Dynamic Programming

- (Weighted) Independent Set in Graphs
- Weighted Independent Sets in Path
- Dynamic Programming Formulation
- Implementation and Backtracking

Imdad ullah Khan

An independent set in a graph G is a subset of vertices no two of which are adjacent

Graph G = (V, E)

An independent set in a graph G is a subset of vertices no two of which are adjacent

An independent set of size 4

An independent set in a graph G is a subset of vertices no two of which are adjacent

An independent set of size 3

An independent set in a graph G is a subset of vertices no two of which are adjacent

Looking for a largest independent set

The Maximum Independent Set Problem

Input: A graph G = (V, E)

Output: An independent set of *G* of maximum cardinality

Applications in scheduling, resource allocation, VLSI design

This problem is very hard!

- No known polynomial time algorithm for it
- Essentially, the brute force algorithm is the best known
- We will show that this is a NP-HARD problem

Next we discuss an even harder version of it

Given a node-weighted graph G = (V, E), $w : V \to \mathbb{R}$

Weight of $S \subset V$: sum of weights of vertices in S

A node weighted graph

Given a node-weighted graph G = (V, E), $w : V \to \mathbb{R}$

Weight of $S \subset V$: sum of weights of vertices in S

A maximal independent set with weight 20

▷ cannot add to it

Given a node-weighted graph G = (V, E), $w : V \to \mathbb{R}$

Weight of $S \subset V$: sum of weights of vertices in S

A non-maximal independent set with weight 37

Given a node-weighted graph G = (V, E), $w : V \to \mathbb{R}$

Weight of $S \subset V$: sum of weights of vertices in S

A maximal independent set with weight 37

Given a node-weighted graph G = (V, E), $w : V \to \mathbb{R}$

Weight of $S \subset V$: sum of weights of vertices in S

A maximal independent set with weight 37

The Maximum Weight Independent Set Problem

Input: A node weighted graph $G = (V, E), w \ w : V \to \mathbb{R}^+$ **Output:** An independent set of G of maximum cardinality weight

The problem is harder than maximum independent set problem!

- Max independent set is it's special case
 - \triangleright Can use solution to max WIS to solve max independent set problem
- This is clearly NP-HARD problem