
Algorithms

Coping with NP-Hardness

Strategies to deal with hard problems

Algorithms for Special Cases

Fixed Parameter Tractability

Intelligent Exhaustive Search

Backtracking
Branch and Bound

Dynamic Programming based pseudo polynomial algorithm tsp
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Intractable Problems in Practice
Try to solve a problem through some design paradigm
If fruitless, try to prove that your problem is NP-Hard
Good theoretical exercise, but the problem doesn’t go away

source: slideplayer.com via Google images

In this lecture we briefly explore what to do in this case

NP-Completeness is not a death certificate, it is the beginning of a
fascinating adventure
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NP-Hardness

When you prove a problem X to be NP-Hard, then as per the almost
consensus opinion of P ̸= NP, it essentially means

1 There is no polynomial time

2 deterministic algorithm

3 to exactly/optimally solve the problem X

4 for all possible input instances

What are the option? Things to consider when your problem is NP-Hard
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Coping with NP-Hardness
Do I need to solve the problem for all valid input instances?

Sometimes just need to solve a restricted version of the problem -
▷ (special cases) that include realistic instances

Is exponential-time OK for my instances?
Exponential-time algorithms are “not slow” ▷ they don’t scale well
If relevant instances are small, then they may be acceptable
Can bring exponent/base of runtime down ▷ 2n → 2

√
n or 2n → 1.5n

Is non-optimality OK?
What if our algorithm is better than others ▷ faster than bruteforce
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Coping with NP-Hardness
To cope with NP-Hardness, sacrifice one of these features

Poly-time Deterministic Exact/Opt
Solution

All cases/
Parameters Algorithmic Paradigm

✓ ✓ ✓ ✗
Special Cases Algorithms
Fixed Parameter Tractability

✓ ✓ ✗ ✓
Approximation Algorithms
Heuristic Algorithms

✗ ✓ ✓ ✓
Intelligent
Exhaustive Search

✓ ✗ E(✓) ✓
Mote Carlo
Randomized Algorithm

E(✓) ✗ ✓ ✓
Las Vegas
Randomized Algorithm

Special cases of input instances (based on structure of a range of parameter(s))
Approximation algorithms guarantee a bound on suboptimality
Heuristics algorithms do not have any guarantee
Randomized algorithms are generally used for problems in class P
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Coping with NP-Hardness

Approaches to tackle hard problems

1 Special Cases: Relevant structure on which the problem is easy
Exact results in poly-time only for special cases or a range of parameters

2 Intelligent Exhaustive Search: Exponential time in worst case
The base and/or exponent are usually smaller
Could be efficient on typical more realistic instances
Backtracking, Brand-and-Bound

3 Nearly exact solutions: Output is ‘close’ to exact (optimal) solution
Approximation Algorithms: Solutions of guaranteed quality in poly-time
Heuristic: Solutions hopefully good in poly-time

4 Randomized Algorithms: Use coin flips for making decisions
Typically used for approximation, also used for problems in P
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