially means

- 1 There is no polynomial time
- 2 deterministic algorithm
- 3 to exactly/optimally solve the problem X
- 4 for all possible input instances

What are the option? Things to consider when your problem is $\operatorname{NP-HARD}$

Coping with NP-HARDNESS

- Do I need to solve the problem for all valid input instances?
 - Sometimes just need to solve a restricted version of the problem -

 \triangleright (special cases) that include realistic instances

- Is exponential-time OK for my instances?
 - Exponential-time algorithms are "not slow"
 - If relevant instances are small, then they may be acceptable
 - Can bring exponent/base of runtime down

Is non-optimality OK?

What if our algorithm is better than others

▷ faster than bruteforce

▷ they don't scale well

 $\triangleright 2^n \rightarrow 2^{\sqrt{n}}$ or $2^n \rightarrow 1.5^n$

To cope with $\operatorname{NP-HARDNESS}$, sacrifice one of these features

Poly-time	Deterministic	Exact/Opt Solution	All cases/ Parameters	Algorithmic Paradigm
1	1	1	×	Special Cases Algorithms Fixed Parameter Tractability
1	1	×	1	Approximation Algorithms Heuristic Algorithms
×	1	1	1	Intelligent Exhaustive Search
1	×	$\mathbb{E}(\checkmark)$	1	Mote Carlo Randomized Algorithm
$\mathbb{E}(\checkmark)$	×	1	1	Las Vegas Randomized Algorithm

- Special cases of input instances (based on structure of a range of parameter(s))
- Approximation algorithms guarantee a bound on suboptimality
- Heuristics algorithms do not have any guarantee
- \blacksquare Randomized algorithms are generally used for problems in class P

Approaches to tackle hard problems

- **1** Special Cases: Relevant structure on which the problem is easy
 - Exact results in poly-time only for special cases or a range of parameters
- 2 Intelligent Exhaustive Search: Exponential time in worst case
 - The base and/or exponent are usually smaller
 - Could be efficient on typical more realistic instances
 - Backtracking, Brand-and-Bound
- **3** Nearly exact solutions: Output is '*close*' to exact (optimal) solution
 - Approximation Algorithms: Solutions of guaranteed quality in poly-time
 - Heuristic: Solutions hopefully good in poly-time
- 4 Randomized Algorithms: Use coin flips for making decisions
 - $\hfill Typically used for approximation, also used for problems in <math display="inline">{\rm P}$