Algorithms

Minimum Spanning Tree

- The Cycle Property (Red Rule)
- Reverse Delete Algorithm for MST
- Kruskal's Algorithm for MST
- Runtime and Implementation
- Disjoint Sets Data Structure

```
Imdad ullah Khan
```


Kruskal's Algorithm

Algorithm Kruskal's Algorithm, $G=(V, E, w)$
Sort edges in increasing order of weights \triangleright let $e_{1}, e_{2}, \ldots, e_{m}$ be the sorted order
$F \leftarrow \emptyset$
\triangleright Begin with a forest with no edges
for $i=1$ to m do
if $F \cup e_{i}$ does not contain a cycle then
$F \leftarrow F \cup\left\{e_{i}\right\}$
return F

Kruskal's Algorithm: Example

(A) F
(B)
(D)
(E)
Initially each vertex is a tree

(A)
(F)
(B)
(A, D) is picked for merging

(C,E) is picked for merging

(A, F) is picked for merging

(C, G) is merged skipping $(F, C),(B, C), \ldots$

Kruskal's Algorithm: Runtime of Naive Implementation

Algorithm Kruskal's Algorithm, $G=(V, E, w)$
Sort edges in increasing order of weights $\triangleright e_{1}, e_{2}, \ldots, e_{m}$ is sorted order $F \leftarrow \emptyset$
for $i=1$ to m do
if $F \cup e_{i}$ does not contain a cycle then

$$
F \leftarrow F \cup\left\{e_{i}\right\}
$$

return F

- Sorting takes $O(m \log m)=O(m \log n)$ time

■ Detecting cycles in $F \cup\left\{e_{i}\right\}$ can be done by DFS
■ $F \cup\left\{e_{i}\right\}$ has at most n vertices and $n-2$ edges

- Total runtime $O(m \log n)+O(m \cdot(n+n))$

■ Can do better using integer sorting or if input is already sorted
■ Repeated cycle detection is bottleneck
\triangleright the 2nd term

Set Partition

Given a set $A, \mathcal{P}=\left\{A_{1}, \ldots, A_{k}\right\}$ is a partition of A if

- $A_{i} \subset A$ for $1 \leq i \leq k$
- $A_{i} \cap A_{j}=\emptyset$ for $1 \leq i \neq j \leq k$
- $A_{1} \cup A_{2} \cup \ldots \cup A_{k}=A$

Union-Find data structure

- Also known as disjoint sets data structure
- Maintains a partition of a set A
- Supports the following operations
$1 \operatorname{maKeset}(x)$: creates a subset of size 1
2 FIND (x) : returns id of the set containing x
$3 \operatorname{UNION}(x, y)$: union(merge) the sets containing x and y
- F induces a partition of V
- Store F as the above data structure
- Every tree in F is a subset of V

■ Edge (u, v) creates a cycle if u and v are in the same tree
■ Edge (u, v) creates a cycle $\leftrightarrow \operatorname{FIND}(u)=\operatorname{FIND}(v)$
■ Pick edge $(u, v) \leftrightarrow$ UNION $(\operatorname{FIND}(u), \operatorname{FIND}(v))$

Union-Find data structure

- F induces a partition of V
- Store F as the above data structure
- Every tree in F is a subset of V
- Edge (u, v) creates a cycle if u and v are in the same tree
- Edge (u, v) creates a cycle $\leftrightarrow \operatorname{FIND}(u)=\operatorname{FIND}(v)$

■ Pick edge $(u, v) \leftrightarrow \operatorname{UNION}(\operatorname{Find}(u), \operatorname{FIND}(v))$

Forest with 3 trees

Pick $(A, B) \rightarrow$ Merge T_{1} and T_{2}

T_{1} and T_{2} merged into T_{12}

Union-Find data structure

- F induces a partition of V
- Store F as the above data structure
- Every tree in F is a subset of V
- Edge (u, v) creates a cycle if u and v are in the same tree

■ Edge (u, v) creates a cycle $\leftrightarrow \operatorname{FIND}(u)=\operatorname{FIND}(v)$
■ Pick edge $(u, v) \leftrightarrow \operatorname{UNION}(\operatorname{Find}(u), \operatorname{FIND}(v))$

Adding edge (F, C) creates a cycle

$$
\operatorname{FIND}(F)=\operatorname{FIND}(C)
$$

Kruskal's Algorithm with Union-Find

Algorithm Kruskal's Algorithm with Union-Find
for $v \in V$ do
MAKESET(v)
Sort edges in increasing order of weights
$F \leftarrow \emptyset$

$$
\text { for } i=1 \text { to } m \text { do } \quad e_{i}=(u, v)
$$

if $\operatorname{FIND}(u) \neq \operatorname{FIND}(v)$ then
$F \leftarrow F \cup\left\{e_{i}\right\}$
$\operatorname{UNION}(u, v)$
return F

$$
\text { Runtime }: \sum \begin{cases}O(n) & \text { Makeset } \\ O(n) & \text { Union } \\ O(m) & \text { Find }\end{cases}
$$

Union-Find Data Structure: Implementation

- Maintains a partition of a set A
- Supports the following operations
- MAKESET(x): creates a subset of size 1
- $\operatorname{FIND}(x)$: returns id of the set containing x
- UNION (x, y) : union(merge) the sets containing x and y
- Store each subset as a linked list
- Each node of the list has a pointer to the first
- The first node (an element of the subset) is the rep of the list
- rep of a list serves as an id of the subset

Node class/struct
int element
Node $*$ next
Node $*$ rep

$$
\begin{aligned}
& A_{1}=\{x, y, z\} \\
& \operatorname{rep}\left(A_{1}\right)=x
\end{aligned}
$$

Union-Find Data Structure: Implementation

- Makeset(u):
- Make a new list node rep-pointer to itself

■ Store pointer to node in $P[u]$ (array indexed by A)

- Runtime $O(1)$
function MAKESET(u)

$$
\begin{aligned}
& \text { ptr } \leftarrow \operatorname{NEW}(\text { Node }) \\
& \text { ptr } \cdot \text { element } \leftarrow u \\
& \text { ptr } \cdot \text { next } \leftarrow \text { null } \\
& \text { ptr } \cdot \text { rep } \leftarrow \text { ptr } \\
& P[u] \leftarrow \text { ptr } \\
& \hline
\end{aligned}
$$

Union-Find Data Structure: Implementation

- $\operatorname{FIND}(u)$:
- Get pointer from $P[u]$

■ Return vertex name at rep-pointer of node at $P[u]$

- Runtime $O(1)$
function $\operatorname{FIND}(u)$
$p t r \leftarrow P[u]$
$r e p \leftarrow p t r \cdot r e p$
return rep.element

Union-Find Data Structure: Implementation

- Union (u, v) :
- Get pointers from $P[u]$ and $P[v]$

■ Add List $_{u}$ to List ${ }_{v}$ (say starting from second node)
■ update rep-pointers at all nodes in List $_{u}$

- Runtime $O(1)+O\left(\mid\right.$ List $\left._{u} \mid\right)$

Union-Find Data Structure: Implementation

Algorithm Kruskal's Algorithm with Union-Find
for $v \in V$ do
MAKESET (v)
Sort edges in increasing order of weights
$F \leftarrow \emptyset$
for $i=1$ to m do $\quad e_{i}=(u, v)$
if $\operatorname{FIND}(u) \neq \operatorname{FIND}(v)$ then
$F \leftarrow F \cup\left\{e_{i}\right\}$
UNion (u, v)
return F

$$
\text { Runtime }: \sum \begin{cases}O(n) & \text { MAKESET } \\ O(n) & \text { UNION } \\ O(m) & \text { FIND }\end{cases}
$$

Worst case: A list length could be $O(n)$

Union-Find Data Structure: Implementation

Union by rank

- In the first node save length of the list
- Called rank of the set (cardinality)

■ For $\operatorname{Union}(u, v)$ insert smaller rank set into bigger

- potentially fewer rep-updates common sense
- A little more careful analysis lead to see the power of this simple rule
- Every time a rep(u) is updated its new list is at least doubled

■ Max number of rep updates per element (vertex): $O(\log n)$

- Total rep updates for V is $O(n \log n)$

■ So total runtime of all $\operatorname{UNION}(\cdot, \cdot)$ is $O(n)+n \log n$

