Algorithms # **Dynamic Programming** - Sequence Analysis - The Sequence Alignment Problem - Dynamic Programming Formulation IMDAD ULLAH KHAN ## Sequence Alignment: Problem **Input:** Two sequences $X = x_1, \dots, x_m$ and $Y = y_1, \dots, y_n$ over Σ and a score/penalty matrix Output: Minimum cost alignment between X and Y Cost of the optimal alignment is the alignment distance between X and Y **Theorem:** If all penalties are 1, alignment distance = edit distance (otherwise it is equal to the weighted edit distance) - It implies that alignment distance is a metric - Edit distance does not specify the edits (it just counts) - Optimal alignment does not only compute edit distance but also specify the edits #### Sequence Alignment: Problem **Input:** Two sequences $X = x_1, \dots, x_m$ and $Y = y_1, \dots, y_n$ over Σ Output: Minimum cost alignment between X and Y Cost of the optimal alignment is the alignment distance between X and Y - lacktriangledown OPT(i,j): optimal alignment between x_1,x_2,\ldots,x_i and y_1,y_2,\ldots,y_j - D(i,j): alignment distance between x_1, x_2, \ldots, x_i and y_1, y_2, \ldots, y_j \triangleright cost of opt alignment of i and j length prefixes of X and Y We want to find OPT(m, n) and D(m, n) Argue about structure of the optimal alignment (can't compute it) In OPT(m, n) - Either x_m is paired with y_n - Or y_n is unpaired and x_m may be paired with y_p , p < n - Or x_m is unpaired and y_n may be paired with x_q , q < m - Or x_m is paired with y_p , p < n and y_n is paired with x_q , q < m $$\begin{vmatrix} x_1 & x_2 & \cdots & x_{m-1} & x_m \\ y_1 & y_2 & \cdots & y_{n-1} & y_n \end{vmatrix}$$ Argue about structure of the optimal alignment (can't compute it) In $\mathrm{OPT}(m,n)$ - Either x_m is paired with y_n - Or y_n is unpaired and x_m may be paired with y_p , p < n - Or x_m is unpaired and y_n may be paired with x_q , q < m - Or x_m is paired with y_p , p < n and y_n is paired with x_q , q < m Since p < n and q < m the pairs (x_m, y_p) and (x_q, y_n) cross - Either x_m is paired with y_n - $\alpha(x_m, y_n)$ added in D(m, n) - OPT $(m,n) \setminus \{(x_m,y_n)\}$: some alignment of x_1,\ldots,x_{m-1} and y_1,\ldots,y_{n-1} - $lack ext{OPT}(m,n)\setminus\{(x_m,y_n)\}$: an optimal alignment of x_1,\ldots,x_{m-1} and y_1,\ldots,y_{n-1} - Because if \mathcal{A} is a better alignment of x_1, \ldots, x_{m-1} and y_1, \ldots, y_{n-1} $cost(\mathcal{A}) < D(m, n) \alpha(x_m, y_n) \implies cost(\mathcal{A} \cup \{(x_m, y_n)\}) < D(m, n)$ - Hence $A \cup \{(x_m, y_n)\}$ is a better alignment of x_1, \ldots, x_m and y_1, \ldots, y_n $$\begin{bmatrix} x_1 & x_2 & \cdots & x_{m-1} \\ y_1 & y_2 & \cdots & y_{n-1} \end{bmatrix} \begin{bmatrix} x_m \\ y_n \end{bmatrix}$$ - Or x_m is paired with y_p , p < n and y_n is unpaired - \bullet δ added in D(m, n) - lacktriangleq OPT(m,n) is some alignment of x_1,\ldots,x_m and y_1,\ldots,y_{n-1} - $lacktriangleq \mathrm{OPT}(m,n)$ is an optimal alignment of x_1,\ldots,x_m and y_1,\ldots,y_{n-1} - A better alignment A of x_1, \ldots, x_m and y_1, \ldots, y_{n-1} contradicts optimality - Or y_n is paired with x_q , q < m and x_m is unpaired - \bullet δ added in D(m, n) - lacksquare OPT(m,n) is some alignment of x_1,\ldots,x_{m-1} and y_1,\ldots,y_n - lacktriangledown OPT(m,n) is an optimal alignment of x_1,\ldots,x_{m-1} and y_1,\ldots,y_n $$\begin{bmatrix} x_1 & x_2 & \cdots & x_{m-1} \\ y_1 & y_2 & \cdots & y_n \end{bmatrix} \begin{bmatrix} x_m \\ - \end{bmatrix}$$ $$D(i,j) = egin{cases} D(i-1,j-1) + lpha(x_i,y_j) & ext{if } (x_i,y_j) \in ext{OPT}(i,j) \ D(i-1,j) + \delta & ext{if } x_i ext{ is unpaired in } ext{OPT}(i,j) \ D(i,j-1) + \delta & ext{if } y_j ext{ is unpaired in } ext{OPT}(i,j) \ j \cdot \delta & ext{if } i = 0 \ i \cdot \delta & ext{if } j = 0 \end{cases}$$ We do not know which branch to take (cannot evaluate the conditions) For $$i,j \geq 1$$ $D(i,j) = \max \begin{cases} D(i-1,j-1) + lpha(x_i,y_j) \\ D(i-1,j) + \delta \\ D(i,j-1) + \delta \end{cases}$ #### D matrix computation #### **Algorithm** Bottom-Up Evaluation of *D* ``` function COMPUTED(i, j) if i = 0 AND j = 0 then return 0 if i = 0 then return i \times \delta if i = 0 then return i \times \delta pairlt \leftarrow \text{COMPUTED}(i-1, i-1) + \alpha(x_i, y_i) addGapX \leftarrow COMPUTED(i-1,j) + \delta addGapY \leftarrow COMPUTED(i, i - 1) + \delta return max{pairlt, addGapX, addGapY} ``` #### Backtracking for pairwise alignment To find the optimal alignment itself, backtrack from D(n, m) to D(0, 0), following the path of min score at each step Append the corresponding symbols or gaps to the alignment #### Algorithm Backtracking to get Optimal Alignment ## Pairwise alignment: Example Let $$X = ATGCT$$ and $Y = AGCT$ Using the penalty and rewards: Match = +1, Mismatch = -1, Gap = -2 The matrix D of order (n+1)*(m+1) is filled as follows: | | | | | G | | | |---|----|----|----|----|----|----------| | - | 0 | -2 | -4 | -6 | -8 | -10 | | Α | -2 | ? | ? | ? | ? | ? | | G | -4 | | | | | | | C | -6 | | | | | | | Т | -8 | | | | | -10
? | #### Initialization: $$D(0,0) = 0$$ ■ $$D(i,0) = D(i-1,0) - \delta$$ ■ $$D(0,j) = D(0,j-1) - \delta$$ ## Pairwise alignment: Example Match = +1, Mismatch = -1, Gap = -2 The second row of D is filled as follows: # #### Update rule: $$D(1,1) = \max egin{cases} D(0,0) + lpha(A,A) \ D(0,1) + \delta \ D(1,0) + \delta \end{cases}$$ $$= \max \begin{cases} 0+1 \\ -2+(-2) & = 1 \\ -2+(-2) \end{cases}$$ ## Pairwise alignment: Example Let $$X = ATGCT$$ and $Y = AGCT$ The matrix D is filled as follows: | | - | Α | Т | G | C | Т | |---|----|----|----|----|----|----------------------------| | - | 0 | -2 | -4 | -6 | -8 | -10 | | Α | -2 | 1 | -1 | -3 | -5 | -7 | | G | -4 | -1 | 0 | 0 | -2 | -4 | | C | -6 | -3 | -2 | -1 | 1 | -2 | | Т | -8 | -5 | -2 | -3 | -2 | -10
-7
-4
-2
2 | #### Termination: $$D(4,5) = 2$$ # Pairwise alignment: Backtracking Example The optimal alignment score is D(4,5)=2 and is obtained by backtracking from D(4,5) to D(0,0) The traceback matrix is filled as below: | | - | | | | C | | |---|---|------------|--------------|-------------------|--------------|--------------| | - | | | | | | | | Α | | _ | \leftarrow | \leftarrow | \leftarrow | \leftarrow | | G | | ↑ | _ | _ | \leftarrow | \leftarrow | | C | | \uparrow | \wedge | _ | _ | \leftarrow | | Т | | † | _ | $\wedge \uparrow$ | · | _ | - Left ←: gap is introduced into the left sequence - Up ↑: a gap is introduced into the top sequence The optimal alignment is: # Sequence Alignment: Variations - Local/Global Alignment - Multiple Sequence Alignment - Short Read Alignment - Gap Penalties This, and heuristic approximations to it like BLAST, are workhorse tools in molecular biology, and elsewhere. BLAST Demo http://www.ncbi.nlm.nih.gov/blast/ Try it! pick any protein, e.g. hemoglobin, insulin, exportin,... BLAST to find distant relatives