# Dynamic Programming

### Sequence Analysis

- The Sequence Alignment Problem
- Dynamic Programming Formulation

#### Imdad ullah Khan

### Sequence Terminology

- Alphabet: A set of possible symbols/characters,  $\Sigma = \{A, C, T, G\}$
- String or Sequence: ordered list of characters from  $\Sigma ATCCTGATCT$
- Length: Number of characters in the string, denoted by len(S) or |S|
- Prefix: Consecutive first few characters
  A, AT, ATC, ATCCTAG, ATCCTAGATCCT
- Suffix: Consecutive last few characters
  T, CT, CCT, ATCCT, ATCCTAGATCCT
- Substring: Consecutive few characters from an index to another A, CT, CCTAGATC, TAGA
- Subsequence: few characters from the sequence in same order A, CT, C T G TC, TA C T

### Sequences in Biology

- DNA, RNA and proteins can be termed as molecular fossils as they encode the history of millions of years of evolution
- During evolution, molecular sequences accumulate random changes (mutations/variants) some of which provide a selective advantage or disadvantage, and some of which are neutral
- Sequences that are structurally and/or functionally important tend to be more conserved
- Such sequence conservation allows inference of evolutionary relatedness or homology (paralogs and orthologs)

### Homology: Orthologs vs. Paralogs

Homology is the existence of shared ancestry between a pair of structures, or genes, in different species

Two types of homologous sequences

- Orthologs
  - "same genes" in different species
  - result of common ancestry
  - corresponding proteins have "same" functions
  - e.g., human  $\alpha$ -globin & mouse  $\alpha$ -globin

#### Paralogs

- "similar genes" within a specie
- result of gene duplication event
- corresponding proteins may or may not have "same" functions
- e.g., human  $\alpha$ -globin & mouse  $\beta$ -globin



## Sequence Analysis (Classification)



- Find homologous sequences (gene, protein)
- Protein 3d-Fold Recognition
- Protein Function identification

• :

### Sequence Similarity/Distance Measure

Gene and Protein Sequence Databases contain numerous entities with known and unknown functions



|         | Sequence of aminoacids                                                                                                                                                                                                                                                                                                                                 | Function |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Protein | ESGYAVVCDTTCSYDGECNNECTCCCLKVKQKGNDGGYCWLWECGCLCLGAPVLVPEDTK<br>KKGCLVSRGTGCSSGCSNNNCAKGLKISNGAKGKEGHRGYKCGCGCCFWPDR<br>CDGYUPSKTGCFGGUNNSCNLCCNNCGAKGYCAGYKCGCCECLPJPLPN<br>RDGYPVHDKGCKISCFGNNYCWKECKKKGKSKGYCYCWWLACWCYGLPDPEKVWDYA<br>KKGYPVVSDDCCNTCLNNSCGNKGGAKSGYCAWIGPYGKACWCIPLPDKV<br>ERDGYTAPTTCGYTCLNNSCGNLCTKNGAKAGYCAWIGPYGKACWCIPLPDKVP | ск<br>СК |
|         | KDYYPKDDKTCCSCCFNNNYCNKECKKEGKASGYCYGWCPACWCWCLPDDE<br>KKGKYINDGTNCKYTCANNAKNNCCDKKCGAKGGYGHWGYPFGKACWCFPLPE<br>source: Greener. Moffat. & Jones (2018)                                                                                                                                                                                                | ?        |

Genes/proteins with similar sequences have similar structure/functions

For a sequence with unknown function, find the "most similar" sequence with known function and make a functional & evolutionary inference

Sequence similarity

- Can be used for spell checking and correction
- is used in Unix diff, svn/git, plagiarism detection
- Can be used for automatic music classification (music genre prediction, author identification)

#### Edit Operations:

Let  $\Sigma^* = \Sigma \cup \{-\}$  for  $- \notin \Sigma$  (a special symbol representing empty string)

An edit operation is a triplet (x, i, y) with  $(x, y) \in \Sigma^* \times \Sigma^*$  and integer  $i \triangleright (x, i, y) \neq (-, i, -)$ 

 $(x, i, y) \text{ is } \begin{cases} \text{deletion at } i\text{th index} & \text{if } x \neq - \land y = -\\ \text{insertion at } i\text{th index} & \text{if } x = - \land y \neq -\\ \text{substitution at } i\text{th index} & \text{if } x \neq - \land y \neq - \end{cases}$ 

| deletion at 3rd index |                                     |                                     |                                     |                                     | insertion at 4th index              |                                     |                       |                      |                                     |                                     |                                     |                                     |                                     | substitution at 3rd index           |                     |                                     |  |                      |                                     |                                     |                                                        |                                     |                                      |                                     |                                     |
|-----------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-----------------------|----------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|---------------------|-------------------------------------|--|----------------------|-------------------------------------|-------------------------------------|--------------------------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|
| (C, 3, -)             |                                     |                                     |                                     |                                     |                                     | (-, 4, A)                           |                       |                      |                                     |                                     |                                     |                                     |                                     |                                     |                     | (C, 3, A)                           |  |                      |                                     |                                     |                                                        |                                     |                                      |                                     |                                     |
| Original<br>Sequence  | $\overset{\scriptscriptstyle 1}{A}$ | $\overset{\scriptscriptstyle 2}{C}$ | $\overset{\scriptscriptstyle 3}{C}$ | $\overset{\scriptscriptstyle 4}{G}$ | $\overset{\scriptscriptstyle 5}{A}$ | $\overset{\scriptscriptstyle 6}{T}$ | $\overset{^{	au}}{G}$ | Original<br>Sequence | $\overset{\scriptscriptstyle 1}{A}$ | $\overset{\scriptscriptstyle 2}{C}$ | $\overset{\scriptscriptstyle 3}{C}$ | $\overset{\scriptscriptstyle 4}{G}$ | $\overset{\scriptscriptstyle 5}{A}$ | $\overset{\scriptscriptstyle 6}{T}$ | $\overset{_{7}}{G}$ |                                     |  | Original<br>Sequence | $\overset{\scriptscriptstyle 1}{A}$ | $\overset{\scriptscriptstyle 2}{C}$ | $\overset{\scriptscriptstyle 3}{C}$                    | $\overset{\scriptscriptstyle 4}{G}$ | $\overset{\scriptscriptstyle{5}}{A}$ | $\overset{\scriptscriptstyle 6}{T}$ | $\overset{^{	au}}{G}$               |
| Mutated<br>Sequence   | $\overset{\scriptscriptstyle 1}{A}$ | $\overset{\scriptscriptstyle 2}{C}$ | 3                                   | $\overset{\scriptscriptstyle 4}{G}$ | $\overset{\scriptscriptstyle 5}{A}$ | $\overset{\scriptscriptstyle 6}{T}$ | $\overset{_{7}}{G}$   | Mutated<br>Sequence  | $\overset{\scriptscriptstyle 1}{A}$ | $\overset{\scriptscriptstyle 2}{C}$ | $\overset{\scriptscriptstyle 3}{C}$ | $\overset{\scriptscriptstyle 4}{A}$ | $\overset{\scriptscriptstyle 5}{G}$ | $\overset{\scriptscriptstyle 6}{A}$ | $\overset{_{7}}{T}$ | $\overset{\scriptscriptstyle 8}{G}$ |  | Mutated<br>Sequence  | $\overset{\scriptscriptstyle 1}{A}$ | $\overset{\scriptscriptstyle 2}{C}$ | $\overset{\scriptscriptstyle{\scriptscriptstyle3}}{A}$ | $\overset{\scriptscriptstyle 4}{G}$ | $\overset{\scriptscriptstyle{5}}{A}$ | $\overset{\scriptscriptstyle 6}{T}$ | $\overset{\scriptscriptstyle 7}{G}$ |

### Sequence Similarity: Edit Distance

Edit or Levenshtein Distance between  $S_1$  and  $S_2$  is the minimal number of delete, insert, and substitute operations needed to transform  $S_1$  to  $S_2$ .

 $S_1 = ACCCGAT$  and  $S_2 = ACTGA$  have distance at most 4

 $S_1 \xrightarrow{t} S_2$  ( $S_1$  transformed to  $S_2$ ): if there exists a sequence of edit operations on  $S_1$  resulting in  $S_2$ 

$$ACCCGAT \xrightarrow[(C,4,-)]{} ACCGAT \xrightarrow[(C,2,-)]{} ACGAT \xrightarrow[(T,5,-)]{} ACGA \xrightarrow[(-,5,G)]{} ACGAG$$

Different operations could have different costs (based on e.g. chemical properties of nucleotides or amino-acids)

▷ Leads to different notion of edit distances

Could also have more operations such as transposition, merge, split, etc.

### Edit Distance: Applications

- Inspired by biological mutations in DNA and proteins
- Naturally many applications in molecular biology

Protein homology detection (shared ancestry), protein fold prediction (3d structure), and many others

Many applications in NLP and speech recognition

| Spokesman | confirms |     | senior | government | adviser | was | shot |      |
|-----------|----------|-----|--------|------------|---------|-----|------|------|
| Spokesman | said     | the | senior |            | adviser | was | shot | dead |
|           | sub      | ins |        | del        |         |     |      | ins  |

Application in information extraction as Entity Recognition