Algorithms

Dynamic Programming

- The Knapsack Problem
- Dynamic Programming Formulation
- Implementation
- Fractional Knapsack and Subset Sum Problem

IMDAD ULLAH KHAN

Input: A set \mathcal{U} of objects $\{a_1, \ldots, a_n\}$ with

- integral weights $\{w_1, \ldots, w_n\}$ and
- **p** positive values $\{v_1, \ldots, v_n\}$ and
- a positive integer *C* (capacity)

Output: A subset $S \subset \mathcal{U}$ with total weight $\leq C$ and maximum total value

- Fix an order on objects a_1, \ldots, a_n
- lacksquare OPT-SET(k) is the max value feasible subset of $\mathcal{U}[1\dots k]$
- lacktriangle OPT-VAL(k) is the total value of OPT-SET(k)
- Out goal is to find OPT-VAL(n) (and OPT-SET(n))

Argue about structure of the solution (though we can't compute it)

See how solution is composed of that to smaller subproblems

- Either a_n is not part of the solution, OPT-SET(n)
 - v_n is not counted in OPT-VAL(n)
 - Some subset of a_1, \ldots, a_{n-1} is OPT-SET(n)
 - Analyze OPT-SET(n-1)
- Or a_n is part of the solution, OPT-SET(n)
 - v_n is counted in OPT-VAL(n)
 - Some subset of a_1, \ldots, a_{n-1} is in OPT-SET(n) in addition to a_n
 - We don't even know if it is valid to include a_n in OPT-SET(n)
- Need more subproblems?

Input: A set \mathcal{U} of objects $\{a_1, \ldots, a_n\}$ with

- integral weights $\{w_1, \ldots, w_n\}$ and
- **p**ositive values $\{v_1, \ldots, v_n\}$ and
- a positive integer *C* (capacity)

Output: A subset $S \subset \mathcal{U}$ with total weight $\leq C$ and maximum total value

- Fix an order on objects a_1, \ldots, a_n
- lacktriangle OPT-SET(k,c) is the max value feasible subset of $\mathcal{U}[1\dots k]$ and c
- lacktriangle OPT-VAL(k,c) is the total value of OPT-SET(k,c)
- Out goal is to find OPT-SET(n, C) (and OPT-VAL(n, C))

Argue about structure of the solution (though we can't compute it)

See how solution is composed of that to smaller subproblems

- Either a_n is part of the solution, OPT-SET(n, C)
 - v_i is counted in OPT-VAL(n, C)
 - Remaining items in OPT-SET(n, C) are from a_1, \ldots, a_{n-1}
 - Remaining capacity is $C w_n$
 - Analyze OPT-SET $(n-1, C-w_n)$
- Or a_n is not part of the solution, OPT-SET(n, C)
 - v_n is not counted in OPT-VAL(n)
 - Items in OPT-SET(n, C) are from a_1, \ldots, a_{n-1}
 - Remaining capacity is C
 - Analyze OPT-SET(n-1, C)

Analyze OPT-SET $(n-1, C-w_n)$ and OPT-SET(n-1, C)?

Analyze OPT-SET $(n-1, C-w_n)$ and OPT-SET(n-1, C)?

- $a_n \notin \text{OPT-SET}(n, C)$
 - OPT-SET(n, C) is a solution of $[a_1, ..., a_{n-1}], C$
 - OPT-SET(n, C) is a max value solution of $[a_1, \ldots, a_{n-1}], C$
 - A bigger value solution for $[a_1, ..., a_{n-1}]$, C is also good for $[a_1, ..., a_n]$, C
- \blacksquare Or $a_n \in \text{OPT-SET}(n, C)$
 - $lack ext{OPT-SET}(n,C)\setminus\{a_n\}$ is a solution for $[a_1,\ldots,a_{n-1}],C-w_n$
 - lacktriangledown OPT-SET $(n,C)\setminus\{a_n\}$ is a best solution for $[a_1,\ldots,a_{n-1}],C-w_n$
 - If $O \subset \{a_1, \dots, a_{n-1}\}$ has total weight $\leq C w_n$ and value $\geq \text{OPT-VAL}(n-1, C-w_n)$
 - Then $O \cup \{a_n\}$ has weight $\leq C w_n + w_n$ and value $value(O) + v_n \geq \text{OPT-VAL}(n-1, C-w_n) + v_n = \text{OPT-VAL}(n, C)$

Analyze OPT-SET $(n-1, C-w_n)$ and OPT-SET(n-1, C)?

- A max value subset of items $\{a_1, \ldots, a_n\}$ with total weight $\leq C$ is either a max value subset of items $\{a_1, \ldots, a_{n-1}\}$ with total weight $\leq C$
- or it is a_n union with a max value subset of items $\{a_1, \ldots, a_{n-1}\}$ with total weight at most $C w_n$

$$OPT-VAL(n, C) = \begin{cases} OPT-VAL(n-1, C-w_n) + v_n & \text{if } a_n \in OPT-SET(n, C) \\ OPT-VAL(n-1, C) & \text{if } a_n \notin OPT-SET(n, C) \end{cases}$$

In general

$$\text{OPT-VAL}(k,c) = \begin{cases} \text{OPT-VAL}(k-1,c-w_k) + v_k & \text{if } a_k \in \text{OPT-SET}(k,c) \\ \text{OPT-VAL}(k-1,c) & \text{if } a_k \notin \text{OPT-SET}(k,c) \end{cases}$$

Recursion?

- If $a_k \in \text{OPT-SET}(k, c)$, then find max value subset of $\{a_1, \ldots, a_{n-1}\}$ with weight at most $c w_k$
- If $a_k \notin \text{OPT-SET}(k, c)$, then find max value subset of $\{a_1, \ldots, a_{n-1}\}$ with weight at most c

We don't know bases cases and which branch to take

Try both branches and select the one bigger ?

$$\text{OPT-VAL}(k,c) = \max \begin{cases} 0 & \text{if } k = 0 \\ 0 & \text{if } c = 0 \\ \text{OPT-VAL}(k-1,c-w_k) & \text{if } a_k \in \text{OPT-SET}(k,c) \\ \text{OPT-VAL}(k-1,c) & \text{if } a_k \notin \text{OPT-SET}(k,c) \end{cases}$$