Algorithms

Dynamic Programming

■ (Weighted) Independent Set in Graphs
■ Weighted Independent Sets in Path

- Dynamic Programming Formulation
- Implementation and Backtracking

Imdad ullah Khan

The Path Graph

The path graph is a connected graph with two nodes of degree 1 and the other $n-2$ vertices of degree 2

Number of edges $=\frac{1+2(n-2)+1}{2}=n-1$
\triangleright So a path is a tree

Max weight independent set in path graph

Input: A node weighted graph $G=(V, E), w w: V \rightarrow \mathbb{R}^{+}$
Output: An independent set of G of maximum cardinality weight
A company wants to open restaurants on the motorway
■ Designated service areas s_{1}, \ldots, s_{n} every 7 kilometers
■ A restaurant at s_{i} gives estimated profit p_{i}

- No two restaurants can be located within 10 km of each other

Select a subset of sites to maximize total profit

Problem can be modeled by a node weighted path graph

- Each site s_{i} is a vertex with weight equal to p_{i}
- If two sites are within 10 km of each other make an edge between the corresponding vertices \triangleright note: we get a path graph

Max weight independent set in path graph

Input: A node weighted path graph $P=(V, E), w: V \rightarrow \mathbb{R}^{+}$
Output: An independent set of P of maximum weight

No consecutive vertices can be chosen

Max weight independent set in path graph

Input: A node weighted path graph $P=(V, E), w: V \rightarrow \mathbb{R}^{+}$ Output: An independent set of P of maximum weight

No consecutive vertices can be chosen

An independent set of weight 16

Max weight independent set in path graph

Input: A node weighted path graph $P=(V, E), w: V \rightarrow \mathbb{R}^{+}$ Output: An independent set of P of maximum weight

No consecutive vertices can be chosen

Max weight independent set in path graph

Input: A node weighted path graph $P=(V, E), w: V \rightarrow \mathbb{R}^{+}$ Output: An independent set of P of maximum weight

No consecutive vertices can be chosen

An independent set of weight 22

Max weight independent set in path graph

Input: A node weighted path graph $P=(V, E), w: V \rightarrow \mathbb{R}^{+}$ Output: An independent set of P of maximum weight

Greedy Approach:

- Select a node with max weight
- Mark its neighbors as incompatible
- Repeat the process with remaining unmarked nodes

Max weight independent set in path graph

Input: A node weighted path graph $P=(V, E), w: V \rightarrow \mathbb{R}^{+}$ Output: An independent set of P of maximum weight

Greedy Approach:

- Select a node with max weight
- Mark its neighbors as incompatible
- Repeat the process with remaining unmarked nodes

Max weight independent set in path graph

Input: A node weighted path graph $P=(V, E), w: V \rightarrow \mathbb{R}^{+}$ Output: An independent set of P of maximum weight

Divide \& Conquer approach-1:

- Divide P into left and right halves
- Find max weight independent sets in both
- Combine the two sets to get the answer

Max weight independent set in path graph

Input: A node weighted path graph $P=(V, E), w: V \rightarrow \mathbb{R}^{+}$ Output: An independent set of P of maximum weight

Divide \& Conquer approach-1:

- Divide P into left and right halves
- Find max weight independent sets in both

■ Combine the two sets to get the answer

Max weight independent set in path graph

Input: A node weighted path graph $P=(V, E), w: V \rightarrow \mathbb{R}^{+}$ Output: An independent set of P of maximum weight

Divide \& Conquer approach-2:

- Divide P into odd and even indexed vertices
- Each one is an independent set
- Return the larger of the two

Max weight independent set in path graph

Input: A node weighted path graph $P=(V, E), w: V \rightarrow \mathbb{R}^{+}$ Output: An independent set of P of maximum weight

Divide \& Conquer approach-2:

■ Divide P into odd and even indexed vertices

- Each one is an independent set
- Return the larger of the two

Max weight independent set in path graph

Input: A node weighted path graph $P=(V, E), w: V \rightarrow \mathbb{R}^{+}$ Output: An independent set of P of maximum weight

Divide \& Conquer approach-2:

■ Divide P into odd and even indexed vertices

- Each one is an independent set
- Return the larger of the two

