Dynamic Programming

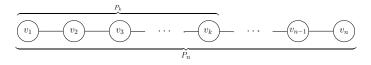
- (Weighted) Independent Set in Graphs
- Weighted Independent Sets in Path
- Dynamic Programming Formulation
- Implementation and Backtracking

Imdad ullah Khan

Input: A node weighted path graph P = (V, E), $w : V \to \mathbb{R}^+$ **Output:** An independent set of P of maximum weight

Notation: Think of P as a sequence of vertices v_1, v_2, \ldots, v_n

• P_k : The (sub)path induced by v_1, v_2, \ldots, v_k



OPT-SET(k): An optimal independent set in P_k
 OPT-VAL(k): Value of an optimal independent set in P_k

Our goal is to find OPT-SET(n) and OPT-VAL(n)

Argue about structure of the solution (though we can't compute it) See how solution is composed of that to smaller subproblems

- Either v_n is part of the optimal solution, OPT-SET(n)
 - w_n is counted in OPT-VAL(n)
 - Node v_{n-1} is not part of the OPT-SET(n)
 - Analyze solution to P_{n-2} $(v_1, v_2, \ldots, v_{n-2})$

• Or v_n is not part of the optimal solution, OPT-SET(n)

- w_n is not counted in OPT-VAL(n)
- Node v_{n-1} may or may not be part of OPT-SET(n)
- Analyze solution to P_{n-1} $(v_1, v_2, \ldots, v_{n-1})$
- Analyze solution to P_{n-2} and P_{n-1} ?

Analyze solution to P_{n-2} and P_{n-1} ?

- $v_n \notin \text{OPT-SET}(n)$
 - OPT-SET(n) is an independent set in P_{n-1}
 - OPT-SET(n) is a maximum WIS in P_{n-1}
 - Let $A \subset P_{n-1}$ be an independent set with wt(A) > OPT-VAL(n)
 - A is also an independent set in P_n
 - It contradicts optimality of OPT-SET(n)

• $v_n \in \text{OPT-SET}(n)$

- $v_{n-1} \notin \text{OPT-SET}(n)$
- OPT-SET $(n) \setminus \{v_n\}$ is an independent set in P_{n-2}
- OPT-SET $(n) \setminus \{v_n\}$ is a maximum WIS in P_{n-2}
 - Let $A \subset P_{n-2}$ be an independent set with $wt(A) > OPT-VAL(n) w_n$
 - $A \cup \{v_n\}$ is an independent set in P_n
 - It contradicts optimality of OPT-SET(n)

A max WIS in P_n is $\begin{cases} either a max WIS in <math>P_{n-1} \\ or it is v_n union with a max WIS in <math>P_{n-2} \end{cases}$

Optimal Substructure Property: "an optimal solution can be constructed from optimal solutions of subproblems"

A max WIS in P_n is $\begin{cases} \text{either a max WIS in } P_{n-1} \\ \text{or it is } v_n \text{ union with a max WIS in } P_{n-2} \end{cases}$

$$OPT-VAL(n) = max \begin{cases} OPT-VAL(n-2) + w_n & \text{if } v_n \in OPT-SET(n) \\ OPT-VAL(n-1) & \text{if } v_n \notin OPT-SET(n) \end{cases}$$

In general,

$$OPT-VAL(k) = \max \begin{cases} OPT-VAL(k-2) + w_k & \text{if } v_k \in OPT-SET(k) \\ OPT-VAL(k-1) & \text{if } v_k \notin OPT-SET(k) \end{cases}$$

We don't know bases cases and which branch to take > i.e. the if condition cannot be evaluated

Recursion

- If $v_n \in OPT-SET(n)$, then recursively find max WIS in P_{n-2}
- If $v_n \notin \text{OPT-SET}(n)$, then recursively find max WIS in P_{n-1}

We don't know bases cases and which branch to take

$$OPT-VAL(k) = \max \begin{cases} w_1 & \text{if } k = 1\\ \max\{w_1, w_2\} & \text{if } k = 2\\ OPT-VAL(k-2) + w_k & \text{if } v_k \in OPT-SET(k)\\ OPT-VAL(k-1) & \text{if } v_k \notin OPT-SET(k) \end{cases}$$

Try both branches and select the bigger one

$$OPT-VAL(k) = \max \begin{cases} w_1 & \text{if } k = 1\\ \max\{w_1, w_2\} & \text{if } k = 2\\ OPT-VAL(k-2) + w_k & \text{if } v_k \in OPT-SET(k)\\ OPT-VAL(k-1) & \text{if } v_k \notin OPT-SET(k) \end{cases}$$

```
AlgorithmRecursive OPT-VAL(n)function OPT-VAL(k)> implements the above recurrenceif k = 1 then> implements the above recurrencereturn w_1else if k = 2 thenreturn max{w_1, w_2}elseelsereturn max{OPT-VAL(k-1), OPT-VAL(k-2) + w_k}
```