Algorithms

Intractable Problems

- Clique
- Independent Set

■ Vertex Cover
■ Set Cover

- Set Packing
- Satisfiability Problem

■ Hamiltonian Cycle and Path

- Traveling Salesman Problem

■ Graph Coloring

- Circuit Satisfiability

■ Knapsack

- Subset Sum
- Prime and Factor
- Partition

Imdad ullah Khan

Graph Coloring

A graph (vertex) coloring is to assign a color to each vertex such that no two adjacent vertices get the same color

A graph G on 8 vertices

A coloring with 8 colors

A coloring with 6 colors

A coloring with (optimal) 3 colors
k-Coloring (G) problem: Is there a coloring of G with k colors?

Graph Coloring Applications

GSM Frequency Bands Assignment

- In cellular networks (GSM) coverage area is divided into a hexagonal grid
- Each cell (a hexagon) is served by an antenna
- Each cell uses a frequency band (one of 850, 900, 1800, 1900 MHz)
- Frequency of a cell must be different from adjacent cells (hexagons sharing a line segment)
- 4-color vertices of the dual graph of the hexagonal grid

Graph Coloring Applications

GSM Frequency Bands Assignment

- In cellular networks (GSM) coverage area is divided into a hexagonal grid
- Each cell (a hexagon) is served by an antenna
- Each cell uses a frequency band (one of 850, 900, 1800, 1900 MHz)
- Frequency of a cell must be different from adjacent cells (hexagons sharing a line segment)
- 4-color vertices of the dual graph of the hexagonal grid

Graph Coloring Applications

GSM Frequency Bands Assignment

- In cellular networks (GSM) coverage area is divided into a hexagonal grid
- Each cell (a hexagon) is served by an antenna
- Each cell uses a frequency band (one of 850, 900, 1800, 1900 MHz)
- Frequency of a cell must be different from adjacent cells (hexagons sharing a line segment)
- 4-color vertices of the dual graph of the hexagonal grid

Graph Coloring Applications

GSM Frequency Bands Assignment

- In cellular networks (GSM) coverage area is divided into a hexagonal grid
- Each cell (a hexagon) is served by an antenna
- Each cell uses a frequency band (one of 850, 900, 1800, 1900 MHz)
- Frequency of a cell must be different from adjacent cells (hexagons sharing a line segment)
- 4-color vertices of the dual graph of the hexagonal grid

Graph Coloring Applications

GSM Frequency Bands Assignment

- In cellular networks (GSM) coverage area is divided into a hexagonal grid
- Each cell (a hexagon) is served by an antenna
- Each cell uses a frequency band (one of 850, 900, 1800, 1900 MHz)
- Frequency of a cell must be different from adjacent cells (hexagons sharing a line segment)
- 4-color vertices of the dual graph of the hexagonal grid

Graph Coloring Applications

GSM Frequency Bands Assignment

- In cellular networks (GSM) coverage area is divided into a hexagonal grid
- Each cell (a hexagon) is served by an antenna
- Each cell uses a frequency band (one of 850, 900, 1800, 1900 MHz)
- Frequency of a cell must be different from adjacent cells (hexagons sharing a line segment)
■ 4-color vertices of the dual graph of the hexagonal grid

Graph Coloring Applications

Map Coloring
■ Color regions of map
■ No neighboring regions can have the same color

Graph Coloring Applications

Final Exam Scheduling
Optimally schedule n exam with no student having >1 parallel exam

- Make graph on courses with common students encoded as edges

■ Find the minimum number of colors needed to color the graph

Edge Coloring

An edge coloring of a graph is to assign a color to each edge such that no two "adjacent edges" get the same color

k-EDGE-COLORING (G) problem: Is there edge-coloring of G with k colors?

Edge Coloring Applications

NFL season scheduling
n teams playing in a tournament. Based on last year's record, each team will play some other teams. We want to determine a schedule with as few rounds as possible

- Make a node for each team
- An edge for each game to be played

■ Find an edge coloring with minimum number of color

Edge Coloring Applications

Open Shop Scheduling (time division multi-processing) n objects to be manufactured. Manufacturing object o_{i} entails performing tasks $t_{i 1}, \ldots, t_{i j i}$ (in any order). Each task requires one of non-parallel machines M_{1}, \ldots, M_{k}. We want to schedule machines usage to manufacture all n objects in least time.

■ Make a (multi) bipartite graph [Objects, Machines] edges

- An edge o_{i}, m_{j} edge means object i has a task requiring machine m_{j}
- An edge coloring with minimum number of colors (time slots)

