
Algorithms

Dynamic Programming

Computing Fibonacci Numbers

Introduction to Dynamic Programming

Optimal Substructure

Memoization

Imdad ullah Khan

Imdad ullah Khan (LUMS) Dynamic Programming I 1 / 10



Algorithm Design Paradigms

Greedy Algorithms
Build up a solution incrementally

Myopically and locally optimizing some local criterion

Divide and Conquer
Break up a problem into (independent) sub-problems

Solve each sub-problem independently

Combine solution to sub-problems to form solution to original problem

Dynamic programming = planning over time
More general and powerful than divide and conquer

Break up a problem into (in)(dependent) sub-problems

Generally there is a sequence of problems

Identify the optimal substructure: when optimal solution to a problem
is made up of optimal solution to smaller subproblems

Build up solution to larger and larger subproblems

Identify redundancy and repetitions

Use memoization or build up memo on the run

Imdad ullah Khan (LUMS) Dynamic Programming I 2 / 10



Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 . . .

Fn =


0 if n = 0

1 if n = 1

Fn−1 + Fn−2 if n ≥ 2

For n ≥ 8 Fn > 2
n/2 ▷ Prove it by induction

Imdad ullah Khan (LUMS) Dynamic Programming I 3 / 10



Recursive Fn computation

Implementing the recursive definition of Fn

Algorithm Recursive Fn computation

function fib1(n)

if n = 0 then

return 0

else if n = 1 then

return 1

else

return fib1(n − 1) + fib1(n − 2)

It’s correctness follows from the definition

How much time it takes to compute Fn?

Imdad ullah Khan (LUMS) Dynamic Programming I 4 / 10



Recursive Fn computation

Algorithm Recursive Fn computation

function fib1(n)
if n = 0 then

return 0
else if n = 1 then

return 1
else

return fib1(n − 1) + fib1(n − 2)

Let T (n) be the number of operations on input n

T (n) =


1 if n = 0

2 if n = 1

T (n − 1) + T (n − 2) + 3 if n ≥ 2

Fn =


0 if n = 0

1 if n = 1

Fn−1 + Fn−2 if n ≥ 2

For n ≥ 8, T (n) > Fn ≥ 2n/2 ▷ exponential in n

Problem is unnecessarily repeated recursive calls

Imdad ullah Khan (LUMS) Dynamic Programming I 5 / 10



Recursive Fn computation

F (6)

F (1)

F (1) F (0) F (1) F (0)

F (4)

F (1) F (0)

F (4)F (5)

F (1)

F (1)

F (1) F (0)

F (2)
F (1) F (0)

F (2)

F (2)

F (2)F (2)F (3)

F (3) F (3)

Imdad ullah Khan (LUMS) Dynamic Programming I 6 / 10



Recursive Fn computation

Algorithm Recursive Fn computation

function fib1(n)
if n = 0 then

return 0
else if n = 1 then
return 1

else
return fib1(n − 1) + fib1(n − 2)

For n ≥ 8, T (n) > Fn ≥ 2
n/2

Problem is unnecessarily repeated recursive calls

Memoization: Save results of subproblems in a memo

Use the memo when needed instead of recomputing

Imdad ullah Khan (LUMS) Dynamic Programming I 7 / 10



Fn computation with Memoization

Algorithm Fn computation with memoization

F [0 . . . n]← negOnes(n + 1)

F [0]← 0

F [1]← 1

function fib2(n)

if F [n − 1] = −1 then

F [n − 1]← fib2(n − 1) ▷ Call fib2 function only if F [n − 1] = −1
if F [n − 2] = −1 then

F [n − 2]← fib2(n − 2)

return F [n − 1] + F [n − 2]

Imdad ullah Khan (LUMS) Dynamic Programming I 8 / 10



Fn computation with Memoization

Algorithm Compute Fn with memo

F [0 . . . n]← negOnes(n + 1)

F [0]← 0

F [1]← 1

function Fib2(n)

if F [n − 1] = −1 then

F [n − 1]← Fib2(n − 1)

if F [n − 2] = −1 then

F [n − 2]← Fib2(n − 2)

return F [n − 1] + F [n − 2]

Let T2(n) be runtime of fib2(n)

Count number of calls

Only calls if F [·] = −1

Total calls n + 1

O(1) operations per call

T2(n) = O(n)

▷ Compare with T (n) = O(2n)

Imdad ullah Khan (LUMS) Dynamic Programming I 9 / 10



Fn computation Bottom Up Approach

Algorithm Bottom-Up Fn Computation

F [0 . . . n]← negones(n + 1)

F [0]← 0

F [1]← 1

for i = 2 to n do

F [i ]← F [i − 1] + F [i − 2]

return F [n]

No recursion overhead

Analyze time needed to fill up memo

Total number of updates to memo is n + 1

Total runtime T3(n) = O(n)

▷ Compare with T (n) = O(2n)

Imdad ullah Khan (LUMS) Dynamic Programming I 10 / 10


